Skip to main content

Parametric optimization of non-traditional machining processes using multi-criteria decision making techniques: literature review and future directions

Abstract

Continuous urge for generation of complex intricate features on harder and tougher materials with close dimensional tolerance and superior surface quality has led to the development of non-traditional machining (NTM) processes. Unlike the conventional machining processes, the NTM processes employ energy in various forms or their combinations for removal of material from the workpiece. As these processes are quite capital-intensive, their performance needs to be optimized. In this direction, applications of various multi-criteria decision making (MCDM) techniques have already become popular. This paper provides a comprehensive review of the present literature on the applications of MCDM techniques for parametric optimization of NTM processes. Among all the NTM processes, electrochemical machining (ECM), electrical discharge machining (EDM), wire electrical discharge machining (WEDM), abrasive water jet machining (AWJM), laser beam machining (LBM), ultrasonic machining (USM), and plasma arc machining (PAM) are considered in this paper due to their widespread acceptance in modern manufacturing industries. The essence of all the reviewed articles would help the process engineers in identifying the most suitable experimental design plan, work material, process parameters and responses, MCDM tools, criteria weight measurement techniques, and hybrid models for parametric optimization of NTM processes. Future directions are also included to explore the feasibility of newer MCDM tools to have more pragmatic solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AHP:

Analytic hierarchy process

AJM:

Abrasive jet machining

ANFIS:

Adaptive neuro fuzzy inference system

ANN:

Artificial neural network

ARAS:

Additive ratio assessment

AWJM:

Abrasive water jet machining

BBD:

Box–Behnken design

CCD:

Central composite design

CoCoSo:

Combined compromise solution

CODAS:

Combinative distance-based assessment

COPRAS:

Complex proportional assessment

CRITIC:

Criteria importance through intercriteria correlation

CSA:

Cuckoo search algorithm

DEMATEL:

Decision making trial and evaluation laboratory

DFA:

Desirability function approach

DoE:

Design of experiments

ECM:

Electro-chemical machining

EDAS:

Evaluation based on distance from average solution

EDM:

Electrical discharge machining

EWR:

Electrode wear rate

FEM:

Finite element method

GA:

Genetic algorithm

GRA:

Grey relational analysis

GRNN:

General regression neural network

GWO:

Grey wolf optimizer

HAZ:

Heat affected zone

KW:

Kerf width

LBM:

Laser beam machining

MABAC:

Multi-attributive border approximation area comparison

MARCOS:

Measurement alternatives and ranking according to compromise solution

MCDM:

Multi-criteria decision making

MMC:

Metal matrix composite

MOGA:

Multi-objective genetic algorithm

MOORA:

Multi-objective optimization on the basis of ratio analysis

MRR:

Material removal rate

MRSN:

Multiple response signal-to-noise

NTM:

Non-traditional machining

OA:

Orthogonal array

OC:

Overcut

OCRA:

Operational competitiveness rating analysis

PAM:

Plasma arc machining

PCA:

Principal component analysis

PROMETHEE:

Preference ranking organization method for enrichment evaluation

PSI:

Preference selection index

Ra:

Average surface roughness

Rku:

Kurtosis of surface roughness distribution

ROC:

Radial overcut

ROV:

Range of value

Rq:

Root-mean-square roughness

Rsk:

Skewness of surface roughness distribution

Rsm:

Mean width of profile elements

Rz:

Ten-point surface roughness

SAW:

Simple additive weighting

SDV:

Standard deviation

SIR:

Superiority inferiority ranking

SR:

Surface roughness

SS:

Stainless steel

SVM:

Support vector machine

TLBO:

Teaching–learning-based optimization

TODIM:

TOmada de Decisao Interativa Multicriterio

TOPSIS:

Technique for order of preference by similarity to ideal solution

TWR:

Tool wear rate

USM:

Ultrasonic machining

UT:

Utility theory

VIKOR:

VlseKriterijumska Optimizacija I Kompromisno Resenje

WASPAS:

Weighted aggregated sum product assessment

WEDM:

Wire electrical discharge machining

WJM:

Water jet machining

WPCA:

Weighted principal component analysis

WPM:

Weighted product method

WSM:

Weighted sum method

WSN:

Weighted signal-to-noise

References

  • Abhilash PM, Chakradhar D (2022) Multi-response optimization of wire EDM of Inconel 718 using a hybrid entropy weighted GRA-TOPSIS method. Process Integr Optim Sustain, vol 6. Boca Raton, pp 61–72

  • Adalarasan R, Santhanakumar M, Rajmohan M (2015) Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM). Measurement, vol 73. New York, pp 596–606

  • Agrawal S, Agrawal S, Kasdekar DK (2018) Optimization of MRR and electrolyte coating thickness of ECM parameters using PCA based GRA. Mater Today Proc, vol 5. New Delhi, pp 18956–18965

  • Alduroobi AAA, Ubaid AM, Tawfiq MA, Elias RR (2020) Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances. Int J Syst Assur Eng Manag, vol 11. Massachusetts, pp 1314–1338

  • Anand Babu K, Venkataramaiah P (2015) Multi-response optimization in wire electrical discharge machining (WEDM) of Al6061/SiCp composite using hybrid approach. J Manuf Sci Prod 15:327–338

    Google Scholar 

  • Ananthakumar K, Rajamani D, Balasubramanian E, Davim JP (2019) Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400™ using RSM and TOPSIS. Measurement 135:725–737

    Article  Google Scholar 

  • Asjad M, Talib F (2018) Selection of machining parameters using integrated MCDM techniques. Int J Adv Oper Manag 10(2):109–129

    Google Scholar 

  • Azhiri RB, Teimouri R, Baboly MG, Leseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71:279–295

    Article  Google Scholar 

  • Azmir MA, Ahsan AK, Rahmah A (2009) Effect of abrasive water jet machining parameters on aramid fibre reinforced plastics composite. Int J Mater Form 2:37–44

    Article  Google Scholar 

  • Banerjee B, Mondal K, Adhikary S, Paul SN, Pramanik S, Chatterjee S (2022) Optimization of process parameters in ultrasonic machining using integrated AHP-TOPSIS method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.02.419

    Article  Google Scholar 

  • Bania A, Zindani D, Maity SR (2021a) Optimization of ultrasonic machining (USM) parameters on micro hole drilling of graphene oxide/pineapple leaf filler reinforced epoxy hybrid composite using evaluation based on distance from average solution (EDAS) method. Mater Today Proc 46:9089–9091

    Article  Google Scholar 

  • Bania A, Maity SR (2021b) Identification of parameters for ultrasonic machining (USM) on drilling of graphene oxide/pineapple leaf filler-reinforced epoxy hybrid composite using TODIM method. In: Pandey K et al (eds) Recent advances in mechanical engineering. Springer, Singapore, pp 361–366

    Chapter  Google Scholar 

  • Behzadian M, Otaghsara SK, Yazdani M, Ignatius J (2012) A state-of the-art survey of TOPSIS applications. Expert Syst Appl 39:13051–13069

    Article  Google Scholar 

  • Bhattacharjee B, Biswas N, Rai RN, Choudhuri K, Saha A, Das A, Sinha A (2022) Stir cast Al-Cu-SiCp metal matrix composites: effect of SiC particles on the mechanical properties and optimization of EDM process parameters. J Inst Eng Ser D. https://doi.org/10.1007/s40033-022-00352-y

    Article  Google Scholar 

  • Bhattacharyya B, Doloi B (2020) Modern machining technology: advanced, hybrid, micro machining and super finishing technology. Elsevier, USA

  • Bhattacharyya B, Sorkhel SK (1999) Investigation for controlled electrochemical machining through response surface methodology-based approach. J Mater Process Technol 86:200–207

    Article  Google Scholar 

  • Bhaumik M, Maity KP (2016) Multi-response optimization by using the hybrid technique in electro discharge machining of AISI 304. Int J Eng Res Afr 26:68–75

    Article  Google Scholar 

  • Bhosale SB, Bhowmik S, Ray A (2021) Evaluation of machinability and recast layer analysis of ferrous clay composite through electric discharge machining process. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-06337-5

    Article  Google Scholar 

  • Bhowmik S, Jagadish GK (2019a) Modeling and optimization of electrical discharge machining process. In: Bhowmik S et al (eds) Modeling and optimization of advanced manufacturing processes. Springer, Switzerland, pp 15–28

    Chapter  Google Scholar 

  • Bhowmik S, Jagadish GK (2019b) Modeling and optimization of abrasive water jet machining process. In: Bhowmik S et al (eds) Modeling and optimization of advanced manufacturing processes. Springer, Switzerland, pp 29–44

    Chapter  Google Scholar 

  • Bhowmik S, Jagadish, Gupta K (2019) Modeling and optimization of ultrasonic machining process. In: S Bhowmik et al (eds) Modeling and optimization of advanced manufacturing processes. Springer, pp 45–57

  • Bhuyan RK, Routara BC (2016) Optimization the machining parameters by using VIKOR and entropy weight method during EDM process of Al-18% SiCp metal matrix composite. Decis Sci Lett 5:269–282

    Article  Google Scholar 

  • Bhuyan RK, Parida AK, Routara BC (2014) Application of the entropy weight and TOPSIS method on Al-12% SiC metal matrix composite during EDM. Int J Manuf Mater Mech Eng 4(4):49–63

    Google Scholar 

  • Biswas JH, Jagadish RA (2019) Experimental investigation and optimisation of ultrasonic machining parameters on zirconia composite. Int J Mach Mach Mater 21(1/2):115–137

    Google Scholar 

  • Biswas R, Das MC, Bhattacharyya S, Kuar AS, Mitra S (2019) Selection of Nd:YAG laser beam micro-drilling parameters using multicriteria decision making methods. Opt Laser Technol 119:105596

    Article  Google Scholar 

  • Biswas S, Singh Y, Mukherjee M, Datta S, Barman S, Raja M (2022) Design of multi-material model for wire electro-discharge machining of SS304 and SS316 using machine learning and MCDM techniques. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06757-x

    Article  Google Scholar 

  • Bobbili R, Madhu V, Gogia AK (2015) Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy. Eng Sci Technol 18:720–726

    Google Scholar 

  • Brans JP, Vincke P (1985) A preference ranking organization method. Manag Sci 31(6):647–656

    MATH  Article  Google Scholar 

  • Brauers WKM, Zavadskas EK, Peldschus F, Turskis Z (2008) Multi-objective decision-making for road design. Transport 23:183–193

    Article  Google Scholar 

  • Çaydaş U, Hasçalık A (2008) Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt Laser Technol 40:987–994

    Article  Google Scholar 

  • Chakraborty S, Kumar V (2021) Development of an intelligent decision model for non-traditional machining processes. Decis Mak Appl Manag Eng 4(1):194–214

    Article  Google Scholar 

  • Chakraborty S, Zavadskas (2014) Applications of WASPAS method in manufacturing decision making. Informatica 25(1):1–20

    Article  Google Scholar 

  • Chakraborty S, Bhattacharyya O, Zavadskas EK, Antucheviciene J (2015) Application of WASPAS method as an optimization tool in non-traditional machining processes. Inf Technol Control 44(1):77–88

    Google Scholar 

  • Chakraborty S, Das PP, Kumar V (2018) Application of grey-fuzzy logic technique for parametric optimization of non-traditional machining processes. Grey Syst Theory Appl 8(1):46–68

    Article  Google Scholar 

  • Chakraborty S, Chatterjee P, Das PP (2019) A DoE-TOPSIS method-based meta-model for parametric optimization of non-traditional machining processes. J Model Manag 14(2):430–455

    Article  Google Scholar 

  • Chakraborty S, Chatterjee P, Das PP (2023) Multi-criteria decision making methods in manufacturing environment: models and applications. CRC Press, India

    Google Scholar 

  • Chakradhar D, Venu Gopal A (2011) Multi-objective optimization of electrochemical machining of EN31 steel by grey relational analysis. Int J Model Optim 1(2):113–117

    Article  Google Scholar 

  • Chakravorty R, Gauri SK, Chakraborty S (2013) Optimization of multiple responses of ultrasonic machining (USM) process: a comparative study. Int J Ind Eng Comput 4:285–296

    Google Scholar 

  • Chandrasekhar S, Prasad NBV (2020) Multi-response optimization of electrochemical machining parameters in the micro-drilling of AA6061-TiB2 in situ composites using the Entropy-VIKOR method. Proc Inst Mech Eng Part B J Eng Manuf 234(10):1311–1322

    Article  Google Scholar 

  • Chaturvedi V, Singh D (2015) Multi response optimization of process parameters of abrasive water jet machining for stainless steel AISI 304 using VIKOR approach coupled with signal to noise ratio methodology. J Adv Manuf Syst 14:107–121

    Article  Google Scholar 

  • Chaudhary T, Siddiquee AN, Chanda AK, Ahmad S, Badruddin IA, Khan ZA (2021) Multiple response optimization of dimensional accuracy of Nimonic alloy miniature gear machined on wire Edm using entropy Topsis and pareto anova. Comput Model Eng Sci 126(1):241–259

    Google Scholar 

  • Chaudhury P, Samantaray S (2020) Multi-optimization of process parameters for machining of a non-conductive SiC ceramic composite by non-conventional machining method. Manuf Rev 7:32

    Google Scholar 

  • Chengal Reddy V, Gowd GH, Deva Kumar MLS (2020) Parametric optimization of laser micro milling process parameters of Hastelloy C276 using TOPSIS method. Int J Res Eng Appl Manag 6(6):11–16

    Google Scholar 

  • Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180:96–101

    Article  Google Scholar 

  • Das PP, Chakraborty S (2020a) Parametric analysis of a green electrical discharge machining process using DEMATEL and SIR methods. Opsearch 57:513–540

    MATH  Article  Google Scholar 

  • Das PP, Chakraborty S (2020b) Application of superiority and inferiority multi-criteria ranking method for parametric optimization of laser cutting processes. Process Integr Optim Sustain 4:409–427

    Article  Google Scholar 

  • Das PP, Chakraborty S (2021) Application of grey correlation-based EDAS method for parametric optimization of non-traditional machining processes. Sci Iran 29(2):864–882

    Google Scholar 

  • Das MK, Kumar K, Barman TK, Sahoo P (2014a) Optimization of surface roughness and MRR in electrochemical machining of EN31 tool steel using grey-Taguchi approach. Proc Mater Sci 6:729–740

    Article  Google Scholar 

  • Das MK, Kumar K, Barman TK, Sahoo P (2014b) Optimization of process parameters in plasma arc cutting of EN 31 steel based on MRR and multiple roughness characteristics using grey relational analysis. Proc Mater Sci 5:1550–1559

    Article  Google Scholar 

  • Das PP, Kumar S, Singh Y, Das D, Sinha AK (2018) Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using grey-fuzzy approach. Mater Sci Eng 377:012196

    Google Scholar 

  • Das PP, Diyaley S, Chakraborty S, Ghadai RK (2019) Multi-objective optimization of wire electro discharge machining (WEDM) process parameters using grey-fuzzy approach. Period Polytech Mech Eng 63:16–25

    Article  Google Scholar 

  • Datta S, Mahapatra SS (2010) Modeling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique. Int J Eng Sci Technol 2(5):162–183

    Article  Google Scholar 

  • Debnath S, Ghosh S (2021) Experimental investigation of electro discharge machining process by AHP-MOORA technique. J Ind Eng Decis Mak 2(1):1–7

    Article  Google Scholar 

  • Deris AM, Zain AM, Sallehuddin R (2013) Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining. Meccanica 48:1937–1945

    MATH  Article  Google Scholar 

  • Dewangan S, Gangopadhyay S, Biswas CK (2015a) Study of surface integrity and dimensional accuracy in EDM using fuzzy TOPSIS and sensitivity analysis. Measurement 63:364–376

    Article  Google Scholar 

  • Dewangan S, Gangopadhyay S, Biswas CK (2015b) Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach. Eng Sci Technol 18:361–368

    Google Scholar 

  • Diakoulaki D, Mavrotas G, Papayannakis L (1995) Determining objective weights in multiple criteria problems: the CRITIC method. Comput Oper Res 22(1):763–770

    MATH  Article  Google Scholar 

  • Diyaley S, Shilal P, Shivakoti I, Ghadai RK, Kalita K (2017) PSI and TOPSIS based selection of process parameters in WEDM. Period Polytech Mech Eng 61:255–260

    Article  Google Scholar 

  • Donaivi A, Eskandarzade A, Abdi A, Totonchi A (2008) Empirical modeling of EDM parameters using grey relational analysis. Asian J Sci Res 1(5):502–509

    Article  Google Scholar 

  • Durairaj D, Sudharsun D, Swamynathan N (2013) Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Proc Eng 64:868–877

    Article  Google Scholar 

  • El-Hofy HAG (2005) Advanced machining processes: nontraditional and hybrid machining processes. McGraw Hill, USA

    Google Scholar 

  • Fuse K, Dalsaniya A, Modi D, Vora J, Pimenov DY, Giasin K, Prajapati P, Chaudhari R, Wojciechowski S (2021) Integration of fuzzy AHP and fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials 14:7408

    Article  Google Scholar 

  • Gadakh VS (2012) Parametric optimization of wire electrical discharge machining using TOPSIS method. Adv Prod Eng Manag 7(3):157–164

    Google Scholar 

  • Gauri SK, Chakraborty S (2010) A study on the performance of some multi-response optimisation methods for WEDM processes. Int J Adv Manuf Technol 49:155–166

    Article  Google Scholar 

  • Gautam GD, Mishra DR (2019) Evaluation of geometrical quality characteristics in pulsed Nd:YAG laser cutting of Kevlar-29/Basalt fiber reinforced hybrid composite using grey relational analysis based on genetic algorithm. FME Trans 47:560–575

    Article  Google Scholar 

  • Geethapriyan T, Kalaichelvan K, Muthuramalingam T (2016) Multi performance optimization of electrochemical micro-machining process surface related parameters on machining Inconel 718 using Taguchi-grey relational analysis. La Metallurgia Italiana 4:13–19

    Google Scholar 

  • Geethapriyan T, Kalaichelvan K, Muthuramalingam T, Rajadurai A (2018) Performance analysis of process parameters on machining α-β titanium alloy in electrochemical micromachining process. Proc Inst Mech Eng Part B J Eng Manuf 232(9):1577–1589

    Article  Google Scholar 

  • Geethapriyan T, Muthuramalingam T, Kalaichelvan K (2019) Influence of process parameters on machinability of Inconel 718 by electrochemical micromachining process using TOPSIS technique. Arab J Sci Eng 44:7945–7955

    Article  Google Scholar 

  • Ghorabaee MK, Zavadskas EK, Turskis Z, Antucheviene J (2016) A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ Comput Econ Cybern Stud Res 50(3):25–44

    Google Scholar 

  • Ghosh D, Doloi B, Das PK (2015) Parametric analysis and optimisation on abrasive water jet cutting of silicon nitride ceramics. Int J Precis Technol 5(3/4):294–311

    Article  Google Scholar 

  • Gobinath R, Hariharan P (2018) Influence of process parameters in electrochemical micromachining of Hatelloy using TOPSIS technique. J Balkan Tribol Assoc 24:796–806

    Google Scholar 

  • Gomes LFAM, Rangel LAD (2009) An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur J Oper Res 193(1):204–211

    MATH  Article  Google Scholar 

  • Goswami A, Kumar J (2014) Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Eng Sci Technol 17:173–184

    Google Scholar 

  • Guha S, Das PP, Routara BC (2021) Parametric optimization of wire electric discharge machining on AISI4140 alloy steel using regression analysis and grey-fuzzy approach. Mater Today Proc 46:4734–4740

    Article  Google Scholar 

  • Gutturthi HK, Chinta NSK (2018) Multi-response parametric optimization of abrasive water jet machining on Inconel-601 by using grey relational analysis. J Emerg Technol Innov Res 5(12):410–419

    Google Scholar 

  • Hamdy A, Fattouh M, Abaas S, Masoud R (2019) Multi-objective optimization of plasma arc cutting process using MOORA combined with GA. Eng Res J 42(3):219–230

    Google Scholar 

  • Hanif M, Ahmad W, Hussain S, Jahanzaib M, Shah AH (2019) Investigating the effects of electric discharge machining parameters on material removal rate and surface roughness on AISI D2 steel using RSM-GRA integrated approach. Int J Adv Manuf Technol 101:1255–1265

    Article  Google Scholar 

  • Harish I, Patro S, Srinivasa Rao P (2020) Parametric optimization of machining parameters by using coated copper wire electrode on wire electric discharge machining. Int J Mech Prod Eng Res Dev 10(3):1485–1498

    Google Scholar 

  • Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253:9007–9016

    Article  Google Scholar 

  • Hema P, Ganesan R (2020) Experimental investigations on SS 304 alloy using plasma arc machining. SN Appl Sci 2:1–16

    Google Scholar 

  • Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  • Huo J, Liu S, Wang Y, Muthuramalingam T, Pi VN (2019) Influence of process factors on surface measures on electrical discharge machined stainless steel using TOPSIS. Mater Res Express 6:086507

    Article  Google Scholar 

  • Huu P-N (2020) Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels. Alex Eng J 59:4063–4079

    Article  Google Scholar 

  • Huu PN, Tien LB, Duc QT, Van DP, Xuan CN, Van TN, Duc LN, Jamil M, Khan AM (2019) Multi-objective optimization of process parameter in EDM using low-frequency vibration of workpiece assigned for SKD61. Sādhanā 44:211

    Article  Google Scholar 

  • Jagadish RA (2015) Multi-objective optimization of green EDM: an integrated theory. J Inst Engineers (india) Ser C 96:41–47

    Article  Google Scholar 

  • Jagadish RA (2016) Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87:1299–1311

    Article  Google Scholar 

  • Jangra K, Grover S, Aggarwal A (2012) Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method. Front Mech Eng 7(3):288–299

    Article  Google Scholar 

  • Joshi P, Sharma A (2018) Simultaneous optimization of kerf taper and heat affected zone in Nd-YAG laser cutting of Al 6061–T6 sheet using hybrid approach of grey relational analysis and fuzzy logic. Precis Eng 54:302–313

    Article  Google Scholar 

  • Jung JH, Kwon WT (2010) Optimization of EDM process for multiple performance characteristics using Taguchi method and grey relational analysis. J Mech Sci Technol 24(5):1083–1090

    Article  Google Scholar 

  • Kaklauskas A, Zavadskas EK, Raslanas S, Ginevicius R, Komka A, Malinauskas P (2006) Selection of low e-windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energy Build 38:454–462

    Article  Google Scholar 

  • Kalayarasan M, Murali M (2016) Optimization of process parameters in EDM using Taguchi Taguchi method with grey relational analysis and TOPSIS for ceramic composites. Int J Eng Res Afr 22:83–93

    Article  Google Scholar 

  • Kalirasu S, Rajini N, Rajesh S, Jappes JW, Karuppasamy K (2017) AWJM Performance of jute/polyester composite using MOORA and analytical models. Mater Manuf Process 32:1730–1739

    Article  Google Scholar 

  • Kannan VS, Lenin K, Navneethakrishnan P (2020) Machining parameters optimization in laser beam machining for micro elliptical profiles using TOPSIS method. Mater Today Proc 21:727–730

    Article  Google Scholar 

  • Kasdekar DK, Parashar V (2015) MADM approach for optimization of multiple responses in EDM of En-353 steel. Int J Adv Sci Technol 83:59–70

    Article  Google Scholar 

  • Kataria R, Kumar J, Pabla BS (2016) Experimental investigation and optimization of machining characteristics in ultrasonic machining of WC-Co composite using GRA method. Mater Manuf Process 31(5):685–693

    Article  Google Scholar 

  • Kavimani V, Prakash KS, Thankachan T (2019) Multi-objective optimization in WEDM process of graphene-SiC-magnesium composite through hybrid techniques. Measurement 145:335–349

    Article  Google Scholar 

  • Keshavarz GM, Zavadskas EK, Olfat L, Turskis Z (2015) Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26(3):435–451

    Article  Google Scholar 

  • Khan A, Maity K (2016a) Parametric optimization of some non-conventional machining processes using MOORA method. Int J Eng Res Afr 20:19–40

    Article  Google Scholar 

  • Khan A, Maity K (2016b) Application of MCDM-based TOPSIS method for the optimization of multi quality characteristics of modern manufacturing processes. Int J Eng Res Afr 23:33–51

    Article  Google Scholar 

  • Khan ZA, Siddiquee AN, Khan NZ, Khan U, Quadir GA (2014) Multi response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Proc Mater Sci 6:1683–1695

    Article  Google Scholar 

  • Khanna R, Kumar A, Garg MP, Singh A, Sharma N (2015) Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory. J Ind Eng Int 11:459–472

    Article  Google Scholar 

  • Kibria G, Doloi B, Bhattacharyya B (2013) Experimental investigation and multi-objective optimization of Nd: YAG laser micro-turning process of alumina ceramic using orthogonal array and grey relational analysis. Opt Laser Technol 48:16–27

    Article  Google Scholar 

  • Krishnan JN, Deepak J, Hariharan P (2020) Multi-response optimization of electrochemical micromachining on masked SS304. Eng Res Express 2:015041

    Article  Google Scholar 

  • Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325–379

    Article  Google Scholar 

  • Kumar S, Dhanabalan S (2019) Selection of WEDM parameters to measure the performance and productivity of die steel grade D3 using GRA and fuzzy logic system. Grey Syst Theory Appl 9(3):336–355

    Article  Google Scholar 

  • Kumar VS, Kumar PM (2014) Optimization of cryogenic cooled EDM process parameters using grey relational analysis. J Mech Sci Technol 28(9):3777–3784

    Article  Google Scholar 

  • Kumar VAG, Narasimhamu KL (2020a) Multi-objective optimization in WEDM of Inconel 750 alloy: application of TOPSIS embedded grey wolf optimizer. In: Venkata Rao R, Taler J (eds) Advanced engineering optimization through intelligent techniques. Springer, Singapore, pp 231–240

    Chapter  Google Scholar 

  • Kumar A, Rai RN (2019) Optimisation of EDM process parameters for AA7050-10 (wt)% B4C composite through ARAS, grey and Taguchi technique. Int J Mater Prod Technol 59:102–120

    Article  Google Scholar 

  • Kumar SS, Uthayakumar M, Kumaran ST, Parameswaran P, Mohandas E (2014) Electrical discharge machining of Al (6351)-5% SiC-10% B4C hybrid composite: a grey relational approach. Model Simul Eng Article ID 426718:7

  • Kumar A, Soota T, Kumar J (2018) Optimisation of wire-cut EDM process parameter by grey-based response surface methodology. J Ind Eng Int 14(4):821–829

    Article  Google Scholar 

  • Kumar A, Hussain SA, Rai RN (2019a) Optimization by AHP-ARAS of EDM process parameters on machining AA7050-10%B4C composite. In: Shanker K et al (eds) Advances in industrial and production engineering. Springer, Singapore, pp 285–296

    Google Scholar 

  • Kumar S, Dhanabalan S, Narayanan CS (2019b) Application of ANFIS and GRA for multi-objective optimization of optimal wire-EDM parameters while machining Ti-6Al-4V alloy. SN Appl Sci 1:298

    Article  Google Scholar 

  • Kumar V, Das PP, Chakraborty S (2020b) Grey-fuzzy method-based parametric analysis of abrasive water jet machining on GFRP composites. Sadhana 45:106

    Article  Google Scholar 

  • Kumar R, Singh S, Bilga PS, Jatin SJ, Singh S, Scutaru M-L, Pruncu CI (2021) Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J Mater Res Technol 10:1471–1492

    Article  Google Scholar 

  • Kumar J, Soota T, Rajput SK (2022) Optimization and measurement of kerf width and surface roughness of AISI 316L. Forces Mech 6:100071

    Article  Google Scholar 

  • Lal S, Kumar S, Khan ZA, Siddiquee AN (2015) Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Proc Inst Mech Eng Part B J Eng Manuf 229(2):229–237

    Article  Google Scholar 

  • Lin JL, Lin CL (2002) The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int J Mach Tools Manuf 42:237–244

    Article  Google Scholar 

  • Lin MY, Tsao CC, Huang HH, Wu CY, Hsu CY (2015) Use of the grey-Taguchi method to optimise the micro-electrical discharge machining (micro-EDM) of Ti-6Al-4V alloy. Int J Comput Integr Manuf 28(6):569–576

    Article  Google Scholar 

  • Madić M, Petković D, Radovanović M (2014) GRA approach for multi-objective optimization of laser cutting. U.P.B. Sci Bull Ser D 76(4):79–90

    Google Scholar 

  • Madić M, Radovanović M, Petković D, Nedić B (2015a) Multi-criteria analysis of laser cut surface characteristics in CO2 laser cutting of stainless steel. Tribol Ind 37(2):236–243

    Google Scholar 

  • Madić M, Radovanović M, Coteata M, Janković P, Petković D (2015b) Multi-objective optimization of laser cutting using ROV-based Taguchi methodology. Appl Mech Mater 809–810:405–410

    Article  Google Scholar 

  • Madić M, Radovanović M, Manić M (2016) Application of the ROV method for the selection of cutting fluids. Decis Sci Lett 5(2):245–254

    Article  Google Scholar 

  • Madić M, Antucheviciene J, Radovanović M, Petković D (2017) Determination of laser cutting process conditions using the preference selection index method. Opt Laser Technol 89:214–220

    Article  Google Scholar 

  • Madic M, Antucheviciene J, Radovanovic M, Petkovic D (2016) Determination of manufacturing process conditions by using MCDM methods: application in laser cutting. Eng Econ 27(2):144–150

    Article  Google Scholar 

  • Maity KP, Bagal DK (2015) Effect of process parameters on cut quality of stainless steel of plasma arc cutting using hybrid approach. Int J Adv Manuf Technol 78:161–175

    Article  Google Scholar 

  • Majumder H, Maity K (2017) Optimization of machining condition in WEDM for titanium grade 6 using MOORA coupled with PCA—a multivariate hybrid approach. J Adv Manuf Syst 16:81–99

    Article  Google Scholar 

  • Majumder H, Maity K (2018a) Application of GRNN and multivariate hybrid approach to predict and optimize WEDM responses for Ni-Ti shape memory alloy. Appl Soft Comput 70:665–679

    Article  Google Scholar 

  • Majumder H, Maity K (2018b) Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA-fuzzy-a MCDM approach for nitinol in WEDM. Measurement 118:1–13

    Article  Google Scholar 

  • Majumder H, Paul TR, Dey V, Dutta P, Saha A (2017) Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement 107:19–30

    Article  Google Scholar 

  • Majumder H, Mishra SK, Sahu AN, Bavche AL, Valekar M, Padaseti BK (2020) Application of MOORA to optimize WEDM process parameters: a multi-criteria decision making approach. In: Gunjan VK et al (eds) System reliability, quality control, safety, maintenance and management. Springer, Singapore, pp 73–78

    Google Scholar 

  • Manikandan N, Kumanan S, Sathiyanarayanan C (2015) Multi response optimization of electrochemical drilling of titanium Ti6Al4V alloy using Taguchi based grey relational analysis. Indian J Eng Mater 22:153–160

    Google Scholar 

  • Manikandan N, Kumanan S, Sathiyanarayanan C (2017) Multiple performance optimization of electrochemical drilling of Inconel 625 using Taguchi based grey relational analysis. Eng Sci Technol 20:662–671

    Google Scholar 

  • Maniraj S, Thanigaivelan R (2019) Optimization of electrochemical micromachining process parameters for machining of AMCs with different % compositions of GGBS using Taguchi and TOPSIS methods. Trans Indian Inst Met 72:3057–3066

    Article  Google Scholar 

  • Manivannan R, Kumar P (2016) Multi-response optimization of micro-EDM process parameters on AISI304 steel using TOPSIS. J Mech Sci Technol 30:137–144

    Article  Google Scholar 

  • Manivannan R, Pradeep Kumar M (2017) Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater Manuf Process 32:209–215

    Article  Google Scholar 

  • Maniya K, Bhatt MG (2010) A selection of material using a novel type decision-making method: preference selection index method. Mater Des 31:1785–1789

    Article  Google Scholar 

  • Mathew B, Benkim BJ (2014) Multiple process parameter optimization of WEDM on AISI304 using Taguchi grey relational analysis. Proc Mater Sci 5:1613–1622

    Article  Google Scholar 

  • Meena VK, Azad MS (2012) Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater Manuf Process 27:973–977

    Article  Google Scholar 

  • Meena VK, Azad MS, Singh S, Singh N (2017) Micro-EDM multiple parameter optimization for Cp titanium. Int J Adv Manuf Technol 89:897–904

    Article  Google Scholar 

  • Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17

    Article  Google Scholar 

  • Mhatre MS, Sapkal SU, Pawade RS (2014) Electro discharge machining characteristics of Ti-6Al-4V alloy: a grey relational optimization. Proc Mater Sci 5:2014–2022

    Article  Google Scholar 

  • Miller DW, Starr MK (1969) Executive decisions and operations research. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Mishra S, Yadava V (2013) Modeling and optimization of laser beam percussion drilling of thin aluminum sheet. Opt Laser Technol 48:461–474

    Article  Google Scholar 

  • Mishra DR, Bajaj A, Bisht R (2020a) Optimization of multiple kerf quality characteristics for cutting operation on carbon-basalt-Kevlar29 hybrid composite material using pulsed Nd: YAG laser using GRA. CIRP J Manuf Sci Technol 30:174–183

    Article  Google Scholar 

  • Mishra DR, Gautam GD, Prakash D, Bajaj A, Sharma A, Bisht R, Gupta S (2020b) Optimization of kerf deviations in pulsed Nd:YAG laser cutting of hybrid composite laminate using GRA. FME Trans 48:109–116

    Article  Google Scholar 

  • Mohanty A, Talla G, Dewangan S, Gangopadhyay S (2015) Microstructural investigation and multi response optimisation using fuzzy-TOPSIS during the electrochemical machining of Inconel 825. Int J Precis Technol 5:201–216

    Article  Google Scholar 

  • Mohapatra K, Sahoo S (2018) A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method. Decis Sci Lett 7:157–170

    Article  Google Scholar 

  • Mouliprasanth B, Lakshmanan N, Hariharan P (2019) Multiresponse optimization of electrochemical micro-machining process parameters of micro-dimple using TOPSIS approach. In: Shunmugam MS, Kanthababu M (eds) Advances in micro and nano manufacturing and surface engineering. Springer, Singapore, pp 115–127

    Chapter  Google Scholar 

  • Muhamedagic K, Begic-Hajdarevic D, Pasic M, Cekic A (2018) Optimization of process parameters in plasma arc cutting using TOPSIS method. In: Proceedings of the 29th DAAAM international symposium, Austria, pp 202–209

  • Mukhametzyanov I, Pamučar D (2018) A sensitivity analysis in MCDM problems: a statistical approach. Decis Mak Appl Manag Eng 1(2):51–80

    Article  Google Scholar 

  • Muniappan A, Sriram M, Thiagarajan C, Bharathi Raja G, Shaafi T (2018) Optimization of WEDM process parameters on machining of AZ91 magnesium alloy using MOORA method. Mater Sci Eng 390:012107

    Google Scholar 

  • Muthuramalingam T, Mohan B (2013) Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge machining. Indian J Eng Mater Sci 20:471–475

    Google Scholar 

  • Muthuramalingam T, Mohan B (2014) Application of Taguchi-grey multi responses optimization on process parameters in electro erosion. Measurement 58:495–502

    Article  Google Scholar 

  • Muthuramalingam T, Mohan B (2015) A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng 15:87–94

    Article  Google Scholar 

  • Muthuramalingam T, Vasanth S, Vinothkumar P, Geethapriyan T, Rabik MM (2018) Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using Taguchi-DEAR methodology. SILICON 10:2015–2021

    Article  Google Scholar 

  • Naresh Babu M, Muthukrishnan N (2015) Investigation of multiple process parameters in abrasive water jet machining of tiles. J Chin Inst Eng 38:692–700

    Article  Google Scholar 

  • Natarajan N, Arunachalam RM (2011) Optimization of micro-EDM with multiple performance characteristics using Taguchi method and grey relational analysis. J Sci Ind Res 70:500–505

    Google Scholar 

  • Nayak BB, Mahapatra SS (2013) Multi-response optimization of WEDM process parameters using the AHP and TOPSIS method. Int J Theor Appl Res Mech Eng 2(3):109–115

    Google Scholar 

  • Nguyen PH, Banh TL, Mashood KA, Tran DQ, Pham VD (2020) Application of TGRA-based optimisation for machinability of high-chromium tool steel in the EDM process. Arab J Sci Eng 45:5555–5562

    Article  Google Scholar 

  • Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455

    MATH  Article  Google Scholar 

  • Pamučar D, Ćirović G (2015) The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst Appl 42:3016–3028

    Article  Google Scholar 

  • Panda SN, Bagal DK, Pattanaik AK, Patnaik D, Barua A, Jeet S, Parida B, Naik B (2020) Comparative evaluation for studying the parametric influences on quality of electrode using Taguchi method coupled with MOORA, DFA, and TOPSIS method for electrochemical machining. In: Parwani AK, Ramkumar PL (eds) Recent advances in mechanical infrastructure. Springer, Singapore, pp 115–129

    Chapter  Google Scholar 

  • Pandey PC, Shan HS (1980) Modern machining processes. McGraw Hill, India

    Google Scholar 

  • Pandiyan GK, Prabaharan T, James DJD, Sivalingam V (2022) Machinability analysis and optimization of electrical discharge machining in AA6061-T6/15wt.% SiC composite by the multi-criteria decision-making approach. J Mater Eng Perform 31:3741–3752

    Article  Google Scholar 

  • Parkan C, Wu M-L (1997) On the equivalence of operational performance measurement and multiple attribute decision making. Int J Prod Res 35:2963–2988

    MATH  Article  Google Scholar 

  • Parthiban K, Duraiselvam M, Manivannan R (2018) TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy. Opt Laser Technol 102:32–39

    Article  Google Scholar 

  • Patel JD, Maniya KD (2018) Use of multi criteria decision making method for selection of wire cut electrical discharge machining process. Int J Pure Appl Math 118(20):383–389

    Google Scholar 

  • Patel JD, Maniya KD (2019) WEDM process parameter selection using preference ranking method: a comparative study. Int J Manuf Res 14:118–144

    Article  Google Scholar 

  • Patel P, Nakum B, Abhishek K, Rakesh Kumar V (2018) Machining performance optimization during plasma arc cutting of AISI D2 steel: application of FIS, nonlinear regression and JAYA optimization algorithm. J Braz Soc Mech Sci Eng 40:240

    Article  Google Scholar 

  • Patel RK, Pradhan MK (2019) Process parameters optimization of electrical discharge machining of Al7075/SiC/WS2 by using MCDM. In: Narayanan RG et al (eds) Advances in computational methods in manufacturing. Springer, Singapore, pp 329–336

    Chapter  Google Scholar 

  • Patel GCM, Jagadish KRS, Swamy Naidu NV (2020) Optimization of abrasive water jet machining for green composites using multi-variant hybrid techniques. In: Gupta K, Gupta MK (eds) Optimization of manufacturing processes. Springer, Switzerland, pp 129–162

    Chapter  Google Scholar 

  • Paul TR, Saha A, Majumder H, Dey V, Dutta P (2019) Multi-objective optimization of some correlated process parameters in EDM of Inconel 800 using a hybrid approach. J Braz Soc Mech Sci Eng 41:300

    Article  Google Scholar 

  • Payal H, Maheshwari S, Bharti PS (2019) Parametric optimization of EDM process for Inconel 825 using GRA and PCA approach. J Inf Optim Sci 40(2):291–307

    Google Scholar 

  • Pillai HP, Sampath SC, Elumalai R, Hariharan S, Natarajan Y (2017) Influence of process parameters on electrochemical micromachining of Nimonic 75 alloy. In: ASME international mechanical engineering congress and exposition, Florida, pp 1–8

  • Prabhu S, Vinayagam BK (2016) Multireponse optimization of EDM process with nanofluids using TOPSIS method and genetic algorithm. Arch Mech Eng LXIII(1):45–71

    Article  Google Scholar 

  • Pradeep N, Sundaram KS, Kumar MP (2019) Multi-response optimization of electrochemical micromachining parameters for SS304 using polymer graphite electrode with NaNO3 electrolyte based on TOPSIS technique. J Braz Soc Mech Sci Eng 41:323

    Article  Google Scholar 

  • Pradhan MK (2013) Estimating the effect of process parameters on MRR, TWR and radial overcut of EDMed AISI D2 tool steel by RSM and GRA coupled with PCA. Int J Adv Manuf Technol 68:591–605

    Article  Google Scholar 

  • Pradhan MK (2018) Optimisation of EDM process for MRR, TWR and radial overcut of D2 steel: a hybrid RSM-GRA and entropy weight-based TOPSIS approach. Int J Ind Syst Eng 29:273–302

    Google Scholar 

  • Pragadish N, Pradeep Kumar M (2016) Optimization of dry EDM process parameters using grey relational analysis. Arab J Sci Eng 41:4383–4390

    Article  Google Scholar 

  • Prajapati RK, Patel CN (2019) Review and optimization of process parameter of abrasive water jet machine using multi criteria decision making method on aluminium 5083. Int J Technol Res Eng 7(2):6103–6109

    Google Scholar 

  • Priyadarshini M, Pal K (2016) Multi-objective optimisation of EDM process using hybrid Taguchi-based methodologies for Ti-6Al-4V alloy. Int J Manuf Res 11(2):144–166

    Article  Google Scholar 

  • Priyadarshini M, Pattnaik SK, Mishra D, Panda S, Dhalmahapatra K (2015) Multi characteristics optimization of laser drilling process parameter using grey fuzzy reasoning method. Mater Today Proc 2:1518–1532

    Article  Google Scholar 

  • Priyadarshini M, Tripathy PP, Mishra D, Panda S (2017) Multi characteristics optimization of laser drilling process parameter using fuzzy-TOPSIS method. Mater Today Proc 4:8538–8547

    Article  Google Scholar 

  • Raghuraman S, Thiruppathi K, Panneerselvam T, Santosh S (2013) Optimization of EDM parameters using Taguchi method and grey relational analysis for mild steel IS 2026. Int J Innov Res Sci Eng Technol 2(7):3095–3104

    Google Scholar 

  • Raj SON, Prabhu S (2017) Analysis of multi objective optimisation using TOPSIS method in EDM process with CNT infused copper electrode. Int J Mach Mach Mater 19(1):76–94

    Google Scholar 

  • Rajyalakshmi G, Venkata Ramaiah P (2013) Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. Int J Adv Manuf Technol 69:1249–1262

    Article  Google Scholar 

  • Ram Prasad AV, Ramji K, Kolli M, Vamsi Krishna G (2019) Multi-response optimization of machining process parameters for wire electrical discharge machining of lead-induced Ti-6Al-4V alloy using AHP-TOPSIS method. J Adv Manuf Syst 18:213–236

    Article  Google Scholar 

  • Ramamurthy A, Sivaramakrishnan R, Muthuramalingam T (2015) Taguchi-grey computation methodology for optimum multiple performance measures on machining titanium alloy in WEDM process. Indian J Eng Mater Sci 22:181–186

    Google Scholar 

  • Rao MS, Venkaiah N (2018) Multi-response optimisation for MRR and Ra in WEDM process of Nimonic-263 super alloy. Int J Mater Prod Technol 56:187–206

    Article  Google Scholar 

  • Rao R, Yadava V (2009) Multi-objective optimization of Nd:YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt Laser Technol 41:922–930

    Article  Google Scholar 

  • Rao RV, Rai DP, Balic J (2019) Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method. J Intell Manuf 30:2101–2127

    Article  Google Scholar 

  • Rao KV, Raju LR, Kumar CK (2020) Modeling of kerf width and surface roughness in wire cut electric discharge machining of Ti-6Al-4V. Proc Inst Mech Eng Part E J Process Mech Eng 234(6):533–542

    Article  Google Scholar 

  • Reddy YR, Reddy BCM (2018) Optimization of WEDM parameters for super Ni-718 using neutrosophic sets and TOPSIS Method. J Innov Mech Eng 1(1):13–19

    Google Scholar 

  • Reddy PV, Kumar GS, Kumar VS (2020) Multi-response optimization in machining Inconel-625 by abrasive water jet machining process using WASPAS and MOORA. Arab J Sci Eng 45:9843–9857

    Article  Google Scholar 

  • Renangi S, Dara S, Bathina S (2015) Multi objective optimization of process parameters in plasma arc cutting of SS 420 using grey-Taguchi analysis. Int J Adv Eng Res Sci 2(11):46–52

    Google Scholar 

  • Roy T, Dutta RK (2019) Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput 23:5053–5063

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill Company, New York

    MATH  Google Scholar 

  • Saedon JB, Jaafar N, Yahaya MA, Saad NH, Kasim MS (2014) Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM. Proc Technol 15:832–840

    Article  Google Scholar 

  • Safari H, Khanmohammadi E, Hafezamini A, Ahangari SS (2013) A new technique for multi criteria decision making based on modified similarity method. Middle-East J Sci Res 14(5):712–719

    Google Scholar 

  • Saha A, Mondal SC (2016) Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Measurement 94:46–59

    Article  Google Scholar 

  • Sahoo SK, Naik SS, Rana J (2019) Optimisation of WEDM process parameters during machining of HCHCr steel using TOPSIS method. Int J Process Manag Benchmark 9:216–231

    Article  Google Scholar 

  • Samson RM, Rajak S, Kannan TD, Sampreet KR (2020) Optimization of process parameters in abrasive water jet machining of Inconel 718 using VIKOR method. J Inst Engineers (india) Series C 101:579–585

    Article  Google Scholar 

  • Santhanakumar M, Adalarasan R, Rajmohan M (2015) Experimental modelling and analysis in abrasive waterjet cutting of ceramic tiles using grey-based response surface methodology. Arab J Sci Eng 40:3299–3311

    Article  Google Scholar 

  • Santhanakumar M, Adalarasan R, Rajmohan M (2016) Parameter design for cut surface characteristics in abrasive waterjet cutting of Al/SiC/Al2O3 composite using grey theory based RSM. J Mech Sci Technol 30(1):371–379

    Article  Google Scholar 

  • Santhanakumar M, Adalarasan R, Raj SS, Rajmohan M (2017) An integrated approach of TOPSIS and response surface methodology for optimising the micro WEDM parameters. Int J Oper Res 28:18–34

    Article  Google Scholar 

  • Santhi M, Ravikumar R, Jeyapaul R (2013) Optimization of process parameters in electro chemical machining (ECM) using DFA-fuzzy set theory-TOPSIS for titanium alloy. Multidiscip Model Mater Struct 9(2):243–255

    Article  Google Scholar 

  • Satyanarayana B, Srikar G (2014) Optimization of abrasive water jet machining process parameters using Taguchi grey relational analysis (TGRA). Int J Mech Prod Eng 2(9):82–87

    Google Scholar 

  • Selvam MP, Kumar PR (2017) Optimization kerf width and surface roughness in wirecut electrical discharge machining using brass wire. Mech Mech Eng 21(1):37–45

    Google Scholar 

  • Selvarajan L, Sathiya Narayanan C, Jeyapaul R (2015) Optimization of process parameters to improve form and orientation tolerances in EDM of MoSi2-SiC composites. Mater Manuf Process 30(8):954–960

    Article  Google Scholar 

  • Selvarajan L, Sathiya Narayanan C, Jeya Paul R (2016) Optimization of EDM parameters on machining Si3N4-TiN composite for improving circularity, cylindricity, and perpendicularity. Mater Manuf Process 31(4):405–412

    Article  Google Scholar 

  • Sen B, Hussain SAI, Gupta AD, Gupta MK, Pimenov DY, Mikołajczyk T (2021) Application of type-2 fuzzy AHP-ARAS for selecting optimal WEDM parameters. Metals 11:42

    Article  Google Scholar 

  • Senthil P, Vinodh S, Singh AK (2014) Parametric optimisation of EDM on Al-Cu/TiB2 in-situ metal matrix composites using TOPSIS method. Int J Mach Mach Mater 16:80–94

    Google Scholar 

  • Sharma N, Ahuja N, Goyal R, Rohilla V (2020) Parametric optimization of EDD using RSM-Grey-TLBO-based MCDM approach for commercially pure titanium. Grey Syst Theory Appl 10(2):231–245

    Article  Google Scholar 

  • Sharsar R, Ghosh S, Mandal MC, Ray A (2021) Optimum experimental setup of EDM using entropy coupled MCDM techniques. In: Tyagi M et al (eds) Optimization methods in engineering. Springer, Singapore, pp 549–566

    Chapter  Google Scholar 

  • Shastri RK, Mohanty CP (2021) Sustainable electrical discharge machining of Nimonic C263 superalloy. Arab J Sci Eng 46:7273–7293

    Article  Google Scholar 

  • Shivade AS, Shinde VD (2014) Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & grey relational analysis. J Ind Eng Int 10:149–162

    Article  Google Scholar 

  • Shivakoti I, Kalita K, Kibria G, Sharma A, Pradhan BB, Ghadai RK (2021) Parametric analysis and multi response optimization of laser surface texturing of titanium super alloy. J Braz Soc Mech Sci Eng 43:1–15

    Article  Google Scholar 

  • Sidhu SS, Bains PS, Yazdani M, Zolfaniab (2018) Application of MCDM techniques on nonconcentional machining of composites. In: Sidhu SS et al (eds) Futuristic composites, materials horizons: from nature to nanomaterials. Springer Nature, Singapore, pp 127–144

    Chapter  Google Scholar 

  • Singaravel B, Prasad SD, Shekar KC, Rao KM, Reddy GG (2020) Optimization of process parameters using hybrid Taguchi and VIKOR method in electrical discharge machining process. In: Venkata Rao R, Taler J (eds) Advanced engineering optimization through intelligent techniques. Springer, Singapore, pp 527–536

    Chapter  Google Scholar 

  • Singh D, Chaturvedi V (2014) Investigation of optimal processing condition for abrasive water jet machining for stainless steel AISI 304 using grey relational analysis coupled with S/N ratio. Appl Mech Mater 592–594:438–443

    Article  Google Scholar 

  • Singh J, Sharma RK (2018) Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy. Proc Inst Mech Eng C J Mech Eng Sci 232(16):2774–2786

    Article  Google Scholar 

  • Singh S, Yeh MF (2012) Optimization of abrasive powder mixed EDM of aluminum matrix composites with multiple responses using gray relational analysis. J Mater Eng Perform 21(4):481–491

    Article  Google Scholar 

  • Singh PN, Raghukandan K, Pai BC (2004) Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCP composites. J Mater Process Technol 155–156:1658–1661

    Article  Google Scholar 

  • Singh A, Anandita S, Gangopadhyay S (2015) Microstructural analysis and multiresponse optimization during ECM of Inconel 825 using hybrid approach. Mater Manuf Process 30(7):842–851

    Article  Google Scholar 

  • Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl 38:8370–8374

    Article  Google Scholar 

  • Sivaprasad PV, Haq NA (2019) An entropy-Deng’s similarity-based technique for modeling and optimization of process variables for laser micro drilling of alloy-X. J Sci Ind Res 78:223–230

    Google Scholar 

  • Somashekhar KP, Mathew J, Ramachandran N (2011) Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method. Proc Inst Mech Eng 225:1742–1753

    Google Scholar 

  • Soundarrajan M, Thanigaivelan R (2018) Investigation on electrochemical micromachining (ECMM) of copper inorganic material using UV heated electrolyte. Russ J Appl Chem 91:1805–1813

    Article  Google Scholar 

  • Sreenivasulu R, Rao CS (2013) Design of experiments based grey relational analysis in various machining processes—a review. Res J Eng Sci 2(1):21–26

    Google Scholar 

  • Sreeraj P, Kumaran ST, Kumar SS, Uthayakumar M, Pethuraj M (2022) Application of MCDM based hybrid optimization of WEDM process parameters. Mater Today Proc 50:1186–1192

    Article  Google Scholar 

  • Srikanth R, Singaravel B, Vinod P, Aravind S, Subodh D (2021) Optimization of process parameters in electric discharge machining process of Ti-6Al-4V alloy using hybrid Taguchi based MOORA method. IOP Conf Ser Mater Sci Eng 1057:012064

    Article  Google Scholar 

  • Srinivasan VP, Palani PK, Dhayananthan S, Gopi S, Balamurugan S, Venkatesh SM (2021) A multi criteria decision making (MCDM) based on TOPSIS and RSM for process improvement in electrical discharge machining of silicon nitride-titanium nitride ceramic composites. Mater Today Proc 45:1319–1327

    Article  Google Scholar 

  • Stević Ž, Pamučar D, Puška A, Chatterjee P (2020) Sustainable supplier selection in healthcare industries using a new MCDM method: measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput Ind Eng 140:106231

    Article  Google Scholar 

  • Talla G, Sahoo DK, Gangopadhyay S, Biswas CK (2015) Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Eng Sci Technol 18:369–373

    Google Scholar 

  • Tang L, Du YT (2014) Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization. Int J Adv Manuf Technol 70:469–475

    Article  Google Scholar 

  • Thangaraj M, Annamalai R, Moiduddin K, Alkindi M, Ramalingam S, Alghamdi O (2020) Enhancing the surface quality of micro titanium alloy specimen in WEDM process by adopting TGRA-based optimization. Materials 13:1440

    Article  Google Scholar 

  • Thanigaivelan R, Arunachalam R (2013) Optimization of process parameters on machining rate and overcut in electrochemical micromachining using grey relational analysis. J Sci Ind Res 72:36–42

    Google Scholar 

  • Thejasree P, Binoj JS, Manikandan N, Krishnamachary PC, Raju R, Palanisamy D (2021) Multi objective optimization of wire electrical discharge machining on Inconel 718 using Taguchi grey relational analysis. Mater Today Proc 39:230–235

    Article  Google Scholar 

  • Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  • Tiwari M, Mausam K, Sharma K, Singh RP (2014) Investigating the optimal combination of process parameters for EDM by using a grey relational analysis. Proc Mater Sci 5:1736–1744

    Article  Google Scholar 

  • Tiwary AP, Pradhan BB, Bhattacharyya B (2014) Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Adv Manuf 2:251–258

    Article  Google Scholar 

  • Tozan H (2011) Fuzzy AHP based decision support system for technology selection in abrasive water jet cutting processes. Tehnički Vjesnik Technical Gazette 18:187–191

    Google Scholar 

  • Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Eng Sci Technol 19:62–70

    Google Scholar 

  • Tripathy S, Tripathy DK (2017) Multi-response optimization of machining process parameters for powder mixed electro-discharge machining of H-11 die steel using grey relational analysis and topsis. Mach Sci Technol 21:362–384

    Article  Google Scholar 

  • Tudu JJ, Panda SN, Kumar P (2021) A comparative evaluation of process parameter optimization of wire cut electric discharge machining of Ti-6Al-4V using WASPAS and metaheuristic methods. Psychol Educ 58(1):5860–5863

    Google Scholar 

  • Viswanth VS, Ramanujam R, Rajyalakshmi G (2020) Performance study of eco-friendly dielectric in EDM of AISI 2507 super duplex steel using Taguchi-fuzzy TOPSIS approach. Int J Prod Qual Manag 29:518–541

    Google Scholar 

  • Xu X (2001) The SIR method: a superiority and inferiority ranking method for multiple criteria decision making. Eur J Oper Res 131:587–602

    MathSciNet  MATH  Article  Google Scholar 

  • Xu CS (2012) Working principle and performance of wire electrical discharge machining. Adv Mater Res 507:180–183

    Article  Google Scholar 

  • Xu WJ, Fang JC, Lu YS (2002) Study on ceramic cutting by plasma arc. J Mater Process Technol 129:152–156

    Article  Google Scholar 

  • Yazdani M, Zarate P, Zavadskas EK, Turskis Z (2019) A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Decis 57:2501–2519

    Article  Google Scholar 

  • Youssef H, El-Hofy HAG (2020) Machining technology and operations. CRC Press, USA

    Book  Google Scholar 

  • Yuan CJ, Bakar ASHA, Roslan MN, Cheng CW, Rosekhizam MNSM, Ghani JA, Wahid Z (2021) Electrochemical machining (ECM) and its recent development. Jurnal Tribologi 28:20–31

    Google Scholar 

  • Yuvaraj N, Pradeep Kumar M (2015) Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach. Mater Manuf Process 30:882–889

    Article  Google Scholar 

  • Yuvaraj N, Pradeep Kumar M (2018) Optimisation of abrasive water jet cutting process parameters for AA5083-H32 aluminium alloy using fuzzy TOPSIS method. Int J Mach Mach Mater 20:118–140

    Google Scholar 

  • Zavadskas EK, Turskis Z (2010) A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol Econ Dev Econ 16(2):159–172

    Article  Google Scholar 

  • Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Electron Electr Eng 122(6):3–6

    Google Scholar 

  • Zeng Y-P, Lin C-L, Dai H-M, Lin Y-C, Hung J-C (2021) Multi-performance optimization in electrical discharge machining of Al2O3 ceramics using Taguchi base AHP weighted TOPSIS method. Processes 9:1647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Chakraborty, S., Ghadai, R.K. et al. Parametric optimization of non-traditional machining processes using multi-criteria decision making techniques: literature review and future directions. Multiscale and Multidiscip. Model. Exp. and Des. (2022). https://doi.org/10.1007/s41939-022-00128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-022-00128-7

Keywords

  • NTM process
  • MCDM
  • Optimization
  • Parameter
  • Response