Multiscale modeling of carbon fiber-reinforced polymer composites in low-temperature arctic conditions


Exploration of new frontiers within the Arctic region introduces new challenges for the structural materials used in naval applications. This compels research on the influence of Arctic temperatures (from room temperature to \(-~70\,\,^{\circ }\hbox {C}\)) on the mechanical behavior of composites. In the current investigation, the effects of low temperatures on the axial stiffness of graphite/epoxy composites with unidirectional, cross-ply, and quasi-isotropic layups are studied using MAC/GMC, a micromechanical simulation tool developed by the NASA Glenn Research Center. Parametric studies were conducted to understand how various constituent material properties of a graphite/epoxy laminate influence the global, homogenized, axial stiffness of the composite subjected to arctic conditions. MAC/GMC provided accurate simulation results as compared with published experimental data. Results revealed that the increase in axial stiffness of carbon fibers is the main mechanism responsible for the overall increase in the global axial stiffness of the laminated composites at low temperature. The current research effort expands the understanding of how composites respond and behave in such extreme, low-temperature environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. Arctic Resources & Transportation Information System (ARCTIS) Oil and Gas (2018). Accessed 28 March 2018

  2. National Geographic, Arctic (2018). Accessed 28 March 2018

  3. National Snow and Ice Data Center (2018) All About Arctic Climatology and Meteorology. Accessed 28 March 2018

  4. The Boeing Company, AERO QUARTERLY QTR\_04\_06 (2018).

  5. Kim M, Kang S, Kim C, Kong C (2007) Tensile response of graphite/epoxy composites at low temperatures. Compos Struct 79:84–89

    Article  Google Scholar 

  6. Reed RP, Golda M (1994) Cryogenic properties of unidirectional composites. Cryogenics 34:909–928

    Article  Google Scholar 

  7. Majerski K, Surowska B, Bienias J (2012) Tensile properties of carbon fiber/epoxy laminates at low and room temperatures. Compos Theory Pract 12:182–185

    Google Scholar 

  8. Sanchez-Saez S, Gomez del Rio T, Barbero E, Zaera R, Navarro C (2002) Static behavior of CFRPs at low temperatures. Compos Part B 33:383–390

    Article  Google Scholar 

  9. Nettles AT, Biss EJ (1996) Low temperature mechanical testing of carbon-fiber/epoxy-resin composite materials. NASA Technical Paper 3663

  10. Torabizadeh M (2013) Tensile, compressive and shear properties of unidirectional glass/epoxy composites subjected to mechanical loading and low temperature services. Indian J Eng Mater Sci 20:299–309

    Google Scholar 

  11. Sanchez-Saez S, Barbero E, Navarro C (2008) Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts. Compos Struct 85:226–232

    Article  Google Scholar 

  12. Elamin M, Li B, Tan KT (2018) Impact damage of composite sandwich structures in arctic condition. Compos Struct 192:422–433

    Article  Google Scholar 

  13. Salehi-Khojin A, Mahinfalah M, Bashirzadeh R, Freeman B (2007) Temperature effects on Kevlar/hybrid and carbon fiber composite sandwiches under impact loading. Compos Struct 78:197–206

    Article  Google Scholar 

  14. Suvarna R, Arumugam V, Bull D, Chambers A, Santulli C (2014) Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomography. Compos Part B 66:58–64

    Article  Google Scholar 

  15. Im K, Cha C, Kim S, Yang I (2001) Effects of temperature on impact damages in CFRP composite laminates. Compos Part B 32:669–682

    Article  Google Scholar 

  16. Coronado P, Arguelles A, Vina J, Vina I (2014) Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fibre/epoxy composites under fatigue loading. Compos Struct 112:188–193

    Article  Google Scholar 

  17. Asp LE (1998) The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58:967–977

    Article  Google Scholar 

  18. Coronado P, Arguelles A, Vina J, Mollon V, Vina I (2012) Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination. Int J Solids Struct 49:2934–2940

    Article  Google Scholar 

  19. Shen CH, Springer GS (1976) Effects of moisture and temperature on the tensile strength of composite materials. Department of Mechanical Engineering. University of Michigan,

  20. Rivera J, Karbhari VM (2002) Cold-temperature and simultaneous aqueous environment related degradation of carbon/vinylester composites. Compos Part B 33:17–24

    Article  Google Scholar 

  21. Choi S, Sankar B (2006) Micromechanical analysis of composite laminates at cryogenic temperatures. J Compos Mater 40:1077–1091

    Article  Google Scholar 

  22. Horiuchi T, Ooi T (1995) Cryogenic properties of composite materials. Cryogenics 35:677–679

    Article  Google Scholar 

  23. Gong M, Wang XF, Zhao JH (2007) Experimental study on mechanical behavior of laminates at low temperature. Cryogenics 47:1–7

    Article  Google Scholar 

  24. Schutz JB (1998) Properties of composite materials for cryogenic applications. Cryogenics 38:3–12

    Article  Google Scholar 

  25. Schramm R, Kasen M (1977) Cryogenic mechanical properties of boron-, graphite-, and glass-reinforced composites. Mater Sci Eng 30:197–204

    Article  Google Scholar 

  26. Cease H, Derwent P, Diehl H, Fast J, Finley D (2006) Measurement of mechanical properties of three epoxy adhesives at cryogenic temperatures for CCD construction. Fermilab-TM-2366-A

  27. Shokrieh MM, Torabizadeh MA, Fereidoon A (2012) Progressive failure analysis of glass/epoxy composites at low temperatures. Strength Mater 44:314–324

    Article  Google Scholar 

  28. Santiuste C, Barbero E, Miguelez MH (2011) Computational analysis of temperature effect in composite bolted joints for aeronautical applications. J Reinf Plast Compos 30:3–11

    Article  Google Scholar 

  29. Yang P, Shams S, Slay A, Brokate B, Elhajjar R (2015) Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores. Compos Struct 129:213–223

    Article  Google Scholar 

  30. Shindo Y, Ueda S, Nishioka Y (1993) Mechanical behavior of woven composites at low temperatures. Fusion Eng Des 20:469–474

    Article  Google Scholar 

  31. Lord H, Dutta P (1988) On the design of polymeric composite structures for cold regions applications. J Reinf Plast Compos 7:435–458

    Article  Google Scholar 

  32. Bednarcyk B, Arnold S (2002) MAC/GMC 4.0 User’s Manual-Keywords Manual. NASA/TM-2002-212077/Vol

  33. Bednarcyk B, Arnold S (2002) MAC/GMC 4.0 User’s Manual-Example Problem Manual. NASA/TM-2002-212077/Vol

  34. Aboudi J, Arnold SM, Bednarcyk BA (2013) Micromechanics of composite materials: a generalized multiscale analysis approach. Elsevier Inc, New York

    Google Scholar 

  35. Hyer MW (2009) Stress analysis of fiber-reinforced composite materials. DEStech Publications Inc, Pennsylvania

    Google Scholar 

  36. Soden PD, Hinton MJ, Kaddour AS (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58:1011–1022

    Article  Google Scholar 

  37. Pineda EJ, Bednarcyk BA, Arnold SM, Waas AM (2013) Mesh objective progressive failure of a unidirectional fiber-reinforced composite using the method of cells. Int J Solids Struct 50:1203–1216

    Article  Google Scholar 

Download references


K.T. Tan acknowledges the research grant #N00014-16-1-3202 provided by the Office of Naval Research (ONR Program Manager: Dr. Yapa Rajapakse).

Author information



Corresponding author

Correspondence to K. T. Tan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cross, D.R., Tan, K.T., Pineda, E.J. et al. Multiscale modeling of carbon fiber-reinforced polymer composites in low-temperature arctic conditions. Multiscale and Multidiscip. Model. Exp. and Des. 1, 239–254 (2018).

Download citation


  • Carbon fiber-reinforced polymer (CFRP)
  • Micromechanical modeling
  • Modulus
  • Low temperature
  • Laminate layups