Skip to main content

Advertisement

Log in

Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Lithium metal anodes (LMAs) show unique superiority for secondary batteries because they possess the lowest molar mass and reduction potential among metallic elements. It can diminish the large gap in energy density between secondary batteries and fossil fuels. However, notorious dendrite propagation gives rise to large volume expansion, low reversibility and potential safety hazards, making the commercial application of LMAs a perennial challenge. The booming development in material characterization deepens the understanding of the dendrite formation mechanism, and the great progress made via nanotechnology-based solutions hastens practical procedures. In this paper, we highlight the current understanding of lithium dendrites. We first illustrate different nucleation theories and growth patterns of lithium dendrites. According to the growth patterns, we classify dendrites into three categories to accurately describe their different formation mechanisms. Then, we concentrate on the factors that may lead to dendritic deposits in each electroplating step. The dendritic morphology originates from the inhomogeneity of Li atoms, electrons, mass transport in the bulk electrolyte and the solid electrolyte interphase. Different inducements lead to different growth patterns. Based on this understanding, strategies for controlling lithium plating are divided into five methodologies. Reasonable integration of the strategies is expected to provide new ideas for basic research and practical application of LMAs. Finally, current limitations and advice for future research are proposed, aiming at inspiring engaged contributors and new entrants to explore scalable solutions for early realization of industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  3. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  4. Davis, S.J., Caldeira, K., Matthews, H.D.: Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010). https://doi.org/10.1126/science.1188566

    Article  CAS  Google Scholar 

  5. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  6. Stambouli, A.B., Traversa, E.: Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6, 433–455 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X

    Article  CAS  Google Scholar 

  7. Song, Y.Z., Liu, X., Ren, D.S., et al.: Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34, e2106335 (2022). https://doi.org/10.1002/adma.202106335

    Article  CAS  Google Scholar 

  8. Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014). https://doi.org/10.1021/cr5003003

    Article  CAS  Google Scholar 

  9. Leng, J., Wang, Z.X., Wang, J.X., et al.: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015–3072 (2019). https://doi.org/10.1039/c8cs00904j

    Article  CAS  Google Scholar 

  10. Fang, C.C., Wang, X.F., Meng, Y.S.: Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015

    Article  CAS  Google Scholar 

  11. Guan, X.Z., Wang, A.X., Liu, S., et al.: Controlling nucleation in lithium metal anodes. Small 14, 1801423 (2018). https://doi.org/10.1002/smll.201801423

    Article  CAS  Google Scholar 

  12. Kim, H., Jeong, G., Kim, Y.U., et al.: Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013). https://doi.org/10.1039/C3CS60177C

    Article  CAS  Google Scholar 

  13. Zhang, X., Yang, Y., Zhou, Z.: Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a

    Article  CAS  Google Scholar 

  14. Liu, J., Bao, Z., Cui, Y., et al.: Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x

    Article  CAS  Google Scholar 

  15. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  16. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  17. Wang, A., Kadam, S., Li, H., et al.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  Google Scholar 

  18. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g

    Article  CAS  Google Scholar 

  19. Wang, H.S., Liu, Y.Y., Li, Y.Z., et al.: Lithium metal anode materials design: interphase and host. Electrochem. Energy Rev. 2, 509–517 (2019). https://doi.org/10.1007/s41918-019-00054-2

    Article  CAS  Google Scholar 

  20. Tewari, D., Mukherjee, P.P.: Mechanistic understanding of electrochemical plating and stripping of metal electrodes. J. Mater. Chem. A7, 4668–4688 (2019). https://doi.org/10.1039/c8ta11326b10.1039/c8ta11326b

    Article  Google Scholar 

  21. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  22. Zheng, J.X., Tang, T., Zhao, Q., et al.: Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal? ACS Energy Lett. 4, 1349–1355 (2019). https://doi.org/10.1021/acsenergylett.9b00750

    Article  CAS  Google Scholar 

  23. Cheng, J.H., Assegie, A.A., Huang, C.J., et al.: Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J. Phys. Chem. C 121, 7761–7766 (2017). https://doi.org/10.1021/acs.jpcc.7b01414

    Article  CAS  Google Scholar 

  24. Feng, X.N., Zheng, S.Q., Ren, D.S., et al.: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 246, 53–64 (2019). https://doi.org/10.1016/j.apenergy.2019.04.009

    Article  CAS  Google Scholar 

  25. Feng, X.N., Ren, D.S., He, X.M., et al.: Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010

    Article  CAS  Google Scholar 

  26. Ren, D.S., Feng, X.N., Lu, L.G., et al.: Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy 250, 323–332 (2019). https://doi.org/10.1016/j.apenergy.2019.05.015

    Article  CAS  Google Scholar 

  27. Niu, C., Liu, D., Lochala, J.A., et al.: Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021). https://doi.org/10.1038/s41560-021-00852-3

    Article  CAS  Google Scholar 

  28. Cao, W.Z., Zhang, J.N., Li, H.: Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024

    Article  Google Scholar 

  29. Ye, Y.S., Chou, L.Y., Liu, Y.Y., et al.: Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020). https://doi.org/10.1038/s41560-020-00702-8

    Article  CAS  Google Scholar 

  30. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  31. Xiao, J.: How lithium dendrites form in liquid batteries. Science 366, 426–427 (2019). https://doi.org/10.1126/science.aay8672

    Article  CAS  Google Scholar 

  32. Messer, R., Noack, F.: Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence. Appl. Phys. 6, 79–88 (1975). https://doi.org/10.1007/BF00883553

    Article  CAS  Google Scholar 

  33. Zou, P.C., Sui, Y.M., Zhan, H.C., et al.: Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100

    Article  CAS  Google Scholar 

  34. Foroozan, T., Sharifi-Asl, S., Shahbazian-Yassar, R.: Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques. J. Power Sources 461, 228135 (2020). https://doi.org/10.1016/j.jpowsour.2020.228135

    Article  CAS  Google Scholar 

  35. Liu, J., Yuan, H., Cheng, X.B., et al.: A review of naturally derived nanostructured materials for safe lithium metal batteries. Mater. Today Nano 8, 100049 (2019). https://doi.org/10.1016/j.mtnano.2019.100049

    Article  Google Scholar 

  36. Niu, C., Pan, H., Xu, W., et al.: Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9

    Article  CAS  Google Scholar 

  37. Gu, Y., Wang, W.W., Li, Y.J., et al.: Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 9, 1339 (2018). https://doi.org/10.1038/s41467-018-03466-8

    Article  CAS  Google Scholar 

  38. Schaefer, J.L., Yanga, D.A., Archer, L.A.: High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013). https://doi.org/10.1021/cm303091j

    Article  CAS  Google Scholar 

  39. Wang, A.X., Deng, Q.B., Deng, L.J., et al.: Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 29, 1902630 (2019). https://doi.org/10.1002/adfm.201902630

    Article  CAS  Google Scholar 

  40. Tu, Z.Y., Zachman, M.J., Choudhury, S., et al.: Rechargeable batteries: nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017). https://doi.org/10.1002/aenm.201770039

    Article  CAS  Google Scholar 

  41. Yu, Z.A., Cui, Y., Bao, Z.N.: Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020). https://doi.org/10.1016/j.xcrp.2020.100119

    Article  Google Scholar 

  42. Yamada, Y., Wang, J., Ko, S., et al.: Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z

    Article  CAS  Google Scholar 

  43. Lin, D.C., Yuen, P.Y., Liu, Y.Y., et al.: A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018). https://doi.org/10.1002/adma.201802661

    Article  CAS  Google Scholar 

  44. Shen, X., Zhang, R., Shi, P., et al.: How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 11, 2003416 (2021). https://doi.org/10.1002/aenm.202003416

    Article  CAS  Google Scholar 

  45. Wu, X., Zhang, W., Wu, N.Q., et al.: Structural evolution upon delithiation/lithiation in prelithiated foil anodes: a case study of AgLi alloys with high Li utilization and marginal volume variation. Adv. Energy Mater. 11, 2003082 (2021). https://doi.org/10.1002/aenm.202003082

    Article  CAS  Google Scholar 

  46. Wang, H.S., Li, Y.Z., Li, Y.B., et al.: Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 19, 1326–1335 (2019). https://doi.org/10.1021/acs.nanolett.8b04906

    Article  CAS  Google Scholar 

  47. Li, B.Q., Chen, X.R., Chen, X., et al.: Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 4608940 (2019). https://doi.org/10.34133/2019/4608940

  48. Wang, Z.S., Yu, J.W., Rao, M.M., et al.: Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Sel. 1, 622–638 (2020). https://doi.org/10.1002/nano.202000123

    Article  Google Scholar 

  49. Liu, Y.Y., Xiong, S.Z., Wang, J.L., et al.: Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 19, 24–30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015

    Article  Google Scholar 

  50. Pei, A., Zheng, G.Y., Shi, F.F., et al.: Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755

    Article  CAS  Google Scholar 

  51. Kashchiev, D.: On the relation between nucleation work, nucleus size, and nucleation rate. J. Chem. Phys. 76, 5098–5102 (1982). https://doi.org/10.1063/1.442808

    Article  CAS  Google Scholar 

  52. Ely, D.R., García, R.E.: Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 160, A662–A668 (2013). https://doi.org/10.1149/1.057304jes

    Article  CAS  Google Scholar 

  53. Wang, X., Pawar, G., Li, Y., et al.: Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 19, 1339–1345 (2020). https://doi.org/10.1038/s41563-020-0729-1

    Article  CAS  Google Scholar 

  54. Yan, K., Lu, Z., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  CAS  Google Scholar 

  55. Meng, Q.Q., Deng, B., Zhang, H.M., et al.: Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater. 16, 419–425 (2019). https://doi.org/10.1016/j.ensm.2018.06.024

    Article  Google Scholar 

  56. Tantratian, K., Cao, D.X., Abdelaziz, A., et al.: Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 10, 1902819 (2020). https://doi.org/10.1002/aenm.201902819

    Article  CAS  Google Scholar 

  57. Jiang, Y., Wang, Z.X., Xu, C.X., et al.: Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Storage Mater. 28, 17–26 (2020). https://doi.org/10.1016/j.ensm.2020.01.019

    Article  Google Scholar 

  58. Kajikawa, Y., Noda, S.: Growth mode during initial stage of chemical vapor deposition. Appl. Surf. Sci. 245, 281–289 (2005). https://doi.org/10.1016/j.apsusc.2004.10.021

    Article  CAS  Google Scholar 

  59. Gu, C.D., Zhang, T.Y.: Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 24, 12010–12016 (2008). https://doi.org/10.1021/la802354n

    Article  CAS  Google Scholar 

  60. Park, C.M., Kim, J.H., Kim, H., et al.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010). https://doi.org/10.1039/b919877f

    Article  CAS  Google Scholar 

  61. Wang, D., Zhang, W., Zheng, W.T., et al.: Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4, 1600168 (2017). https://doi.org/10.1002/advs.201600168

    Article  CAS  Google Scholar 

  62. Liu, X.H., Zhong, L., Zhang, L.Q., et al.: Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011). https://doi.org/10.1063/1.3585655

    Article  CAS  Google Scholar 

  63. Barton, J.L., Bockris, J.O.M.: The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. Lond. A 268, 485–505 (1962). https://doi.org/10.1098/rspa.1962.0154

    Article  CAS  Google Scholar 

  64. Diggle, J.W., Despic, A.R., Bockris, J.O.M.: The mechanism of the dendritic electrocrystallization of zinc. J. Electrochem. Soc. 116, 1503–1514 (1969). https://doi.org/10.1149/1.2411588

    Article  CAS  Google Scholar 

  65. Monroe, C., Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377–A1384 (2003). https://doi.org/10.1149/1.1606686

    Article  CAS  Google Scholar 

  66. Harry, K.J., Hallinan, D.T., Parkinson, D.Y., et al.: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). https://doi.org/10.1038/nmat3793

    Article  CAS  Google Scholar 

  67. Steiger, J., Kramer, D., Mönig, R.: Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.029

    Article  CAS  Google Scholar 

  68. Yamaki, J.I., Tobishima, S.I., Hayashi, K., et al.: A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6

    Article  CAS  Google Scholar 

  69. Kushima, A., So, K.P., Su, C., et al.: Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001

    Article  CAS  Google Scholar 

  70. Frenck, L., Sethi, G.K., Maslyn, J.A., et al.: Factors that control the formation of dendrites and other morphologies on lithium metal anodes. Front. Energy Res. 7, 115 (2019). https://doi.org/10.3389/fenrg.2019.00115

    Article  Google Scholar 

  71. Li, Y.Z., Li, Y.B., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014

    Article  CAS  Google Scholar 

  72. Zhang, L., Yang, T., Du, C., et al.: Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x

    Article  CAS  Google Scholar 

  73. He, Y., Ren, X., Xu, Y., et al.: Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z

    Article  CAS  Google Scholar 

  74. Steiger, J., Richter, G., Wenk, M., et al.: Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem. Commun. 50, 11–14 (2015). https://doi.org/10.1016/j.elecom.2014.11.002

    Article  CAS  Google Scholar 

  75. Wood, K.N., Noked, M., Dasgupta, N.P.: Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2, 664–672 (2017). https://doi.org/10.1021/acsenergylett.6b00650

    Article  CAS  Google Scholar 

  76. Bai, P., Li, J., Brushett, F.R., et al.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/c6ee01674j

    Article  CAS  Google Scholar 

  77. Zhang, Y.Y., Heim, F.M., Song, N.N., et al.: New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries. ACS Energy Lett. 2, 2696–2705 (2017). https://doi.org/10.1021/acsenergylett.7b00886

    Article  CAS  Google Scholar 

  78. Shi, Y., Wan, J., Liu, G.X., et al.: Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 59, 18120–18125 (2020). https://doi.org/10.1002/anie.202001117

    Article  CAS  Google Scholar 

  79. Bai, P., Guo, J.Z., Wang, M., et al.: Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018). https://doi.org/10.1016/j.joule.2018.08.018

    Article  CAS  Google Scholar 

  80. Eastwood, D.S., Bayley, P.M., Chang, H.J., et al.: Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging. Chem. Commun. 51, 266–268 (2015). https://doi.org/10.1039/c4cc03187c

    Article  Google Scholar 

  81. Aryanfar, A., Brooks, D.J., Colussi, A.J., et al.: Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014). https://doi.org/10.1039/c4cp03590a

    Article  CAS  Google Scholar 

  82. Wang, Y.K., Dang, D.Y., Wang, M., et al.: Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation. Appl. Phys. Lett. 115, 043903 (2019). https://doi.org/10.1063/1.5111150

    Article  CAS  Google Scholar 

  83. Wang, Y.K., Dang, D.Y., Xiao, X.C., et al.: Structure and mechanical properties of electroplated mossy lithium: effects of current density and electrolyte. Energy Storage Mater. 26, 276–282 (2020). https://doi.org/10.1016/j.ensm.2020.01.004

    Article  Google Scholar 

  84. Wood, K.N., Kazyak, E., Chadwick, A.F., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Sci. 2, 790–801 (2016). https://doi.org/10.1021/acscentsci.6b00260

    Article  CAS  Google Scholar 

  85. Steiger, J., Kramer, D., Mönig, R.: Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim. Acta 136, 529–536 (2014). https://doi.org/10.1016/j.electacta.2014.05.120

    Article  CAS  Google Scholar 

  86. Sanchez, A.J., Kazyak, E., Chen, Y.X., et al.: Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 5, 994–1004 (2020). https://doi.org/10.1021/acsenergylett.0c00215

    Article  CAS  Google Scholar 

  87. Harrison, K.L., Zavadil, K.R., Hahn, N.T., et al.: Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11, 11194–11205 (2017). https://doi.org/10.1021/acsnano.7b05513

    Article  CAS  Google Scholar 

  88. Takeda, Y., Yamamoto, O., Imanishi, N.: Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry 84, 210–218 (2016). https://doi.org/10.5796/electrochemistry.84.210

    Article  CAS  Google Scholar 

  89. Niu, W.X., Xu, G.B.: Crystallographic control of noble metal nanocrystals. Nano Today 6, 265–285 (2011). https://doi.org/10.1016/j.nantod.2011.04.006

    Article  CAS  Google Scholar 

  90. Wiley, B., Sun, Y.G., Mayers, B., et al.: Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. A Eur. J. 11, 454–463 (2005). https://doi.org/10.1002/chem.200590003

    Article  CAS  Google Scholar 

  91. Murphy, C.J., Sau, T.K., Gole, A.M., et al.: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005). https://doi.org/10.1021/jp0516846

    Article  CAS  Google Scholar 

  92. Pande, V., Viswanathan, V.: Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Lett. 4, 2952–2959 (2019). https://doi.org/10.1021/acsenergylett.9b02306

    Article  CAS  Google Scholar 

  93. Hummelshøj, J.S., Luntz, A.C., Nørskov, J.K.: Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 138, 034703 (2013). https://doi.org/10.1063/1.4773242

    Article  CAS  Google Scholar 

  94. Zheng, J., Bock, D.C., Tang, T., et al.: Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat. Energy 6, 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7

    Article  CAS  Google Scholar 

  95. Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301 (2015). https://doi.org/10.1103/physreve.92.011301

    Article  Google Scholar 

  96. Sato, R.: Crystal growth of electrodeposited zinc. J. Electrochem. Soc. 106, 206–211 (1959). https://doi.org/10.1149/1.2427309

    Article  CAS  Google Scholar 

  97. Perveen, S., Naqvi, I., Muhammad, M., et al.: Fractal growth of zinc dendrites. Asian J. Chem. 21, 4190–4198 (2009)

    Google Scholar 

  98. Faust, J.W., Jr.: Effect of electrodeposition parameters on growth habit and morphology. J. Cryst. Growth 3(4), 433–435 (1968). https://doi.org/10.1016/0022-0248(68)90193-0

    Article  Google Scholar 

  99. Stark, J.K., Ding, Y., Kohl, P.A.: Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 160, D337–D342 (2013). https://doi.org/10.1149/2.028309jes

    Article  CAS  Google Scholar 

  100. Nagy, K.S., Kazemiabnavi, S., Thornton, K., et al.: Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 11, 7954–7964 (2019). https://doi.org/10.1021/acsami.8b19787

    Article  CAS  Google Scholar 

  101. Wang, J., Wang, S.Q.: Surface energy and work function of fcc and bcc crystals: density functional study. Surf. Sci. 630, 216–224 (2014). https://doi.org/10.1016/j.susc.2014.08.017

    Article  CAS  Google Scholar 

  102. Kokko, K., Salo, P.T., Laihia, R., et al.: First-principles calculations for work function and surface energy of thin lithium films. Surf. Sci. 348, 168–174 (1996). https://doi.org/10.1016/0039-6028(95)01029-7

    Article  CAS  Google Scholar 

  103. Gaissmaier, D., Fantauzzi, D., Jacob, T.: First principles studies of self-diffusion processes on metallic lithium surfaces. J. Chem. Phys. 150, 041723 (2018). https://doi.org/10.1063/1.5056226

    Article  CAS  Google Scholar 

  104. Zhang, X.L., Wang, W.K., Wang, A.B., et al.: Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery. J. Mater. Chem. A 2, 11660–11665 (2014). https://doi.org/10.1039/c4ta01709a

    Article  CAS  Google Scholar 

  105. Zu, C.X., Manthiram, A.: Stabilized lithium–metal surface in a polysulfide-rich environment of lithium–sulfur batteries. J. Phys. Chem. Lett. 5, 2522–2527 (2014). https://doi.org/10.1021/jz501352e

    Article  CAS  Google Scholar 

  106. Hull, C.M., Switzer, J.A.: Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils. ACS Appl. Mater. Interfaces 10, 38596–38602 (2018). https://doi.org/10.1021/acsami.8b13188

    Article  CAS  Google Scholar 

  107. Allongue, P., Maroun, F.: Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications. Curr. Opin. Solid State Mater. Sci. 10, 173–181 (2006). https://doi.org/10.1016/j.cossms.2007.04.001

    Article  CAS  Google Scholar 

  108. Petermann, J., Broza, G.: Epitaxial deposition of metals on uniaxial oriented semi-crystalline polymers. J. Mater. Sci. 22, 1108–1112 (1987). https://doi.org/10.1007/BF01103557

    Article  CAS  Google Scholar 

  109. Zheng, J.X., Zhao, Q., Tang, T., et al.: Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873

    Article  CAS  Google Scholar 

  110. Li, N., Zhang, K., Xie, K.Y., et al.: Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32, 1907079 (2020). https://doi.org/10.1002/adma.201907079

    Article  CAS  Google Scholar 

  111. Gu, Y., Xu, H.Y., Zhang, X.G., et al.: Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes. Angew. Chem. Int. Ed. 131, 3124–3128 (2019). https://doi.org/10.1002/ange.201812523

    Article  Google Scholar 

  112. Matsui, M.: Study on electrochemically deposited Mg metal. J. Power Sources 196, 7048–7055 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.141

    Article  CAS  Google Scholar 

  113. Ling, C., Banerjee, D., Matsui, M.: Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012). https://doi.org/10.1016/j.electacta.2012.05.001

    Article  CAS  Google Scholar 

  114. Brune, H.: Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 125–229 (1998). https://doi.org/10.1016/S0167-5729(99)80001-6

    Article  Google Scholar 

  115. Quayum, M.E., Ye, S., Uosaki, K.: Mechanism for nucleation and growth of electrochemical palladium deposition on an Au(111) electrode. J. Electroanal. Chem. 520, 126–132 (2002). https://doi.org/10.1016/S0022-0728(02)00643-5

    Article  CAS  Google Scholar 

  116. Jäckle, M., Groß, A.: Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014). https://doi.org/10.1063/1.4901055

    Article  CAS  Google Scholar 

  117. Jäckle, M., Helmbrecht, K., Smits, M., et al.: Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 11, 3400–3407 (2018). https://doi.org/10.1039/c8ee01448e

    Article  CAS  Google Scholar 

  118. Galdikas, A.: The influence of surface diffusion on surface roughness and component distribution profiles during deposition of multilayers. Comput. Mater. Sci. 38, 716–721 (2007). https://doi.org/10.1016/j.commatsci.2006.05.006

    Article  CAS  Google Scholar 

  119. Wei, S.Y., Choudhury, S., Tu, Z.Y., et al.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018). https://doi.org/10.1021/acs.accounts.7b00484

    Article  CAS  Google Scholar 

  120. Shi, F.F., Pei, A., Vailionis, A., et al.: Strong texturing of lithium metal in batteries. P. Natl. Acad. Sci. U. S. A. 114, 12138–12143 (2017). https://doi.org/10.1073/pnas.1708224114

    Article  CAS  Google Scholar 

  121. Chen, X.R., Yao, Y.X., Yan, C., et al.: A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59, 7743–7747 (2020). https://doi.org/10.1002/anie.202000375

    Article  CAS  Google Scholar 

  122. LePage, W.S., Chen, Y.X., Kazyak, E., et al.: Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89–A97 (2019). https://doi.org/10.1149/2.0221902jes

    Article  CAS  Google Scholar 

  123. Wang, X., Zeng, W., Hong, L., et al.: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5

    Article  CAS  Google Scholar 

  124. Jana, A., Woo, S.I., Vikrant, K.S.N., et al.: Electrochemomechanics of lithium dendrite growth. Energy Environ. Sci. 12, 3595–3607 (2019). https://doi.org/10.1039/c9ee01864f

    Article  CAS  Google Scholar 

  125. Genovese, M., Louli, A.J., Weber, R., et al.: Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342–A3347 (2019). https://doi.org/10.1149/2.0661914jes

    Article  CAS  Google Scholar 

  126. Yin, X.S., Tang, W., Jung, I.D., et al.: Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018). https://doi.org/10.1016/j.nanoen.2018.06.003

    Article  CAS  Google Scholar 

  127. Xu, C., Ahmad, Z., Aryanfar, A., et al.: Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. P. Natl. Acad. Sci. U. S. A. 114, 57–61 (2017). https://doi.org/10.1073/pnas.1615733114

    Article  CAS  Google Scholar 

  128. Greer, J.R., Weinberger, C.R., Cai, W.: Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater. Sci. Eng. A 493, 21–25 (2008). https://doi.org/10.1016/j.msea.2007.08.093

  129. Weinberger, C.R., Cai, W.: Surface-controlled dislocation multiplication in metal micropillars. P. Natl. Acad. Sci. U. S. A. 105, 14304–14307 (2008). https://doi.org/10.1073/pnas.0806118105

    Article  Google Scholar 

  130. Tang, Y.F., Zhang, L.Q., Chen, J.Z., et al.: Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ. Sci. 14, 602–642 (2021). https://doi.org/10.1039/d0ee02525a

    Article  CAS  Google Scholar 

  131. Bruce, P.G., Vincent, C.A.: Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1–17 (1987). https://doi.org/10.1016/0022-0728(87)80001-3

    Article  CAS  Google Scholar 

  132. Rosso, M., Brissot, C., Teyssot, A., et al.: Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340 (2006). https://doi.org/10.1016/j.electacta.2006.02.004

    Article  CAS  Google Scholar 

  133. Rosso, M., Gobron, T., Brissot, C., et al.: Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97(98), 804–806 (2001). https://doi.org/10.1016/S0378-7753(01)00734-0

    Article  Google Scholar 

  134. Chazalviel, J.N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). https://doi.org/10.1103/physreva.42.7355

    Article  CAS  Google Scholar 

  135. Brissot, C., Rosso, M., Chazalviel, J.N., et al.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81(82), 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0

    Article  Google Scholar 

  136. Lee, Y., Ma, B.Y., Bai, P.: Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13, 3504–3513 (2020). https://doi.org/10.1039/d0ee01874k

    Article  CAS  Google Scholar 

  137. Chang, H.J., Ilott, A.J., Trease, N.M., et al.: Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 137, 15209–15216 (2015). https://doi.org/10.1021/jacs.5b09385

    Article  CAS  Google Scholar 

  138. Cheng, Q., Wei, L., Liu, Z., et al.: Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated raman scattering microscopy. Nat. Commun. 9, 2942 (2018). https://doi.org/10.1038/s41467-018-05289-z

    Article  CAS  Google Scholar 

  139. Freudiger, C.W., Min, W., Saar, B.G., et al.: Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). https://doi.org/10.1126/science.1165758

    Article  CAS  Google Scholar 

  140. Zheng, J.X., Kim, M.S., Tu, Z.Y., et al.: Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g

    Article  CAS  Google Scholar 

  141. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014). https://doi.org/10.1149/2.085405jes

    Article  CAS  Google Scholar 

  142. Tikekar, M.D., Choudhury, S., Tu, Z., et al.: Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016). https://doi.org/10.1038/nenergy.2016.114

    Article  CAS  Google Scholar 

  143. Fleury, V., Kaufman, J., Hibbert, B.: Evolution of the space-charge layer during electrochemical deposition with convection. Phys. Rev. E 48, 3831–3840 (1993). https://doi.org/10.1103/physreve.48.3831

    Article  CAS  Google Scholar 

  144. Rubinstein, I., Zaltzman, B.: Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62, 2238–2251 (2000). https://doi.org/10.1103/physreve.62.2238

    Article  CAS  Google Scholar 

  145. Fleury, V., Kaufman, J.H., Hibbert, D.B.: Mechanism of a morphology transition in ramified electrochemical growth. Nature 367, 435–438 (1994). https://doi.org/10.1038/367435a0

    Article  CAS  Google Scholar 

  146. Tikekar, M.D., Li, G.J., Archer, L.A., et al.: Electroconvection and morphological instabilities in potentiostatic electrodeposition across liquid electrolytes with polymer additives. J. Electrochem. Soc. 165, A3697–A3713 (2018). https://doi.org/10.1149/2.0271816jes

    Article  CAS  Google Scholar 

  147. Wei, S.Y., Cheng, Z., Nath, P., et al.: Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. Sci. Adv. 4, eaao6243 (2018). https://doi.org/10.1126/sciadv.aao6243

  148. Warren, A., Zhang, D.H., Choudhury, S., et al.: Electrokinetics in viscoelastic liquid electrolytes above the diffusion limit. Macromolecules 52, 4666–4672 (2019). https://doi.org/10.1021/acs.macromol.9b00536

    Article  CAS  Google Scholar 

  149. Maletzki, F., Rösler, H.W., Staude, E.: Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. J. Membr. Sci. 71, 105–116 (1992). https://doi.org/10.1016/0376-7388(92)85010-G

    Article  CAS  Google Scholar 

  150. Khurana, R., Schaefer, J.L., Archer, L.A., et al.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014). https://doi.org/10.1021/ja502133j

    Article  CAS  Google Scholar 

  151. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  152. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016). https://doi.org/10.1126/sciadv.1600320

    Article  CAS  Google Scholar 

  153. Lu, Y., Tu, Z., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/nmat4041

    Article  CAS  Google Scholar 

  154. He, X., Bresser, D., Passerini, S., et al.: The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021). https://doi.org/10.1038/s41578-021-00345-5

    Article  CAS  Google Scholar 

  155. Agubra, V.A., Fergus, J.W.: The formation and stability of the solid electrolyte interface on the graphite anode. J. Power Sources 268, 153–162 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.024

    Article  CAS  Google Scholar 

  156. Yan, C., Xu, R., Xiao, Y., et al.: Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30, 1909887 (2020). https://doi.org/10.1002/adfm.201909887

    Article  CAS  Google Scholar 

  157. Weadock, N., Varongchayakul, N., Wan, J.Y., et al.: Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2, 713–719 (2013). https://doi.org/10.1016/j.nanoen.2013.08.005

    Article  CAS  Google Scholar 

  158. Verma, P., Maire, P., Novák, P.: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  159. Zhai, P.B., Liu, L.X., Gu, X.K., et al.: Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10, 2001257 (2020). https://doi.org/10.1002/aenm.202001257

    Article  CAS  Google Scholar 

  160. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  161. Moumouzias, G., Ritzoulis, G., Siapkas, D., et al.: Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells. J. Power Sources 122, 57–66 (2003). https://doi.org/10.1016/S0378-7753(03)00348-3

    Article  CAS  Google Scholar 

  162. Logan, E.R., Tonita, E.M., Gering, K.L., et al.: A critical evaluation of the advanced electrolyte model. J. Electrochem. Soc. 165, A3350–A3359 (2018). https://doi.org/10.1149/2.0471814jes

    Article  CAS  Google Scholar 

  163. Arnaud, R., Benrabah, D., Sanchez, J.Y.: Theoretical study of CF3SO3Li, (CF3SO2)2NLi, and (CF3SO2)2CHLi ion pairs. J. Phys. Chem. 100, 10882–10891 (1996). https://doi.org/10.1021/jp953259q

    Article  CAS  Google Scholar 

  164. Chen, R.J., Wu, F., Xu, B., et al.: Binary complex electrolytes based on LiX[X=N(SO2CF3)2, CF3SO3, ClO4]-acetamide for electric double layer capacitors. J. Electrochem. Soc. 154, A703–A708 (2007). https://doi.org/10.1149/1.2737350

    Article  CAS  Google Scholar 

  165. Tu, Z.Y., Nath, P., Lu, Y.Y., et al.: Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015). https://doi.org/10.1021/acs.accounts.5b00427

    Article  CAS  Google Scholar 

  166. An, S.J., Li, J.L., Daniel, C., et al.: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  167. Li, L.L., Li, S.Y., Lu, Y.Y.: Suppression of dendritic lithium growth in lithium metal-based batteries. Chem. Commun. 54, 6648–6661 (2018). https://doi.org/10.1039/c8cc02280a

    Article  CAS  Google Scholar 

  168. Zhang, X.Q., Chen, X., Cheng, X.B., et al.: Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018). https://doi.org/10.1002/anie.201801513

    Article  CAS  Google Scholar 

  169. Zhang, X.Q., Cheng, X.B., Chen, X., et al.: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989

    Article  CAS  Google Scholar 

  170. Chen, X., Zhang, Q.: Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412

    Article  CAS  Google Scholar 

  171. Magnussen, O.M., Groß, A.: Toward an atomic-scale understanding of electrochemical interface structure and dynamics. J. Am. Chem. Soc. 141, 4777–4790 (2019). https://doi.org/10.1021/jacs.8b13188

    Article  CAS  Google Scholar 

  172. Yan, C., Yao, Y.X., Chen, X., et al.: Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034

    Article  CAS  Google Scholar 

  173. Yan, C., Li, H.R., Chen, X., et al.: Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029

    Article  CAS  Google Scholar 

  174. Delp, S.A., Borodin, O., Olguin, M., et al.: Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta 209, 498–510 (2016). https://doi.org/10.1016/j.electacta.2016.05.100

    Article  Google Scholar 

  175. Garreau, M.: Cyclability of the lithium electrode. J. Power Sources 20, 9–17 (1987). https://doi.org/10.1016/0378-7753(87)80085-X

    Article  CAS  Google Scholar 

  176. Warren, L.F., Anderson, D.P.: Polypyrrole films from aqueous electrolytes: the effect of anions upon order. J. Electrochem. Soc. 134, 101–105 (1987). https://doi.org/10.1149/1.2100383

    Article  CAS  Google Scholar 

  177. Peled, E., Golodnitsky, D., Ardel, G.: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997). https://doi.org/10.1149/1.1837858

    Article  CAS  Google Scholar 

  178. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  Google Scholar 

  179. Benitez, L., Seminario, J.M.: Electron transport and electrolyte reduction in the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016). https://doi.org/10.1021/acs.jpcc.6b06446

    Article  CAS  Google Scholar 

  180. Hobold, G.M."., Lopez, J., Guo, R., et al.: Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021). https://doi.org/10.1038/s41560-021-00910-w

  181. Liu, Z., Qi, Y., Lin, Y.X., et al.: Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016). https://doi.org/10.1149/2.0151605jes

    Article  CAS  Google Scholar 

  182. Lin, Y.X., Liu, Z., Leung, K., et al.: Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 309, 221–230 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.078

    Article  CAS  Google Scholar 

  183. Fang, C., Li, J., Zhang, M., et al.: Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z

    Article  CAS  Google Scholar 

  184. Shi, S.Q., Lu, P., Liu, Z.Y., et al.: Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). https://doi.org/10.1021/ja305366r

    Article  CAS  Google Scholar 

  185. Ramasubramanian, A., Yurkiv, V., Foroozan, T., et al.: Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123, 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436

    Article  CAS  Google Scholar 

  186. Piao, N., Liu, S.F., Zhang, B., et al.: Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6, 1839–1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365

    Article  CAS  Google Scholar 

  187. Li, Y.Z., Huang, W., Li, Y.B., et al.: Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018). https://doi.org/10.1016/j.joule.2018.08.004

    Article  CAS  Google Scholar 

  188. Aurbach, D.: Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6

    Article  CAS  Google Scholar 

  189. Wang, T., Salvatierra, R.V., Tour, J.M.: Detecting Li dendrites in a two-electrode battery system. Adv. Mater. 31, 1807405 (2019). https://doi.org/10.1002/adma.201807405

    Article  CAS  Google Scholar 

  190. Liu, H., Wang, E.R., Zhang, Q., et al.: Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 17, 253–259 (2019). https://doi.org/10.1016/j.ensm.2018.07.010

    Article  Google Scholar 

  191. Ma, X.T., Liu, Z.T., Chen, H.L.: Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy 59, 500–507 (2019). https://doi.org/10.1016/j.nanoen.2019.02.048

    Article  CAS  Google Scholar 

  192. Yue, X.Y., Wang, W.W., Wang, Q.C., et al.: Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 21, 180–189 (2019). https://doi.org/10.1016/j.ensm.2018.12.00

    Article  Google Scholar 

  193. Adair, K.R., Iqbal, M., Wang, C.H., et al.: Towards high performance Li metal batteries: nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy 54, 375–382 (2018). https://doi.org/10.1016/j.nanoen.2018.10.002

    Article  CAS  Google Scholar 

  194. Huang, K., Li, Z., Xu, Q.J., et al.: Lithiophilic CuO nanoflowers on Ti-mesh inducing lithium lateral plating enabling stable lithium-metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy Mater. 9, 1900853 (2019). https://doi.org/10.1002/aenm.201900853

    Article  CAS  Google Scholar 

  195. Zhu, J.F., Chen, J., Luo, Y., et al.: Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 23, 539–546 (2019). https://doi.org/10.1016/j.ensm.2019.04.005

    Article  Google Scholar 

  196. Pu, J., Li, J., Zhang, K., et al.: Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 10, 1896 (2019). https://doi.org/10.1038/s41467-019-09932-1

    Article  CAS  Google Scholar 

  197. Li, J., Zou, P.C., Chiang, S.W., et al.: A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater. 24, 700–706 (2020). https://doi.org/10.1016/j.ensm.2019.06.019

    Article  Google Scholar 

  198. Cheng, Y.F., Ke, X., Chen, Y.M., et al.: Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries. Nano Energy 63, 103854 (2019). https://doi.org/10.1016/j.nanoen.2019.103854

    Article  CAS  Google Scholar 

  199. Lin, D., Liu, Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016). https://doi.org/10.1038/nnano.2016.32

    Article  CAS  Google Scholar 

  200. Xu, Y., Li, T., Wang, L.P., et al.: Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries. Adv. Mater. 31, 1901662 (2019). https://doi.org/10.1002/adma.201901662

    Article  CAS  Google Scholar 

  201. Zheng, J.X., Zhao, Q., Liu, X., et al.: Nonplanar electrode architectures for ultrahigh areal capacity batteries. ACS Energy Lett. 4, 271–275 (2019). https://doi.org/10.1021/acsenergylett.8b02131

    Article  CAS  Google Scholar 

  202. Chen, Y.Z., Elangovan, A., Zeng, D.L., et al.: Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li–S batteries. Adv. Funct. Mater. 30, 1906444 (2020). https://doi.org/10.1002/adfm.201906444

    Article  CAS  Google Scholar 

  203. Huang, G.X., Chen, S.R., Guo, P.M., et al.: In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J. 395, 125122 (2020). https://doi.org/10.1016/j.cej.2020.125122

    Article  CAS  Google Scholar 

  204. Zheng, H.F., Zhang, Q.F., Chen, Q.L., et al.: 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J. Mater. Chem. A 8, 313–322 (2020). https://doi.org/10.1039/c9ta09505e

    Article  CAS  Google Scholar 

  205. Zhao, Y., Hao, S.G., Su, L., et al.: Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chem. Eng. J. 392, 123691 (2020). https://doi.org/10.1016/j.cej.2019.123691

    Article  CAS  Google Scholar 

  206. Chen, K.H., Sanchez, A.J., Kazyak, E., et al.: Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes. Adv. Energy Mater. 9, 1802534 (2019). https://doi.org/10.1002/aenm.201802534

    Article  CAS  Google Scholar 

  207. Zhang, C., Lyu, R.Y., Lv, W., et al.: A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 31, 1904991 (2019). https://doi.org/10.1002/adma.201904991

    Article  CAS  Google Scholar 

  208. Pei, F., Fu, A., Ye, W.B., et al.: Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium–sulfur batteries. ACS Nano 13, 8337–8346 (2019). https://doi.org/10.1021/acsnano.9b03784

    Article  CAS  Google Scholar 

  209. Ke, X., Liang, Y.H., Ou, L.H., et al.: Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 547–555 (2019). https://doi.org/10.1016/j.ensm.2019.04.003

    Article  Google Scholar 

  210. Yang, G.H., Chen, J.D., Xiao, P.T., et al.: Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J. Mater. Chem. A 6, 9899–9905 (2018). https://doi.org/10.1039/c8ta02810a

    Article  CAS  Google Scholar 

  211. Zuo, T.T., Wu, X.W., Yang, C.P., et al.: Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017). https://doi.org/10.1002/adma.201700389

    Article  CAS  Google Scholar 

  212. Zhang, R., Wen, S.W., Wang, N., et al.: N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 8, 1800914 (2018). https://doi.org/10.1002/aenm.201800914

    Article  CAS  Google Scholar 

  213. Yan, K., Sun, B., Munroe, P., et al.: Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 11, 127–133 (2018). https://doi.org/10.1016/j.ensm.2017.10.012

    Article  Google Scholar 

  214. Hou, Z., Yu, Y.K., Wang, W.H., et al.: Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode. ACS Appl. Mater. Interfaces 11, 8148–8154 (2019). https://doi.org/10.1021/acsami.9b01521

    Article  CAS  Google Scholar 

  215. Huang, Z.J., Zhang, C., Lv, W., et al.: Realizing stable lithium deposition by in situ grown Cu2S nanowires inside commercial Cu foam for lithium metal anodes. J. Mater. Chem. A 7, 727–732 (2019). https://doi.org/10.1039/c8ta10341k

    Article  CAS  Google Scholar 

  216. Liu, L., Yin, Y.X., Li, J.Y., et al.: Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 1, 563–575 (2017). https://doi.org/10.1016/j.joule.2017.06.004

    Article  CAS  Google Scholar 

  217. He, Y., Xu, H.W., Shi, J.L., et al.: Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Mater. 23, 418–426 (2019). https://doi.org/10.1016/j.ensm.2019.04.026

    Article  Google Scholar 

  218. Wang, S.H., Yin, Y.X., Zuo, T.T., et al.: Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 29, 1703729 (2017). https://doi.org/10.1002/adma.201703729

    Article  CAS  Google Scholar 

  219. Lin, K., Qin, X.Y., Liu, M., et al.: Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 29, 1903229 (2019). https://doi.org/10.1002/adfm.201903229

    Article  CAS  Google Scholar 

  220. Zhang, R., Wang, N., Shi, C.S., et al.: Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode. Carbon 161, 198–205 (2020). https://doi.org/10.1016/j.carbon.2020.01.077

    Article  CAS  Google Scholar 

  221. Huang, S.B., Yang, H., Hu, J.K., et al.: Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small 15, 1904216 (2019). https://doi.org/10.1002/smll.201904216

    Article  CAS  Google Scholar 

  222. Zhang, D., Dai, A., Fan, B.F., et al.: Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 12, 31542–31551 (2020). https://doi.org/10.1021/acsami.0c09503

    Article  CAS  Google Scholar 

  223. Cao, J.Q., Deng, L.Y., Wang, X.H., et al.: Stable lithium metal anode achieved by in situ grown CuO nanowire arrays on Cu foam. Energy Fuels 34, 7684–7691 (2020). https://doi.org/10.1021/acs.energyfuels.0c01180

    Article  CAS  Google Scholar 

  224. Huang, S., Zhang, W., Ming, H., et al.: Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 19, 1832–1837 (2019). https://doi.org/10.1021/acs.nanolett.8b04919

    Article  CAS  Google Scholar 

  225. Zhang, Z., Wang, J.L., Yan, X.F., et al.: In-situ growth of hierarchical N-doped CNTs/Ni foam scaffold for dendrite-free lithium metal anode. Energy Storage Mater. 29, 332–340 (2020). https://doi.org/10.1016/j.ensm.2020.04.022

    Article  Google Scholar 

  226. Liu, Y., Lin, D., Liang, Z., et al.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). https://doi.org/10.1038/ncomms10992

    Article  CAS  Google Scholar 

  227. Liang, Z., Lin, D.C., Zhao, J., et al.: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. P. Natl. Acad. Sci. U. S. A. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113

    Article  CAS  Google Scholar 

  228. Zhang, P.C., Peng, C.X., Liu, X.S., et al.: 3D lithiophilic “hairy” Si nanowire arrays @ carbon scaffold favor a flexible and stable lithium composite anode. ACS Appl. Mater. Interfaces 11, 44325–44332 (2019). https://doi.org/10.1021/acsami.9b15250

    Article  CAS  Google Scholar 

  229. Liang, Z., Lin, D.C., Zhao, J., et al.: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Nat. Acad. Sci. U. S. A. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113

    Article  CAS  Google Scholar 

  230. Liu, T.C., Chen, S.Q., Sun, W.W., et al.: Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries. Adv. Funct. Mater. 31, 2008514 (2021). https://doi.org/10.1002/adfm.202008514

    Article  CAS  Google Scholar 

  231. Yue, X.Y., Wang, W.W., Wang, Q.C., et al.: CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 14, 335–344 (2018). https://doi.org/10.1016/j.ensm.2018.05.017

    Article  Google Scholar 

  232. Chen, L., Chen, G., Tang, W., et al.: A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Mater. Today Energy 18, 100520 (2020). https://doi.org/10.1016/j.mtener.2020.100520

    Article  CAS  Google Scholar 

  233. Yue, X.Y., Li, X.L., Wang, W.W., et al.: Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 60, 257–266 (2019). https://doi.org/10.1016/j.nanoen.2019.03.057

    Article  CAS  Google Scholar 

  234. Wu, S.L., Su, B.Z., Jiang, H., et al.: Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chem. Eng. J. 388, 124238 (2020). https://doi.org/10.1016/j.cej.2020.124238

    Article  CAS  Google Scholar 

  235. Wang, S.H., Yue, J.P., Dong, W., et al.: Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4

    Article  CAS  Google Scholar 

  236. Zheng, Z.J., Ye, H., Guo, Z.P.: Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212 (2020). https://doi.org/10.1002/advs.202002212

    Article  CAS  Google Scholar 

  237. Li, Q., Zhu, S.P., Lu, Y.Y.: 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017). https://doi.org/10.1002/adfm.201606422

    Article  CAS  Google Scholar 

  238. Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058

    Article  CAS  Google Scholar 

  239. Chen, H., Pei, A., Wan, J.Y., et al.: Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008

    Article  CAS  Google Scholar 

  240. Tang, W., Yin, X.S., Chen, Z.X., et al.: Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Mater. 14, 289–296 (2018). https://doi.org/10.1016/j.ensm.2018.05.009

    Article  Google Scholar 

  241. Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y

    Article  CAS  Google Scholar 

  242. Li, S.P., Fang, S., Dou, H., et al.: RbF as a dendrite-inhibiting additive in lithium metal batteries. ACS Appl. Mater. Interfaces 11, 20804–20811 (2019). https://doi.org/10.1021/acsami.9b03940

    Article  CAS  Google Scholar 

  243. Goodman, J.K.S., Kohl, P.A.: Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J. Electrochem. Soc. 161, D418–D424 (2014). https://doi.org/10.1149/2.0301409jes

    Article  CAS  Google Scholar 

  244. Lu, Y.Y., Korf, K., Kambe, Y., et al.: Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014). https://doi.org/10.1002/anie.201307137

    Article  CAS  Google Scholar 

  245. Rosso, M., Chazalviel, J.N., Chassaing, E.: Calculation of the space charge in electrodeposition from a binary electrolyte. J. Electroanal. Chem. 587, 323–328 (2006). https://doi.org/10.1016/j.jelechem.2005.11.030

    Article  CAS  Google Scholar 

  246. Cai, Z.J., Liu, Y.B., Liu, S.S., et al.: High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci. 5, 5690–5693 (2012). https://doi.org/10.1039/c1ee02708e

    Article  CAS  Google Scholar 

  247. Srivastava, S., Schaefer, J.L., Yang, Z.C., et al.: Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 26, 201–234 (2014). https://doi.org/10.1002/adma.201303070

    Article  CAS  Google Scholar 

  248. Lu, Y.Y., Das, S.K., Moganty, S.S., et al.: Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012). https://doi.org/10.1002/adma.201201953

    Article  CAS  Google Scholar 

  249. Yan, K., Wang, J.Y., Zhao, S.Q., et al.: Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58, 11364–11368 (2019). https://doi.org/10.1002/anie.201905251

    Article  CAS  Google Scholar 

  250. Wang, J., Huang, W., Pei, A., et al.: Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019). https://doi.org/10.1038/s41560-019-0413-3

    Article  CAS  Google Scholar 

  251. Li, L., Basu, S., Wang, Y.P., et al.: Self-heating-induced healing of lithium dendrites. Science 359, 1513–1516 (2018). https://doi.org/10.1126/science.aap8787

    Article  CAS  Google Scholar 

  252. Mistry, A.N., Smith, K., Mukherjee, P.P.: Secondary-phase stochastics in lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 10, 6317–6326 (2018). https://doi.org/10.1021/acsami.7b17771

    Article  CAS  Google Scholar 

  253. Han, Y.H., Jie, Y.L., Huang, F.Y., et al.: Enabling stable lithium metal anode through electrochemical kinetics manipulation. Adv. Funct. Mater. 29, 1904629 (2019). https://doi.org/10.1002/adfm.201904629

    Article  CAS  Google Scholar 

  254. Aryanfar, A., Brooks, D.J., Colussi, A.J., et al.: Thermal relaxation of lithium dendrites. Phys. Chem. Chem. Phys. 17, 8000–8005 (2015). https://doi.org/10.1039/c4cp05786d

    Article  CAS  Google Scholar 

  255. Hong, Z.J., Viswanathan, V.: Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett. 4, 1012–1019 (2019). https://doi.org/10.1021/acsenergylett.9b00433

    Article  CAS  Google Scholar 

  256. Guo, Y.P., Li, D., Xiong, R.D., et al.: Investigation of the temperature-dependent behaviours of Li metal anode. Chem. Commun. 55, 9773–9776 (2019). https://doi.org/10.1039/c9cc04897a

    Article  CAS  Google Scholar 

  257. Yang, H., Fey, E.O., Trimm, B.D., et al.: Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900–908 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.026

    Article  CAS  Google Scholar 

  258. Aryanfar, A., Brooks, D., Merinov, B.V., et al.: Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations. J. Phys. Chem. Lett. 5, 1721–1726 (2014). https://doi.org/10.1021/jz500207a

    Article  CAS  Google Scholar 

  259. Li, Q., Tan, S., Li, L.L., et al.: Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Sci. Adv. 3, e1701246 (2017). https://doi.org/10.1126/sciadv.1701246

    Article  CAS  Google Scholar 

  260. Shen, K., Wang, Z., Bi, X.X., et al.: Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 9, 1900260 (2019). https://doi.org/10.1002/aenm.201900260

    Article  CAS  Google Scholar 

  261. Huang, A., Liu, H.D., Manor, O., et al.: Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020). https://doi.org/10.1002/adma.201907516

    Article  CAS  Google Scholar 

  262. Liu, X.M., Fang, A., Haataja, M.P., et al.: Size dependence of transport non-uniformities on localized plating in lithium-ion batteries. J. Electrochem. Soc. 165, A1147–A1155 (2018). https://doi.org/10.1149/2.1181805jes

    Article  CAS  Google Scholar 

  263. Sheng, L., Wang, L., Wang, J.L., et al.: Accelerated lithium-ion conduction in covalent organic frameworks. Chem. Commun. 56, 10465–10468 (2020). https://doi.org/10.1039/d0cc04324a

    Article  CAS  Google Scholar 

  264. Ryou, M.H., Lee, D.J., Lee, J.N., et al.: Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012). https://doi.org/10.1002/aenm.201100687

    Article  CAS  Google Scholar 

  265. Li, Y.B., Sun, Y.M., Pei, A., et al.: Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Central Sci. 4, 97–104 (2018). https://doi.org/10.1021/acscentsci.7b00480

    Article  CAS  Google Scholar 

  266. Han, B., Feng, D., Li, S., et al.: Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett. 20, 4029–4037 (2020). https://doi.org/10.1021/acs.nanolett.0c01400

    Article  CAS  Google Scholar 

  267. Liang, J.W., Li, X.N., Zhao, Y., et al.: In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 30, 1804684 (2018). https://doi.org/10.1002/adma.201804684

    Article  CAS  Google Scholar 

  268. Pang, Q., Liang, X., Shyamsunder, A., et al.: An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1, 871–886 (2017). https://doi.org/10.1016/j.joule.2017.11.009

    Article  CAS  Google Scholar 

  269. Chen, H., Pei, A., Lin, D.C., et al.: Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 9, 1900858 (2019). https://doi.org/10.1002/aenm.201900858

    Article  CAS  Google Scholar 

  270. Zhao, C.Z., Chen, P.Y., Zhang, R., et al.: An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446

  271. Song, J., Lee, H., Choo, M.J., et al.: Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015). https://doi.org/10.1038/srep14458

    Article  CAS  Google Scholar 

  272. Kim, M.S., Ryu, J.H., Deepika, et al.: Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018). https://doi.org/10.1038/s41560-018-0237-6

  273. Luo, J., Fang, C.C., Wu, N.L.: Anodes: high polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1870008 (2018). https://doi.org/10.1002/aenm.201870008

    Article  CAS  Google Scholar 

  274. Liang, X., Pang, Q., Kochetkov, I.R., et al.: A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). https://doi.org/10.1038/nenergy.2017.119

    Article  CAS  Google Scholar 

  275. Tu, Z., Choudhury, S., Zachman, M.J., et al.: Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018). https://doi.org/10.1038/s41560-018-0096-1

    Article  CAS  Google Scholar 

  276. Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., et al.: The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Modelling Simul. Mater. Sci. Eng. 21, 074005 (2013). https://doi.org/10.1088/0965-0393/21/7/074005

    Article  Google Scholar 

  277. Zhang, W.D., Wu, Q., Huang, J.X., et al.: Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, 2001740 (2020). https://doi.org/10.1002/adma.202001740

    Article  CAS  Google Scholar 

  278. Suo, L.M., Xue, W.J., Gobet, M., et al.: Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. PNAS 115, 1156–1161 (2018). https://doi.org/10.1073/pnas.1712895115

    Article  CAS  Google Scholar 

  279. Gong, C., Pu, S.D., Gao, X.W., et al.: Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv. Energy Mater. 11, 2003118 (2021). https://doi.org/10.1002/aenm.202003118

    Article  CAS  Google Scholar 

  280. Chen, L., Chen, K.S., Chen, X.J., et al.: Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Appl. Mater. Interfaces 10, 26972–26981 (2018). https://doi.org/10.1021/acsami.8b04573

    Article  CAS  Google Scholar 

  281. Li, N.W., Yin, Y.X., Yang, C.P., et al.: An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526

    Article  CAS  Google Scholar 

  282. Cheng, Q.H., He, W., Zhang, X.D., et al.: Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries. RSC Adv. 6, 10250–10265 (2016). https://doi.org/10.1039/c5ra21670b

    Article  CAS  Google Scholar 

  283. Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166

    Article  CAS  Google Scholar 

  284. Wang, L.P., Zhang, L., Wang, Q.J., et al.: Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 10, 16–23 (2018). https://doi.org/10.1016/j.ensm.2017.08.001

    Article  CAS  Google Scholar 

  285. Lin, D.C., Liu, Y.Y., Chen, W., et al.: Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett. 17, 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020

    Article  CAS  Google Scholar 

  286. Zhao, J., Liao, L., Shi, F.F., et al.: Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251

    Article  CAS  Google Scholar 

  287. Zhang, X.Q., Chen, X., Xu, R., et al.: Columnar lithium metal anodes. Angew. Chem. Int. Ed. 56, 14207–14211 (2017). https://doi.org/10.1002/anie.201707093

    Article  CAS  Google Scholar 

  288. Fan, X., Chen, L., Borodin, O., et al.: Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnology 13, 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2

    Article  CAS  Google Scholar 

  289. Zheng, G., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnology 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152

    Article  CAS  Google Scholar 

  290. Yang, Q.F., Cui, M.N., Hu, J.L., et al.: Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 14, 1866–1878 (2020). https://doi.org/10.1021/acsnano.9b08008

    Article  CAS  Google Scholar 

  291. Subramanya, U., Chua, C., He Leong, V.G., et al.: Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes. RSC Adv. 10, 674–681 (2020). https://doi.org/10.1039/c9ra08268a

    Article  CAS  Google Scholar 

  292. Ye, S.F., Wang, L.F., Liu, F.F., et al.: G-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 10, 2002647 (2020). https://doi.org/10.1002/aenm.202002647

    Article  CAS  Google Scholar 

  293. He, M., Guo, R., Hobold, G.M., et al.: The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. P. Natl. Acad. Sci. 117, 73–79 (2020). https://doi.org/10.1073/pnas.1911017116

    Article  CAS  Google Scholar 

  294. Liu, Y.Y., Lin, D.C., Yuen, P.Y., et al.: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531

    Article  CAS  Google Scholar 

  295. Jiang, S., Lu, Y., Lu, Y.Y., et al.: Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries. Chem. Asian J. 13, 1379–1385 (2018). https://doi.org/10.1002/asia.201800326

    Article  CAS  Google Scholar 

  296. Shen, C.F., Ge, M.Y., Zhang, A.Y., et al.: Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy 19, 68–77 (2016). https://doi.org/10.1016/j.nanoen.2015.11.013

    Article  CAS  Google Scholar 

  297. Zhuang, T.Z., Huang, J.Q., Peng, H.J., et al.: Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 12, 381–389 (2016). https://doi.org/10.1002/smll.201503133

    Article  CAS  Google Scholar 

  298. Luo, J., Lee, R.C., Jin, J.T., et al.: A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li–S batteries. Chem. Commun. 53, 963–966 (2017). https://doi.org/10.1039/c6cc09248a

    Article  CAS  Google Scholar 

  299. Qian, J., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362

    Article  CAS  Google Scholar 

  300. Piao, N., Ji, X., Xu, H., et al.: Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 10, 1903568 (2020). https://doi.org/10.1002/aenm.201903568

    Article  CAS  Google Scholar 

  301. Zheng, J.M., Lochala, J.A., Kwok, A., et al.: Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. 4, 1700032 (2017). https://doi.org/10.1002/advs.201700032

    Article  CAS  Google Scholar 

  302. Yamada, Y., Yamada, A.: Review: superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 162, A2406–A2423 (2015). https://doi.org/10.1149/2.0041514jes

    Article  CAS  Google Scholar 

  303. Li, M., Wang, C.S., Chen, Z.W., et al.: New concepts in electrolytes. Chem. Rev. 120, 6783–6819 (2020). https://doi.org/10.1021/acs.chemrev.9b00531

    Article  CAS  Google Scholar 

  304. Yamada, Y., Furukawa, K., Sodeyama, K., et al.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014). https://doi.org/10.1021/ja412807w

    Article  CAS  Google Scholar 

  305. Fang, Z., Ma, Q., Liu, P., et al.: Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl. Mater. Interfaces 9, 4282–4289 (2017). https://doi.org/10.1021/acsami.6b03857

    Article  CAS  Google Scholar 

  306. Fu, J.L., Ji, X., Chen, J., et al.: Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59, 22194–22201 (2020). https://doi.org/10.1002/anie.202009575

    Article  CAS  Google Scholar 

  307. Chen, S.R., Zheng, J.M., Mei, D.H., et al.: High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102

    Article  CAS  Google Scholar 

  308. Ren, X.D., Chen, S.R., Lee, H., et al.: Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002

    Article  CAS  Google Scholar 

  309. Zeng, Z., Murugesan, V., Han, K.S., et al.: Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018). https://doi.org/10.1038/s41560-018-0196-y

    Article  CAS  Google Scholar 

  310. Peng, Z., Cao, X., Gao, P.Y., et al.: High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020). https://doi.org/10.1002/adfm.202001285

    Article  CAS  Google Scholar 

  311. Yu, L., Chen, S.R., Lee, H., et al.: A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935

    Article  CAS  Google Scholar 

  312. Ren, X.D., Zou, L.F., Cao, X., et al.: Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006

    Article  CAS  Google Scholar 

  313. Wang, W., Zhang, J.L., Yang, Q., et al.: Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Appl. Mater. Interfaces 12, 22901–22909 (2020). https://doi.org/10.1021/acsami.0c03952

    Article  CAS  Google Scholar 

  314. Chen, S.J., Xiang, Y.X., Zheng, G.R., et al.: High-efficiency lithium metal anode enabled by a concentrated/fluorinated ester electrolyte. ACS Appl. Mater. Interfaces 12, 27794–27802 (2020). https://doi.org/10.1021/acsami.0c06930

    Article  CAS  Google Scholar 

  315. Fan, X.L., Chen, L., Ji, X., et al.: Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017

    Article  CAS  Google Scholar 

  316. Soto, F.A., Ma, Y.G., Martinez de la Hoz, J.M., et al.: Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015). https://doi.org/10.1021/acs.chemmater.5b03358

  317. Nilsson, V., Kotronia, A., Lacey, M., et al.: Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Appl. Energy Mater. 3, 200–207 (2020). https://doi.org/10.1021/acsaem.9b01203

    Article  CAS  Google Scholar 

  318. Alvarado, J., Schroeder, M.A., Pollard, T.P., et al.: Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/c8ee02601g

    Article  CAS  Google Scholar 

  319. Liu, X.Y., Shen, C., Gao, N., et al.: Concentrated electrolytes based on dual salts of LiFSI and LiODFB for lithium-metal battery. Electrochim. Acta 289, 422–427 (2018). https://doi.org/10.1016/j.electacta.2018.09.085

    Article  CAS  Google Scholar 

  320. Cheng, P.F., Zhang, H., Ma, Q., et al.: Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 363, 137198 (2020). https://doi.org/10.1016/j.electacta.2020.137198

    Article  CAS  Google Scholar 

  321. Hagos, T.T., Thirumalraj, B., Huang, C.J., et al.: Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS Appl. Mater. Interfaces 11, 9955–9963 (2019). https://doi.org/10.1021/acsami.8b21052

    Article  CAS  Google Scholar 

  322. Yuan, S.Y., Weng, S.T., Wang, F., et al.: Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021). https://doi.org/10.1016/j.nanoen.2021.105847

    Article  CAS  Google Scholar 

  323. Fang, C., Lu, B., Pawar, G., et al.: Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021). https://doi.org/10.1038/s41560-021-00917-3

    Article  CAS  Google Scholar 

  324. Shin, W.K., Kim, D.W.: High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J. Power Sources 226, 54–60 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.082

    Article  CAS  Google Scholar 

  325. Jeong, H.S., Lee, S.Y.: Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196, 6716–6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037

    Article  CAS  Google Scholar 

  326. Miao, R.Y., Liu, B.W., Zhu, Z.Z., et al.: PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J. Power Sources 184, 420–426 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.045

    Article  CAS  Google Scholar 

  327. Hao, X.M., Zhu, J., Jiang, X., et al.: Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 16, 2981–2987 (2016). https://doi.org/10.1021/acs.nanolett.5b05133

    Article  CAS  Google Scholar 

  328. Zeng, X.X., Yin, Y.X., Li, N.W., et al.: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 138, 15825–15828 (2016). https://doi.org/10.1021/jacs.6b10088

    Article  CAS  Google Scholar 

  329. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  330. Tung, S.O., Ho, S., Yang, M., et al.: A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015). https://doi.org/10.1038/ncomms7152

    Article  CAS  Google Scholar 

  331. Niu, C., Lee, H., Chen, S., et al.: High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6

    Article  CAS  Google Scholar 

  332. Wilkinson, D.P., Blom, H., Brandt, K., et al.: Effects of physical constraints on Li cyclability. J. Power Sources 36, 517–527 (1991). https://doi.org/10.1016/0378-7753(91)80077-B

    Article  CAS  Google Scholar 

  333. Wilkinson, D.P., Wainwright, D.: In-situ study of electrode stack growth in rechargeable cells at constant pressure. J. Electroanal. Chem. 355, 193–203 (1993). https://doi.org/10.1016/0022-0728(93)80362-L

    Article  CAS  Google Scholar 

  334. Ota, H., Shima, K., Ue, M., et al.: Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572 (2004). https://doi.org/10.1016/j.electacta.2003.09.010

    Article  CAS  Google Scholar 

  335. Lee, H., Chen, S.R., Ren, X.D., et al.: Electrode edge effects and the failure mechanism of lithium-metal batteries. Chemsuschem 11, 3821–3828 (2018). https://doi.org/10.1002/cssc.201801445

    Article  CAS  Google Scholar 

  336. Wu, F., Quan, H., Han, J., et al.: Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage. RSC Adv. 10, 30880–30886 (2020). https://doi.org/10.1039/d0ra04579a

    Article  CAS  Google Scholar 

  337. Huang, Z.J., Zhou, G.M., Lv, W., et al.: Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy 61, 47–53 (2019). https://doi.org/10.1016/j.nanoen.2019.04.036

    Article  CAS  Google Scholar 

  338. Lu, Y.Z., Wang, J.S., Chen, Y., et al.: Spatially controlled lithium deposition on silver-nanocrystals-decorated TiO2 nanotube arrays enabling ultrastable lithium metal anode. Adv. Funct. Mater. 31, 2009605 (2021). https://doi.org/10.1002/adfm.202009605

    Article  CAS  Google Scholar 

  339. Yang, C.P., Yao, Y.G., He, S.M., et al.: Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017). https://doi.org/10.1002/adma.201702714

    Article  CAS  Google Scholar 

  340. Ryou, M.H., Lee, Y.M., Lee, Y.J., et al.: Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015). https://doi.org/10.1002/adfm.201402953

    Article  CAS  Google Scholar 

  341. Ma, Y.T., Wang, L.L., Fu, S.Y., et al.: In situ formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. J. Mater. Chem. A 8, 23574–23579 (2020). https://doi.org/10.1039/d0ta08307k

    Article  CAS  Google Scholar 

  342. Qu, J.L., Xiao, J.W., Wang, T.S., et al.: High rate transfer mechanism of lithium ions in lithium–tin and lithium–indium alloys for lithium batteries. J. Phys. Chem. C 124, 24644–24652 (2020). https://doi.org/10.1021/acs.jpcc.0c07880

    Article  CAS  Google Scholar 

  343. Wan, M., Kang, S., Wang, L., et al.: Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020). https://doi.org/10.1038/s41467-020-14550-3

    Article  CAS  Google Scholar 

  344. Liu, S.S., Ma, Y.L., Zhou, Z.X., et al.: Inducing uniform lithium nucleation by integrated lithium-rich Li-In anode with lithiophilic 3D framework. Energy Storage Mater. 33, 423–431 (2020). https://doi.org/10.1016/j.ensm.2020.08.007

    Article  CAS  Google Scholar 

  345. Wan, J., Song, Y.X., Chen, W.P., et al.: Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J. Am. Chem. Soc. 143, 839–848 (2021). https://doi.org/10.1021/jacs.0c10121

    Article  CAS  Google Scholar 

  346. Zhang, Y.Z., Sun, C.W.: Composite lithium protective layer formed in situ for stable lithium metal batteries. ACS Appl. Mater. Interfaces 13, 12099–12105 (2021). https://doi.org/10.1021/acsami.1c00745

    Article  CAS  Google Scholar 

  347. Jia, J.Y., Tang, Z.Q., Guo, Z.X., et al.: A 3D composite lithium metal anode with pre-fabricated LiZn via reactive wetting. Chem. Commun. 56, 4248–4251 (2020). https://doi.org/10.1039/d0cc00514b

    Article  CAS  Google Scholar 

  348. Chi, S.S., Wang, Q.R., Han, B., et al.: Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 20, 2724–2732 (2020). https://doi.org/10.1021/acs.nanolett.0c00352

    Article  CAS  Google Scholar 

  349. Zhong, H., Wu, Y.X., Ding, F., et al.: An artificial Li-Al interphase layer on Li-B alloy for stable lithium-metal anode. Electrochim. Acta 304, 255–262 (2019). https://doi.org/10.1016/j.electacta.2019.03.009

    Article  CAS  Google Scholar 

  350. Li, H., Yamaguchi, T., Matsumoto, S., et al.: Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 11, 1584 (2020). https://doi.org/10.1038/s41467-020-15452-0

    Article  Google Scholar 

  351. Zhuang, H.F., Zhao, P., Li, G.D., et al.: Li-LiAl alloy composite with memory effect as high-performance lithium metal anode. J. Power Sources 455, 227977 (2020). https://doi.org/10.1016/j.jpowsour.2020.227977

    Article  CAS  Google Scholar 

  352. Tang, W., Yin, X.S., Kang, S.J., et al.: Lithium silicide surface enrichment: a solution to lithium metal battery. Adv. Mater. 30, 1801745 (2018). https://doi.org/10.1002/adma.201801745

    Article  CAS  Google Scholar 

  353. Wang, H.S., Cao, X., Gu, H.K., et al.: Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano 14, 4601–4608 (2020). https://doi.org/10.1021/acsnano.0c00184

    Article  CAS  Google Scholar 

  354. Yang, C.P., Xie, H., Ping, W.W., et al.: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 31, 1804815 (2019). https://doi.org/10.1002/adma.201804815

    Article  CAS  Google Scholar 

  355. Krauskopf, T., Mogwitz, B., Rosenbach, C., et al.: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019). https://doi.org/10.1002/aenm.201902568

    Article  CAS  Google Scholar 

  356. Fu, K., Gong, Y.H., Fu, Z.Z., et al.: Transient behavior of the metal interface in lithium metal-garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017). https://doi.org/10.1002/anie.201708637

    Article  CAS  Google Scholar 

  357. Lee, Y.G., Fujiki, S., Jung, C., et al.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  CAS  Google Scholar 

  358. Zhang, S.M., Yang, G.J., Liu, Z.P., et al.: Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 6, 4118–4126 (2021). https://doi.org/10.1021/acsenergylett.1c02127

    Article  CAS  Google Scholar 

  359. Zhang, W.J.: Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 196, 877–885 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of China (No. 2019YFE0100200 and 2019YFA0705703), the National Natural Science Foundation of China (No. U1564205) and the Tsinghua University Initiative Scientific Research Program (No. 2019Z02UTY06 and 2019THFS0132). The authors also thank the Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S. and the China-Clean Energy Research Center (CERC-CVC2.0, 2016–2020) and thank the Tsinghua University-Zhangjiagang Joint Institute for Hydrogen Energy and Lithium Ion Battery Technology.

Author information

Authors and Affiliations

Authors

Contributions

This work was funded by the Ministry of Science and Technology of China (No. 2019YFE0100200 and 2019YFA0705703), the National Natural Science Foundation of China (No. U1564205) and the Tsinghua University Initiative Scientific Research Program (No. 2019Z02UTY06 and 2019THFS0132). All authors ensure that the materials support the published claims and comply with field standards. All authors contributed to the study conception and design. Hongmei Liang, Li Wang and Xiangming He had the idea for the article. Li Sheng, Hong Xu and Youzhi Song performed the literature search. Hongmei Liang wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Wang, L., Sheng, L. et al. Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochem. Energy Rev. 5 (Suppl 2), 23 (2022). https://doi.org/10.1007/s41918-022-00158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00158-2

Keywords

Navigation