Skip to main content

Advertisement

Log in

Designing All-Solid-State Batteries by Theoretical Computation: A Review

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

All-solid-state batteries (ASSBs) with solid-state electrolytes and lithium-metal anodes have been regarded as a promising battery technology to alleviate range anxiety and address safety issues due to their high energy density and high safety. Understanding the fundamental physical and chemical science of ASSBs is of great importance to battery development. To confirm and supplement experimental study, theoretical computation provides a powerful approach to probe the thermodynamic and kinetic behavior of battery materials and their interfaces, resulting in the design of better batteries. In this review, we assess recent progress in the theoretical computations of solid electrolytes and the interfaces between the electrodes and electrolytes of ASSBs. We review the role of theoretical computation in studying the following: ion transport mechanisms, grain boundaries, phase stability, chemical and electrochemical stability, mechanical properties, design strategies and high-throughput screening of inorganic solid electrolytes, mechanical stability, space-charge layers, interface buffer layers and dendrite growth at electrode/electrolyte interfaces. Finally, we provide perspectives on the shortcomings, challenges and opportunities of theoretical computation in regard to ASSBs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Ren, G.Z., Ma, G.Q., Cong, N.: Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003

    Article  Google Scholar 

  3. Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  4. Scrosati, B., Hassoun, J., Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). https://doi.org/10.1039/C1EE01388B

    Article  CAS  Google Scholar 

  5. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation: approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012). https://doi.org/10.1039/C2EE21892E

    Article  CAS  Google Scholar 

  6. Goodenough, J.B., Kim, Y.: Challenges for rechargeable batteries. J. Power Sources 196, 6688–6694 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.074

    Article  CAS  ADS  Google Scholar 

  7. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y., Zuo, T.T., Popovic, J., et al.: Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018

    Article  CAS  Google Scholar 

  10. Hatzell, K.B., Chen, X.C., Cobb, C.L., et al.: Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020). https://doi.org/10.1021/acsenergylett.9b02668

    Article  CAS  Google Scholar 

  11. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  12. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  ADS  Google Scholar 

  13. Fan, L., Wei, S.Y., Li, S.Y., et al.: Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018). https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  14. Gao, Z.H., Sun, H.B., Fu, L., et al.: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018). https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  15. Zhang, Z.Z., Shao, Y.J., Lotsch, B., et al.: New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f

    Article  CAS  Google Scholar 

  16. Lopez, J., Mackanic, D.G., Cui, Y., et al.: Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6

    Article  CAS  ADS  Google Scholar 

  17. Wang, C.W., Fu, K., Kammampata, S.P., et al.: Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y., Richards, W.D., Ong, S.P., et al.: Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). https://doi.org/10.1038/nmat4369

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Yu, X.W., Manthiram, A.: Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Accounts Chem. Res. 50, 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460

    Article  CAS  Google Scholar 

  20. Liang, L.W., Sun, X., Zhang, J.Y., et al.: Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Mater. Horiz. 6, 871–910 (2019). https://doi.org/10.1039/c8mh01593g

    Article  CAS  Google Scholar 

  21. Banerjee, A., Wang, X., Fang, C., et al.: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101

    Article  CAS  PubMed  Google Scholar 

  22. Chen, R., Li, Q., Yu, X., et al.: Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Gurung, A., Pokharel, J., Baniya, A., et al.: A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain. Energy Fuels 3, 3279–3309 (2019). https://doi.org/10.1039/c9se00549h

    Article  CAS  Google Scholar 

  24. Pervez, S.A., Cambaz, M.A., Thangadurai, V., et al.: Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl. Mater. Interfaces 11, 22029–22050 (2019). https://doi.org/10.1021/acsami.9b02675

    Article  CAS  PubMed  Google Scholar 

  25. Nolan, A.M., Zhu, Y.Z., He, X.F., et al.: Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018). https://doi.org/10.1016/j.joule.2018.08.017

    Article  CAS  Google Scholar 

  26. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, b864 (1964). https://doi.org/10.1103/physrev.136.b864

    Article  MathSciNet  ADS  Google Scholar 

  27. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, a1133 (1965). https://doi.org/10.1103/physrev.140.a1133

    Article  MathSciNet  ADS  Google Scholar 

  28. Jain, A., Ong, S.P., Hautier, G., et al.: Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  ADS  Google Scholar 

  29. Curtarolo, S., Setyawan, W., Hart, G.L.W., et al.: AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012). https://doi.org/10.1016/j.commatsci.2012.02.005

    Article  CAS  Google Scholar 

  30. Kirklin, S., Saal, J.E., Meredig, B., et al.: The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10

    Article  CAS  ADS  Google Scholar 

  31. Chateigner, D., Chen, X., Ciriotti, M., et al: Crystallography Open Database. http://www.crystallography.net/cod/. Accessed 4 Dec 2021

  32. Barthelmy, D.: Mineralogy Database. http://webmineral.com/. Accessed 4 Dec 2021

  33. Berman, H.M., Westbrook, J., Feng, Z., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. FIZ Karlsruhe GmbH. Inorganic Crystal Structure Database. https://icsd.fiz-karlsruhe.de/search/. Accessed 4 Dec 2021

  35. The Cambridge Crystallographic Data Centre. The Cambridge Structural Database. http://www.ccdc.cam.ac.uk/products/csd/. Accessed 4 Dec 2021

  36. Crystal Impact GbR. Crystal Impact. http://www.crystalimpact.com/pcd/. Accessed 4 Dec 2021

  37. Kim, K.J., Balaish, M., Wadaguchi, M., et al.: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021). https://doi.org/10.1002/aenm.202002689

    Article  CAS  Google Scholar 

  38. Lou, S.F., Zhang, F., Fu, C.K., et al.: Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33, 2000721 (2021). https://doi.org/10.1002/adma.202000721

    Article  CAS  ADS  Google Scholar 

  39. Wu, J.H., Shen, L., Zhang, Z.H., et al.: All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4

    Article  CAS  Google Scholar 

  40. Xi, G., Xiao, M., Wang, S.J., et al.: Polymer-based solid electrolytes: material selection, design, and application. Adv. Funct. Mater. 31, 2007598 (2021). https://doi.org/10.1002/adfm.202007598

    Article  CAS  Google Scholar 

  41. Xu, X.L., Hui, K.S., Hui, K.N., et al.: Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater. Horiz. 7, 1246–1278 (2020). https://doi.org/10.1039/c9mh01701a

    Article  CAS  Google Scholar 

  42. Randau, S., Weber, D.A., Kötz, O., et al.: Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1

    Article  CAS  ADS  Google Scholar 

  43. Zhao, Q., Stalin, S., Zhao, C.Z., et al.: Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5

    Article  CAS  ADS  Google Scholar 

  44. Famprikis, T., Canepa, P., Dawson, J.A., et al.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Shi, S.Q., Gao, J., Liu, Y., et al.: Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016). https://doi.org/10.1088/1674-1056/25/1/018212

    Article  CAS  ADS  Google Scholar 

  46. Urban, A., Seo, D.H., Ceder, G.: Computational understanding of Li-ion batteries. NPJ Comput. Mater. 2, 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2

    Article  CAS  ADS  Google Scholar 

  47. He, Q., Yu, B., Li, Z.H., et al.: Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056

    Article  CAS  Google Scholar 

  48. Islam, M.S., Fisher, C.A.: Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014). https://doi.org/10.1039/c3cs60199d

    Article  CAS  PubMed  Google Scholar 

  49. Deng, Z., Mo, Y.F., Ong, S.P.: Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater. 8, e254 (2016). https://doi.org/10.1038/am.2016.7

    Article  CAS  Google Scholar 

  50. Xu, H.J., Yu, Y.R., Wang, Z., et al.: First principle material genome approach for all solid-state batteries. Energy Environ. Mater. 2, 234–250 (2019). https://doi.org/10.1002/eem2.12053

    Article  CAS  Google Scholar 

  51. Leung, K.: DFT modelling of explicit solid-solid interfaces in batteries: methods and challenges. Phys. Chem. Chem. Phys. 22, 10412–10425 (2020). https://doi.org/10.1039/c9cp06485k

    Article  CAS  PubMed  Google Scholar 

  52. Mehrer, H.: In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer, Berlin (2007)

    Book  Google Scholar 

  53. He, X.F., Zhu, Y.Z., Epstein, A., et al.: Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4, 18 (2018). https://doi.org/10.1038/s41524-018-0074-y

    Article  CAS  ADS  Google Scholar 

  54. Wang, S., Bai, Q., Nolan, A.M., et al.: Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019). https://doi.org/10.1002/anie.201901938

    Article  CAS  Google Scholar 

  55. Huang, Y., Jiang, Y., Zhou, Y.X., et al.: One-step low-temperature synthesis of Li0.33La0.55TiO3 solid electrolytes by tape casting method. Ionics 27, 145–155 (2021). https://doi.org/10.1007/s11581-020-03823-y

    Article  CAS  Google Scholar 

  56. Chen, C.H., Du, J.C.: Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 98, 534–542 (2015). https://doi.org/10.1111/jace.13307

    Article  CAS  Google Scholar 

  57. Safanama, D., Adams, S.: High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes. J. Power Sources 340, 294–301 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.076

    Article  CAS  ADS  Google Scholar 

  58. Kang, J., Chung, H., Doh, C., et al.: Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources 293, 11–16 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.060

    Article  CAS  ADS  Google Scholar 

  59. Kuo, P.H., Du, J.C.: Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2−x(PO4)3 solid-state electrolytes. J. Phys. Chem. C 123, 27385–27398 (2019). https://doi.org/10.1021/acs.jpcc.9b08390

    Article  CAS  ADS  Google Scholar 

  60. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  61. Zhao, Y., Daemen, L.L.: Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012). https://doi.org/10.1021/ja305709z

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., Zhao, Y.S., Chen, C.F.: Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B 87, 134303 (2013). https://doi.org/10.1103/physrevb.87.134303

    Article  ADS  Google Scholar 

  63. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Mo, Y.F., Ong, S.P., Ceder, G.: First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y

    Article  CAS  Google Scholar 

  65. Chu, I.H., Nguyen, H., Hy, S., et al.: Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl Mater Interfaces 8, 7843–7853 (2016). https://doi.org/10.1021/acsami.6b00833

    Article  CAS  PubMed  Google Scholar 

  66. Asano, T., Sakai, A., Ouchi, S., et al.: Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). https://doi.org/10.1002/adma.201803075

    Article  CAS  Google Scholar 

  67. He, X.F., Zhu, Y.Z., Mo, Y.F.: Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017). https://doi.org/10.1038/ncomms15893

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  68. Jalem, R., Yamamoto, Y., Shiiba, H., et al.: Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013). https://doi.org/10.1021/cm303542x

    Article  CAS  Google Scholar 

  69. de Klerk, N.J.J., van der Maas, E., Wagemaker, M.: Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in β-Li3PS4 as an example. ACS Appl. Energy Mater. 1, 3230–3242 (2018). https://doi.org/10.1021/acsaem.8b00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deng, Z., Zhu, Z.Y., Chu, I.H., et al.: Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017). https://doi.org/10.1021/acs.chemmater.6b02648

    Article  CAS  Google Scholar 

  71. Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett 67, 2339–2342 (1991). https://doi.org/10.1103/physrevlett.67.2339

    Article  CAS  PubMed  ADS  Google Scholar 

  72. Lee, E.C., Chang, K.J.: Possiblep-type doping with group-I elements in ZnO. Phys. Rev. B 70, 115210 (2004). https://doi.org/10.1103/physrevb.70.115210

    Article  ADS  Google Scholar 

  73. Shi, S., Lu, P., Liu, Z., et al.: Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). https://doi.org/10.1021/ja305366r

    Article  CAS  PubMed  Google Scholar 

  74. Shi, S.Q., Qi, Y., Li, H., et al.: Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J. Phys. Chem. C 117, 8579–8593 (2013). https://doi.org/10.1021/jp310591u

    Article  CAS  Google Scholar 

  75. Yu, S., Siegel, D.J.: Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017). https://doi.org/10.1021/acs.chemmater.7b02805

    Article  CAS  Google Scholar 

  76. Dawson, J.A., Canepa, P., Famprikis, T., et al.: Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140, 362–368 (2018). https://doi.org/10.1021/jacs.7b10593

    Article  CAS  PubMed  Google Scholar 

  77. Chen, B.B., Xu, C.Q., Zhou, J.Q.: Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes. J. Electrochem. Soc. 165, A3946–A3951 (2018). https://doi.org/10.1149/2.0831816jes

    Article  CAS  Google Scholar 

  78. Dawson, J.A., Canepa, P., Clarke, M.J., et al.: Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes. Chem. Mater. 31, 5296–5304 (2019). https://doi.org/10.1021/acs.chemmater.9b01794

    Article  CAS  Google Scholar 

  79. Sun, W.H., Dacek, S.T., Ong, S.P., et al.: The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016). https://doi.org/10.1126/sciadv.1600225

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  80. Ong, S.P., Mo, Y.F., Richards, W.D., et al.: Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013). https://doi.org/10.1039/c2ee23355j

    Article  CAS  Google Scholar 

  81. Miara, L.J., Ong, S.P., Mo, Y.F., et al.: Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2xy(La3−xRbx)(Zr2−yTay)O12 (0 \(\leqslant\) x \(\leqslant\) 0.375, 0 \(\leqslant\) y \(\leqslant\) 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 3048–3055 (2013). https://doi.org/10.1021/cm401232r

    Article  CAS  Google Scholar 

  82. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082

    Article  CAS  Google Scholar 

  83. Tian, Y.S., Zeng, G.B., Rutt, A., et al.: Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, Y., He, X., Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  PubMed  Google Scholar 

  85. Xiao, Y.H., Wang, Y., Bo, S.H., et al.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5

    Article  CAS  ADS  Google Scholar 

  86. Tian, Y.S., Shi, T., Richards, W.D., et al.: Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017). https://doi.org/10.1039/c7ee00534b

    Article  CAS  Google Scholar 

  87. Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Deng, Z., Wang, Z.B., Chu, I.H., et al.: Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2015). https://doi.org/10.1149/2.0061602jes

    Article  CAS  Google Scholar 

  89. Cheng, E.J., Sharafi, A., Sakamoto, J.: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018

    Article  CAS  Google Scholar 

  90. Nagao, M., Hayashi, A., Tatsumisago, M., et al.: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600 (2013). https://doi.org/10.1039/c3cp51059j

    Article  CAS  PubMed  Google Scholar 

  91. Han, F.D., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  ADS  Google Scholar 

  92. Tsai, C.L., Roddatis, V., Chandran, C.V., et al.: Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016). https://doi.org/10.1021/acsami.6b00831

    Article  CAS  PubMed  Google Scholar 

  93. Kraft, M.A., Culver, S.P., Calderon, M., et al.: Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 139, 10909–10918 (2017). https://doi.org/10.1021/jacs.7b06327

    Article  CAS  PubMed  Google Scholar 

  94. Culver, S.P., Koerver, R., Krauskopf, T., et al.: Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries. Chem. Mater. 30, 4179–4192 (2018). https://doi.org/10.1021/acs.chemmater.8b01293

    Article  CAS  Google Scholar 

  95. Krauskopf, T., Pompe, C., Kraft, M.A., et al.: Influence of lattice dynamics on Na+ transport in the solid electrolyte Na3PS4−xSex. Chem. Mater. 29, 8859–8869 (2017). https://doi.org/10.1021/acs.chemmater.7b03474

    Article  CAS  Google Scholar 

  96. Muy, S., Bachman, J.C., Giordano, L., et al.: Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018). https://doi.org/10.1039/C7EE03364H

    Article  CAS  Google Scholar 

  97. Deng, Y., Eames, C., Chotard, J.N., et al.: Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015). https://doi.org/10.1021/jacs.5b04444

    Article  CAS  PubMed  Google Scholar 

  98. Deng, Y., Eames, C., Fleutot, B., et al.: Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl Mater Interfaces 9, 7050–7058 (2017). https://doi.org/10.1021/acsami.6b14402

    Article  CAS  PubMed  Google Scholar 

  99. Thangadurai, V., Weppner, W.: Li6ALa2Nb2O12 (A=Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure. J. Am. Ceram. Soc. 88, 411–418 (2005). https://doi.org/10.1111/j.1551-2916.2005.00060.x

    Article  CAS  Google Scholar 

  100. Geiger, C.A., Alekseev, E., Lazic, B., et al.: Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem 50, 1089–1097 (2011). https://doi.org/10.1021/ic101914e

    Article  CAS  PubMed  Google Scholar 

  101. Kozinsky, B., Akhade, S.A., Hirel, P., et al.: Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes. Phys Rev Lett 116, 055901 (2016). https://doi.org/10.1103/physrevlett.116.055901

    Article  PubMed  ADS  Google Scholar 

  102. Rettenwander, D., Blaha, P., Laskowski, R., et al.: DFT study of the role of Al3+ in the fast ion-conductor Li7−3xAl3+xLa3Zr2O12 garnet. Chem. Mater. 26, 2617–2623 (2014). https://doi.org/10.1021/cm5000999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bernstein, N., Johannes, M.D., Hoang, K.: Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109, 205702 (2012). https://doi.org/10.1103/physrevlett.109.205702

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Xie, H., Alonso, J.A., Li, Y.T., et al.: Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23, 3587–3589 (2011). https://doi.org/10.1021/cm201671k

    Article  CAS  Google Scholar 

  105. Zeier, W.G.: Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans. 43, 16133–16138 (2014). https://doi.org/10.1039/c4dt02162b

    Article  CAS  PubMed  Google Scholar 

  106. Mukhopadhyay, S., Thompson, T., Sakamoto, J., et al.: Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 27, 3658–3665 (2015). https://doi.org/10.1021/acs.chemmater.5b00362

    Article  CAS  Google Scholar 

  107. Morgan, B.J.: Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study. R Soc. Open Sci. 4, 170824 (2017). https://doi.org/10.1098/rsos.170824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Squires, A.G., Scanlon, D.O., Morgan, B.J.: Native defects and their doping response in the lithium solid electrolyte Li7La3Zr2O12. Chem. Mater. 32, 1876–1886 (2020). https://doi.org/10.1021/acs.chemmater.9b04319

    Article  CAS  Google Scholar 

  109. Richards, W.D., Wang, Y., Miara, L.J., et al.: Design of Li1+2xZn1–xPS4, a new lithium ion conductor. Energy Environ. Sci. 9, 3272–3278 (2016). https://doi.org/10.1039/c6ee02094a

    Article  CAS  Google Scholar 

  110. Kaup, K., Lalère, F., Huq, A., et al.: Correlation of structure and fast ion conductivity in the solid solution series Li1+2xZn1−xPS4. Chem. Mater. 30, 592–596 (2018). https://doi.org/10.1021/acs.chemmater.7b05108

    Article  CAS  Google Scholar 

  111. Ngai, K.L.: Meyer-Neldel rule and anti Meyer-Neldel rule of ionic conductivity: conclusions from the coupling model. Solid State Ionics 105, 231–235 (1998). https://doi.org/10.1016/S0167-2738(97)00469-4

    Article  CAS  Google Scholar 

  112. de di Stefano, D., Miglio, A., Robeyns, K., et al.: Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019). https://doi.org/10.1016/j.chempr.2019.07.001

    Article  CAS  Google Scholar 

  113. Krauskopf, T., Culver, S.P., Zeier, W.G.: Bottleneck of diffusion and inductive effects in Li10Ge1−xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018). https://doi.org/10.1021/acs.chemmater.8b00266

    Article  CAS  Google Scholar 

  114. Xu, Z.M., Bo, S.H., Zhu, H.: LiCrS2 and LiMnS2 cathodes with extraordinary mixed electron-ion conductivities and favorable interfacial compatibilities with sulfide electrolyte. ACS Appl. Mater. Interfaces 10, 36941–36953 (2018). https://doi.org/10.1021/acsami.8b12026

    Article  CAS  PubMed  Google Scholar 

  115. Xu, Z.M., Chen, X., Chen, R.H., et al.: Anion charge and lattice volume dependent lithium ion migration in compounds with fcc anion sublattices. NPJ Comput. Mater. 6, 47 (2020). https://doi.org/10.1038/s41524-020-0324-7

    Article  CAS  ADS  Google Scholar 

  116. Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894 (2002). https://doi.org/10.1038/nrd941

    Article  CAS  PubMed  Google Scholar 

  117. Hautier, G., Jain, A., Chen, H.L., et al.: Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 21, 17147 (2011). https://doi.org/10.1039/c1jm12216a

    Article  CAS  Google Scholar 

  118. Hautier, G., Jain, A., Ong, S.P., et al.: Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011). https://doi.org/10.1021/cm200949v

    Article  CAS  Google Scholar 

  119. Avdeev, M., Sale, M., Adams, S., et al.: Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 225, 43–46 (2012). https://doi.org/10.1016/j.ssi.2012.02.014

    Article  CAS  Google Scholar 

  120. Cheng, L., Assary, R.S., Qu, X., et al.: Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015). https://doi.org/10.1021/jz502319n

    Article  CAS  PubMed  Google Scholar 

  121. Xiao, R.J., Li, H., Chen, L.Q.: High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015). https://doi.org/10.1038/srep14227

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  122. Aykol, M., Kim, S., Hegde, V.I., et al.: High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016). https://doi.org/10.1038/ncomms13779

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  123. Liu, P., Guo, B.K., An, T.L., et al.: High throughput materials research and development for lithium ion batteries. J. Materiomics 3, 202–208 (2017). https://doi.org/10.1016/j.jmat.2017.07.004

    Article  ADS  Google Scholar 

  124. Chen, D.J., Jie, J.S., Weng, M.Y., et al.: High throughput identification of Li-ion diffusion pathways in typical solid state electrolytes and electrode materials by BV-Ewald method. J. Mater. Chem. A 7, 1300–1306 (2019). https://doi.org/10.1039/c8ta09345h

    Article  CAS  Google Scholar 

  125. Fitzhugh, W., Wu, F., Ye, L.H., et al.: A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors. Adv. Energy Mater. 9, 1900807 (2019). https://doi.org/10.1002/aenm.201900807

    Article  CAS  Google Scholar 

  126. Liu, B., Wang, D., Avdeev, M., et al.: High-throughput computational screening of Li-containing fluorides for battery cathode coatings. ACS Sustain. Chem. Eng. 8, 948–957 (2020). https://doi.org/10.1021/acssuschemeng.9b05557

    Article  CAS  Google Scholar 

  127. Muy, S., Voss, J., Schlem, R., et al.: High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019). https://doi.org/10.1016/j.isci.2019.05.036

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  128. Kahle, L., Marcolongo, A., Marzari, N.: High-throughput computational screening for solid-state Li-ion conductors. Energy Environ. Sci. 13, 928–948 (2020). https://doi.org/10.1039/c9ee02457c

    Article  CAS  Google Scholar 

  129. Sendek, A.D., Cubuk, E.D., Antoniuk, E.R., et al.: Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater. 31, 342–352 (2019). https://doi.org/10.1021/acs.chemmater.8b03272

    Article  CAS  Google Scholar 

  130. Liu, Y., Zhao, T.L., Ju, W.W., et al.: Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017). https://doi.org/10.1016/j.jmat.2017.08.002

    Article  ADS  Google Scholar 

  131. Lu, W.C., Xiao, R.J., Yang, J., et al.: Data mining-aided materials discovery and optimization. J. Materiomics 3, 191–201 (2017). https://doi.org/10.1016/j.jmat.2017.08.003

    Article  ADS  Google Scholar 

  132. Zhang, W.W., Sun, P.K., Sun, S.R.: A precise theoretical method for high-throughput screening of novel organic electrode materials for Li-ion batteries. J. Materiomics 3, 184–190 (2017). https://doi.org/10.1016/j.jmat.2016.11.009

    Article  ADS  Google Scholar 

  133. Ahmad, Z., Xie, T., Maheshwari, C., et al.: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996–1006 (2018). https://doi.org/10.1021/acscentsci.8b00229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Duy, T.V.T., Ohwaki, T., Ikeshoji, T., et al.: High-throughput computational approach to Li/vacancy configurations and structural evolution during delithiation: the case of Li2MnO3 surface. J. Phys. Chem. C 122, 5496–5508 (2018). https://doi.org/10.1021/acs.jpcc.7b12275

    Article  CAS  Google Scholar 

  135. Ong, S.P.: Accelerating materials science with high-throughput computations and machine learning. Comput. Mater. Sci. 161, 143–150 (2019). https://doi.org/10.1016/j.commatsci.2019.01.013

    Article  CAS  Google Scholar 

  136. Chen, C., Zuo, Y.X., Ye, W.K., et al.: A critical review of machine learning of energy materials. Adv. Energy Mater. 10, 1903242 (2020). https://doi.org/10.1002/aenm.201903242

    Article  CAS  ADS  Google Scholar 

  137. Gao, J., Chu, G., He, M., et al.: Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci. China Phys. Mech. Astron. 57, 1526–1536 (2014). https://doi.org/10.1007/s11433-014-5511-4

    Article  CAS  ADS  Google Scholar 

  138. Zhang, Y., He, X., Chen, Z., et al.: Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019). https://doi.org/10.1038/s41467-019-13214-1

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  139. Morgan, D., Ceder, G., Curtarolo, S.: High-throughput and data mining with ab initio methods. Meas. Sci. Technol. 16, 296–301 (2005). https://doi.org/10.1088/0957-0233/16/1/039

    Article  CAS  ADS  Google Scholar 

  140. Ong, S.P., Richards, W.D., Jain, A., et al.: Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). https://doi.org/10.1016/j.commatsci.2012.10.028

    Article  CAS  Google Scholar 

  141. Jain, A., Ong, S.P., Chen, W., et al.: FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exper. 27, 5037–5059 (2015). https://doi.org/10.1002/cpe.3505

    Article  Google Scholar 

  142. Pizzi, G., Cepellotti, A., Sabatini, R., et al.: AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016). https://doi.org/10.1016/j.commatsci.2015.09.013

    Article  Google Scholar 

  143. Ghiringhelli, L.M., Carbogno, C., Levchenko, S., et al.: Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. NPJ Comput. Mater. 3, 46 (2017). https://doi.org/10.1038/s41524-017-0048-5

    Article  CAS  ADS  Google Scholar 

  144. NOMAD Laboratory. NOMAD Repository and Archive. http://nomad-repository.eu/. Accessed 4 Dec 2021

  145. National Institute for Material Science, Japan. Computational Electronic Structure Database (CompES-X) http://compes-x.nims.go.jp/index en.html. Accessed 4 Dec 2021

  146. Computer Network Information Center, Chinese Academy of Sciences. MatCloud. http://matcloud.cnic.cn/index.html. Accessed 4 Dec 2021

  147. Alberi, K., Nardelli, M.B., Zakutayev, A., et al.: The 2019 materials by design roadmap. J. Phys. D: Appl. Phys. 52, 013001 (2019). https://doi.org/10.1088/1361-6463/aad926

    Article  CAS  ADS  Google Scholar 

  148. Wang, X.L., Xiao, R.J., Li, H., et al.: Discovery and design of lithium battery materials via high-throughput modeling. Chin. Phys. B 27, 128801 (2018). https://doi.org/10.1088/1674-1056/27/12/128801

    Article  CAS  Google Scholar 

  149. He, B., Chi, S.T., Ye, A.J., et al.: High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci. Data 7, 151 (2020). https://doi.org/10.1038/s41597-020-0474-y

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang, L.W., He, B., Zhao, Q., et al.: A database of ionic transport characteristics for over 29 000 inorganic compounds. Adv. Funct. Mater. 30, 2003087 (2020). https://doi.org/10.1002/adfm.202003087

    Article  CAS  Google Scholar 

  151. Katcho, N.A., Carrete, J., Reynaud, M., et al.: An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning. J. Appl. Crystallogr. 52, 148–157 (2019). https://doi.org/10.1107/S1600576718018484

    Article  CAS  ADS  Google Scholar 

  152. Sendek, A.D., Yang, Q., Cubuk, E.D., et al.: Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017). https://doi.org/10.1039/c6ee02697d

    Article  CAS  Google Scholar 

  153. Li, X., Liang, J., Chen, N., et al.: Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019). https://doi.org/10.1002/anie.201909805

    Article  CAS  Google Scholar 

  154. Li, X.N., Liang, J.W., Luo, J., et al.: Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). https://doi.org/10.1039/c9ee02311a

    Article  CAS  Google Scholar 

  155. Kahle, L., Cheng, X., Binninger, T., et al.: The solid-state Li-ion conductor Li7TaO6: a combined computational and experimental study. Solid State Ionics 347, 115226 (2020). https://doi.org/10.1016/j.ssi.2020.115226

    Article  CAS  Google Scholar 

  156. Brown, I.D.: Recent developments in the methods and applications of the bond valence model. Chem. Rev. 109, 6858–6919 (2009). https://doi.org/10.1021/cr900053k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). https://doi.org/10.1016/j.surfrep.2006.04.001

    Article  CAS  ADS  Google Scholar 

  158. Koerver, R., Aygün, I., Leichtweiß, T., et al.: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931

    Article  CAS  Google Scholar 

  159. Koerver, R., Zhang, W.B., de Biasi, L., et al.: Chemo-mechanical expansion of lithium electrode materials: on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018). https://doi.org/10.1039/c8ee00907d

    Article  CAS  Google Scholar 

  160. Shi, T., Zhang, Y.Q., Tu, Q.S., et al.: Characterization of mechanical degradation in an all-solid-state battery cathode. J. Mater. Chem. A 8, 17399–17404 (2020). https://doi.org/10.1039/d0ta06985j

    Article  CAS  Google Scholar 

  161. Tian, H.K., Qi, Y.: Simulation of the effect of contact area loss in all-solid-state Li-ion batteries. J. Electrochem. Soc. 164, E3512–E3521 (2017). https://doi.org/10.1149/2.0481711jes

    Article  CAS  Google Scholar 

  162. Bucci, G., Talamini, B., Renuka Balakrishna, A., et al.: Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys. Rev. Mater. 2, 105407 (2018). https://doi.org/10.1103/physrevmaterials.2.105407

    Article  CAS  Google Scholar 

  163. Yamamoto, M., Takahashi, M., Terauchi, Y., et al.: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery. J. Ceram. Soc. Japan 125, 391–395 (2017). https://doi.org/10.2109/jcersj2.16321

    Article  CAS  Google Scholar 

  164. Choi, S., Jeon, M., Ahn, J., et al.: Quantitative analysis of microstructures and reaction interfaces on composite cathodes in all-solid-state batteries using a three-dimensional reconstruction technique. ACS Appl. Mater. Interfaces 10, 23740–23747 (2018). https://doi.org/10.1021/acsami.8b04204

    Article  CAS  PubMed  Google Scholar 

  165. Wang, M.J., Choudhury, R., Sakamoto, J.: Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019). https://doi.org/10.1016/j.joule.2019.06.017

    Article  CAS  Google Scholar 

  166. Krauskopf, T., Mogwitz, B., Rosenbach, C., et al.: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019). https://doi.org/10.1002/aenm.201902568

    Article  CAS  Google Scholar 

  167. Lewis, J.A., Cortes, F.J.Q., Liu, Y., et al.: Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2

    Article  CAS  PubMed  ADS  Google Scholar 

  168. Sharafi, A., Meyer, H.M., Nanda, J., et al.: Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.053

    Article  CAS  ADS  Google Scholar 

  169. Sharafi, A., Yu, S., Naguib, M., et al.: Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017). https://doi.org/10.1039/c7ta03162a

    Article  CAS  Google Scholar 

  170. Gao, J., Guo, X.Y., Li, Y.T., et al.: The ab initio calculations on the areal specific resistance of Li-metal/Li7La3Zr2O12 interphase. Adv. Theory Simul. 2, 1900028 (2019). https://doi.org/10.1002/adts.201900028

    Article  CAS  Google Scholar 

  171. Zheng, H.P., Wu, S.P., Tian, R., et al.: Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 30, 1906189 (2020). https://doi.org/10.1002/adfm.201906189

    Article  CAS  Google Scholar 

  172. Haruyama, J., Sodeyama, K., Han, L.Y., et al.: Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014). https://doi.org/10.1021/cm5016959

    Article  CAS  Google Scholar 

  173. Gao, B., Jalem, R., Ma, Y.M., et al.: Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem. Mater. 32, 85–96 (2020). https://doi.org/10.1021/acs.chemmater.9b02311

    Article  CAS  Google Scholar 

  174. Bunde, D.: Roman: dispersed ionic conductors and percolation theory. Phys. Rev. Lett. 55, 5–8 (1985). https://doi.org/10.1103/PhysRevLett.55.5

    Article  CAS  PubMed  ADS  Google Scholar 

  175. Morgan, B.J., Madden, P.A.: Effects of lattice polarity on interfacial space charges and defect disorder in ionically conducting AgI heterostructures. Phys. Rev. Lett. 107, 206102 (2011). https://doi.org/10.1103/PhysRevLett.107.206102

    Article  CAS  PubMed  ADS  Google Scholar 

  176. Stegmaier, S., Voss, J., Reuter, K., et al.: Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem. Mater. 29, 4330–4340 (2017). https://doi.org/10.1021/acs.chemmater.7b00659

    Article  CAS  Google Scholar 

  177. Fu, L.J., Chen, C.C., Samuelis, D., et al.: Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys. Rev. Lett. 112, 208301 (2014). https://doi.org/10.1103/physrevlett.112.208301

    Article  ADS  Google Scholar 

  178. de Klerk, N.J.J., Wagemaker, M.: Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018). https://doi.org/10.1021/acsaem.8b01141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, Q., Pan, J., Lu, P., et al.: Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283

    Article  CAS  PubMed  ADS  Google Scholar 

  180. Kasamatsu, S., Tada, T., Watanabe, S.: Parallel-sheets model analysis of space charge layer formation at metal/ionic conductor interfaces. Solid State Ionics 226, 62–70 (2012). https://doi.org/10.1016/j.ssi.2012.08.009

    Article  CAS  Google Scholar 

  181. Landstorfer, M., Funken, S., Jacob, T.: An advanced model framework for solid electrolyte intercalation batteries. Phys. Chem. Chem. Phys. 13, 12817–12825 (2011). https://doi.org/10.1039/c0cp02473b

    Article  CAS  PubMed  Google Scholar 

  182. Braun, S., Yada, C., Latz, A.: Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte. J. Phys. Chem. C 119, 22281–22288 (2015). https://doi.org/10.1021/acs.jpcc.5b02679

    Article  CAS  Google Scholar 

  183. Swift, M.W., Qi, Y.: First-principles prediction of potentials and space-charge layers in all-solid-state batteries. Phys. Rev. Lett. 122, 167701 (2019). https://doi.org/10.1103/physrevlett.122.167701

    Article  CAS  PubMed  ADS  Google Scholar 

  184. Cheng, Z., Liu, M., Ganapathy, S., et al.: Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020). https://doi.org/10.1016/j.joule.2020.04.002

    Article  CAS  Google Scholar 

  185. Zhu, Y.Z., He, X.F., Mo, Y.F.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). https://doi.org/10.1039/c5ta08574h

    Article  CAS  Google Scholar 

  186. Nolan, A.M., Liu, Y.S., Mo, Y.F.: Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries. ACS Energy Lett. 4, 2444–2451 (2019). https://doi.org/10.1021/acsenergylett.9b01703

    Article  CAS  Google Scholar 

  187. Han, F.D., Zhu, Y.Z., He, X.F., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  188. Zhu, Y.Z., He, X.F., Mo, Y.F.: Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4, 1600517 (2017). https://doi.org/10.1002/advs.201600517

    Article  CAS  Google Scholar 

  189. Hartmann, P., Leichtweiss, T., Busche, M.R., et al.: Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013). https://doi.org/10.1021/jp4051275

    Article  CAS  Google Scholar 

  190. Lewis, J.A., Cortes, F.J., Boebinger, M.G., et al.: Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019). https://doi.org/10.1021/acsenergylett.9b00093

    Article  CAS  Google Scholar 

  191. Cheng, T., Merinov, B.V., Morozov, S., et al.: Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2, 1454–1459 (2017). https://doi.org/10.1021/acsenergylett.7b00319

    Article  CAS  Google Scholar 

  192. Tang, H.M., Deng, Z., Lin, Z.N., et al.: Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2018). https://doi.org/10.1021/acs.chemmater.7b04096

    Article  CAS  Google Scholar 

  193. Li, Q., Yi, T.C., Wang, X.L., et al.: In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 63, 103895 (2019). https://doi.org/10.1016/j.nanoen.2019.103895

    Article  CAS  Google Scholar 

  194. Wang, S., Xu, H., Li, W., et al.: Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J. Am. Chem. Soc. 140, 250–257 (2018). https://doi.org/10.1021/jacs.7b09531

    Article  CAS  PubMed  Google Scholar 

  195. Song, Y.L., Yang, L.Y., Zhao, W.G., et al.: Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 9, 1900671 (2019). https://doi.org/10.1002/aenm.201900671

    Article  CAS  Google Scholar 

  196. Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  197. Liu, H., Cheng, X.B., Huang, J.Q., et al.: Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5, 833–843 (2020). https://doi.org/10.1021/acsenergylett.9b02660

    Article  CAS  Google Scholar 

  198. Ren, Y.Y., Shen, Y., Lin, Y.H., et al.: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015). https://doi.org/10.1016/j.elecom.2015.05.001

    Article  CAS  Google Scholar 

  199. Aguesse, F., Manalastas, W., Buannic, L., et al.: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017). https://doi.org/10.1021/acsami.6b13925

    Article  CAS  PubMed  Google Scholar 

  200. Garcia-Mendez, R., Mizuno, F., Zhang, R.G., et al.: Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta 237, 144–151 (2017). https://doi.org/10.1016/j.electacta.2017.03.200

    Article  CAS  Google Scholar 

  201. Han, F.D., Yue, J., Zhu, X.Y., et al.: Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018). https://doi.org/10.1002/aenm.201703644

    Article  CAS  Google Scholar 

  202. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005). https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  203. Brissot, C., Rosso, M., Chazalviel, J.N., et al.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81(82), 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0

    Article  ADS  Google Scholar 

  204. Yu, S., Siegel, D.J.: Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Interfaces 10, 38151–38158 (2018). https://doi.org/10.1021/acsami.8b17223

    Article  CAS  PubMed  Google Scholar 

  205. Barai, P., Higa, K., Ngo, A.T., et al.: Mechanical stress induced current focusing and fracture in grain boundaries. J. Electrochem. Soc. 166, A1752–A1762 (2019). https://doi.org/10.1149/2.0321910jes

    Article  CAS  Google Scholar 

  206. Tian, H.K., Xu, B., Qi, Y.: Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.098

    Article  CAS  ADS  Google Scholar 

  207. Raj, R., Wolfenstine, J.: Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.037

    Article  CAS  ADS  Google Scholar 

  208. Barai, P., Ngo, A.T., Narayanan, B., et al.: The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes. J. Electrochem. Soc. 167, 100537 (2020). https://doi.org/10.1149/1945-7111/ab9b08

    Article  CAS  ADS  Google Scholar 

  209. Ban, C.W., Choi, G.M.: The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140, 285–292 (2001). https://doi.org/10.1016/S0167-2738(01)00821-9

    Article  CAS  Google Scholar 

  210. David, I.N., Thompson, T., Wolfenstine, J., et al.: Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 98, 1209–1214 (2015). https://doi.org/10.1111/jace.13455

    Article  CAS  Google Scholar 

  211. Im, C., Park, D., Kim, H., et al.: Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries. J. Energy Chem. 27, 1501–1508 (2018). https://doi.org/10.1016/j.jechem.2017.10.006

    Article  Google Scholar 

  212. Hongahally Basappa, R., Ito, T., Morimura, T., et al.: Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J. Power Sources 363, 145–152 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.088

    Article  CAS  ADS  Google Scholar 

  213. Huang, Z.Y., Chen, L.H., Huang, B., et al.: Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases. ACS Appl. Mater. Interfaces 12, 56118–56125 (2020). https://doi.org/10.1021/acsami.0c18674

    Article  CAS  PubMed  Google Scholar 

  214. Polczyk, T., Zając, W., Ziąbka, M., et al.: Mitigation of grain boundary resistance in La2/3−xLi3xTiO3 perovskite as an electrolyte for solid-state Li-ion batteries. J. Mater. Sci. 56, 2435–2450 (2021). https://doi.org/10.1007/s10853-020-05342-7

    Article  CAS  ADS  Google Scholar 

  215. Chung, H., Kang, B.: Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium. Solid State Ionics 263, 125–130 (2014). https://doi.org/10.1016/j.ssi.2014.05.016

    Article  CAS  Google Scholar 

  216. Liu, Z., Li, Y.S., Ji, Y.Z., et al.: Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations. Cell Rep. Phys. Sci. 2, 100294 (2021). https://doi.org/10.1016/j.xcrp.2020.100294

    Article  CAS  Google Scholar 

  217. Monroe, C., Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377–A1384 (2003). https://doi.org/10.1149/1.1606686

    Article  CAS  Google Scholar 

  218. Guyer, J.E., Boettinger, W.J., Warren, J.A., et al.: Phase field modeling of electrochemistry. II. Kinetics. Phys. Rev. E 69, 021604 (2004). https://doi.org/10.1103/physreve.69.021604

    Article  CAS  ADS  Google Scholar 

  219. Guyer, J.E., Boettinger, W.J., Warren, J.A., et al.: Phase field modeling of electrochemistry. I. Equilibrium. Phys. Rev. E 69, 021603 (2004). https://doi.org/10.1103/physreve.69.021603

    Article  CAS  ADS  Google Scholar 

  220. Liang, L.Y., Chen, L.Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 263903 (2014). https://doi.org/10.1063/1.4905341

    Article  CAS  ADS  Google Scholar 

  221. Enrique, R.A., DeWitt, S., Thornton, K.: Morphological stability during electrodeposition. MRS Commun. 7, 658–663 (2017). https://doi.org/10.1557/mrc.2017.38

    Article  CAS  ADS  Google Scholar 

  222. Chen, L., Zhang, H.W., Liang, L.Y., et al.: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055

    Article  CAS  ADS  Google Scholar 

  223. Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301 (2015). https://doi.org/10.1103/physreve.92.011301

    Article  ADS  Google Scholar 

  224. Hu, J.M., Wang, B., Ji, Y.Z., et al.: Phase-field based multiscale modeling of heterogeneous solid electrolytes: applications to nanoporous Li3PS4. ACS Appl. Mater. Interfaces 9, 33341–33350 (2017). https://doi.org/10.1021/acsami.7b11292

    Article  CAS  PubMed  Google Scholar 

  225. Yan, H.H., Bie, Y.H., Cui, X.Y., et al.: A computational investigation of thermal effect on lithium dendrite growth. Energy Convers. Manag. 161, 193–204 (2018). https://doi.org/10.1016/j.enconman.2018.02.002

    Article  CAS  Google Scholar 

  226. Yurkiv, V., Foroozan, T., Ramasubramanian, A., et al.: Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior. Electrochim. Acta 265, 609–619 (2018). https://doi.org/10.1016/j.electacta.2018.01.212

    Article  CAS  Google Scholar 

  227. Yurkiv, V., Foroozan, T., Ramasubramanian, A., et al.: The influence of stress field on Li electrodeposition in Li-metal battery. MRS Commun. 8, 1285–1291 (2018). https://doi.org/10.1557/mrc.2018.146

    Article  CAS  Google Scholar 

  228. Hong, Z.J., Viswanathan, V.: Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett. 4, 1012–1019 (2019). https://doi.org/10.1021/acsenergylett.9b00433

    Article  CAS  Google Scholar 

  229. Mu, W., Liu, X.L., Wen, Z., et al.: Numerical simulation of the factors affecting the growth of lithium dendrites. J. Energy Storage 26, 100921 (2019). https://doi.org/10.1016/j.est.2019.100921

    Article  Google Scholar 

  230. Zhang, R., Shen, X., Cheng, X.B., et al.: The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029

    Article  Google Scholar 

  231. Zhang, X., Wang, Q.J., Harrison, K.L., et al.: Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019). https://doi.org/10.1149/2.0701914jes

    Article  CAS  Google Scholar 

  232. Gao, L.T., Guo, Z.S.: Phase-field simulation of Li dendrites with multiple parameters influence. Comput. Mater. Sci. 183, 109919 (2020). https://doi.org/10.1016/j.commatsci.2020.109919

    Article  CAS  Google Scholar 

  233. Tian, H.K., Liu, Z., Ji, Y.Z., et al.: Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967

    Article  CAS  Google Scholar 

  234. Ren, Y., Zhou, Y., Cao, Y.: Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling. J. Phys. Chem. C 124, 12195–12204 (2020). https://doi.org/10.1021/acs.jpcc.0c01116

    Article  CAS  Google Scholar 

  235. Wang, Q., Zhang, G., Li, Y.J., et al.: Application of phase-field method in rechargeable batteries. NPJ Comput. Mater. 6, 176 (2020). https://doi.org/10.1038/s41524-020-00445-w

    Article  CAS  ADS  Google Scholar 

  236. Xiao, Y.H., Miara, L.J., Wang, Y., et al.: Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019). https://doi.org/10.1016/j.joule.2019.02.006

    Article  CAS  Google Scholar 

  237. Wang, C.H., Li, X., Zhao, Y., et al.: Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries. Small Methods 3, 1900261 (2019). https://doi.org/10.1002/smtd.201900261

    Article  CAS  Google Scholar 

  238. Sakuda, A., Kitaura, H., Hayashi, A., et al.: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte. J. Power Sources 189, 527–530 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.129

    Article  CAS  ADS  Google Scholar 

  239. Ito, S., Fujiki, S., Yamada, T., et al.: A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.005

    Article  CAS  ADS  Google Scholar 

  240. Liu, G.Z., Lu, Y., Wan, H.L., et al.: Passivation of the cathode-electrolyte interface for 5 V-class all-solid-state batteries. ACS Appl. Mater. Interfaces 12, 28083–28090 (2020). https://doi.org/10.1021/acsami.0c03610

    Article  CAS  PubMed  Google Scholar 

  241. Okada, K., Machida, N., Naito, M., et al.: Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255, 120–127 (2014). https://doi.org/10.1016/j.ssi.2013.12.019

    Article  CAS  Google Scholar 

  242. Ohta, N., Takada, K., Zhang, L., et al.: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006). https://doi.org/10.1002/adma.200502604

    Article  CAS  Google Scholar 

  243. Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179, 1333–1337 (2008). https://doi.org/10.1016/j.ssi.2008.02.017

    Article  CAS  Google Scholar 

  244. Zhang, Y.Q., Tian, Y.S., Xiao, Y.H., et al.: Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: a combined experimental and computational study. Adv. Energy Mater. 10, 1903778 (2020). https://doi.org/10.1002/aenm.201903778

    Article  CAS  Google Scholar 

  245. Jung, S.H., Oh, K., Nam, Y.J., et al.: Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018). https://doi.org/10.1021/acs.chemmater.8b03321

    Article  CAS  Google Scholar 

  246. Han, F.D., Yue, J., Chen, C., et al.: Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018). https://doi.org/10.1016/j.joule.2018.02.007

    Article  CAS  Google Scholar 

  247. Zhang, W.B., Weber, D.A., Weigand, H., et al.: Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017). https://doi.org/10.1021/acsami.7b01137

    Article  CAS  PubMed  Google Scholar 

  248. Cao, D., Zhang, Y., Nolan, A.M., et al.: Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020). https://doi.org/10.1021/acs.nanolett.9b02678

    Article  CAS  PubMed  ADS  Google Scholar 

  249. Zhang, N., Li, Y., Luo, Y.D., et al.: Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method. Ionics 27, 1465–1475 (2021). https://doi.org/10.1007/s11581-021-03946-w

    Article  CAS  Google Scholar 

  250. Wang, C.W., Gong, Y.H., Liu, B.Y., et al.: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017). https://doi.org/10.1021/acs.nanolett.6b04695

    Article  CAS  PubMed  ADS  Google Scholar 

  251. Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  ADS  Google Scholar 

  252. Shao, Y.J., Wang, H.C., Gong, Z.L., et al.: Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 3, 1212–1218 (2018). https://doi.org/10.1021/acsenergylett.8b00453

    Article  CAS  ADS  Google Scholar 

  253. Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016). https://doi.org/10.1021/jacs.6b06777

    Article  CAS  PubMed  Google Scholar 

  254. Lu, Y., Huang, X., Ruan, Y.D., et al.: An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J. Mater. Chem. A 6, 18853–18858 (2018). https://doi.org/10.1039/c8ta07241h

    Article  CAS  Google Scholar 

  255. Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017). https://doi.org/10.1002/adma.201606042

    Article  CAS  Google Scholar 

  256. Feng, W.L., Dong, X.L., Li, P.L., et al.: Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J. Power Sources 419, 91–98 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.066

    Article  CAS  ADS  Google Scholar 

  257. Zhao, N., Fang, R., He, M.H., et al.: Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 37, 473–479 (2018). https://doi.org/10.1007/s12598-018-1057-3

    Article  CAS  Google Scholar 

  258. Fu, K., Gong, Y.H., Fu, Z.Z., et al.: Transient behavior of the metal interface in lithium metal-garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017). https://doi.org/10.1002/anie.201708637

    Article  CAS  Google Scholar 

  259. Zhu, J.X., Li, X.L., Wu, C.W., et al.: A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chem. Int. Ed. 60, 3781–3790 (2021). https://doi.org/10.1002/anie.202014265

    Article  CAS  Google Scholar 

  260. Wu, J.F., Pu, B.W., Wang, D., et al.: In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 11, 898–905 (2019). https://doi.org/10.1021/acsami.8b18356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (2020B090919005), the National Natural Science Foundation of China (21975274), Shandong Provincial Natural Science Foundation (ZR2020KE032), the Youth Innovation Promotion Association of CAS (2021210), the Shandong Energy Institute (SEI) (SEI I202117), and the Taishan Scholars of Shandong Province (ts201511063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Cui.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Ma, J., Dong, S. et al. Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochem. Energy Rev. 6, 4 (2023). https://doi.org/10.1007/s41918-022-00143-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00143-9

Keywords

Navigation