Abstract
All-solid-state batteries (ASSBs) with solid-state electrolytes and lithium-metal anodes have been regarded as a promising battery technology to alleviate range anxiety and address safety issues due to their high energy density and high safety. Understanding the fundamental physical and chemical science of ASSBs is of great importance to battery development. To confirm and supplement experimental study, theoretical computation provides a powerful approach to probe the thermodynamic and kinetic behavior of battery materials and their interfaces, resulting in the design of better batteries. In this review, we assess recent progress in the theoretical computations of solid electrolytes and the interfaces between the electrodes and electrolytes of ASSBs. We review the role of theoretical computation in studying the following: ion transport mechanisms, grain boundaries, phase stability, chemical and electrochemical stability, mechanical properties, design strategies and high-throughput screening of inorganic solid electrolytes, mechanical stability, space-charge layers, interface buffer layers and dendrite growth at electrode/electrolyte interfaces. Finally, we provide perspectives on the shortcomings, challenges and opportunities of theoretical computation in regard to ASSBs.
Graphical abstract
Similar content being viewed by others
References
Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
Ren, G.Z., Ma, G.Q., Cong, N.: Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003
Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
Scrosati, B., Hassoun, J., Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). https://doi.org/10.1039/C1EE01388B
Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation: approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012). https://doi.org/10.1039/C2EE21892E
Goodenough, J.B., Kim, Y.: Challenges for rechargeable batteries. J. Power Sources 196, 6688–6694 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.074
Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
Zhang, Y., Zuo, T.T., Popovic, J., et al.: Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
Hatzell, K.B., Chen, X.C., Cobb, C.L., et al.: Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020). https://doi.org/10.1021/acsenergylett.9b02668
Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
Fan, L., Wei, S.Y., Li, S.Y., et al.: Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018). https://doi.org/10.1002/aenm.201702657
Gao, Z.H., Sun, H.B., Fu, L., et al.: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018). https://doi.org/10.1002/adma.201705702
Zhang, Z.Z., Shao, Y.J., Lotsch, B., et al.: New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f
Lopez, J., Mackanic, D.G., Cui, Y., et al.: Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6
Wang, C.W., Fu, K., Kammampata, S.P., et al.: Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
Wang, Y., Richards, W.D., Ong, S.P., et al.: Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). https://doi.org/10.1038/nmat4369
Yu, X.W., Manthiram, A.: Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Accounts Chem. Res. 50, 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460
Liang, L.W., Sun, X., Zhang, J.Y., et al.: Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Mater. Horiz. 6, 871–910 (2019). https://doi.org/10.1039/c8mh01593g
Banerjee, A., Wang, X., Fang, C., et al.: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
Chen, R., Li, Q., Yu, X., et al.: Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
Gurung, A., Pokharel, J., Baniya, A., et al.: A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain. Energy Fuels 3, 3279–3309 (2019). https://doi.org/10.1039/c9se00549h
Pervez, S.A., Cambaz, M.A., Thangadurai, V., et al.: Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl. Mater. Interfaces 11, 22029–22050 (2019). https://doi.org/10.1021/acsami.9b02675
Nolan, A.M., Zhu, Y.Z., He, X.F., et al.: Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018). https://doi.org/10.1016/j.joule.2018.08.017
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, b864 (1964). https://doi.org/10.1103/physrev.136.b864
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, a1133 (1965). https://doi.org/10.1103/physrev.140.a1133
Jain, A., Ong, S.P., Hautier, G., et al.: Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323
Curtarolo, S., Setyawan, W., Hart, G.L.W., et al.: AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012). https://doi.org/10.1016/j.commatsci.2012.02.005
Kirklin, S., Saal, J.E., Meredig, B., et al.: The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10
Chateigner, D., Chen, X., Ciriotti, M., et al: Crystallography Open Database. http://www.crystallography.net/cod/. Accessed 4 Dec 2021
Barthelmy, D.: Mineralogy Database. http://webmineral.com/. Accessed 4 Dec 2021
Berman, H.M., Westbrook, J., Feng, Z., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235
FIZ Karlsruhe GmbH. Inorganic Crystal Structure Database. https://icsd.fiz-karlsruhe.de/search/. Accessed 4 Dec 2021
The Cambridge Crystallographic Data Centre. The Cambridge Structural Database. http://www.ccdc.cam.ac.uk/products/csd/. Accessed 4 Dec 2021
Crystal Impact GbR. Crystal Impact. http://www.crystalimpact.com/pcd/. Accessed 4 Dec 2021
Kim, K.J., Balaish, M., Wadaguchi, M., et al.: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021). https://doi.org/10.1002/aenm.202002689
Lou, S.F., Zhang, F., Fu, C.K., et al.: Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33, 2000721 (2021). https://doi.org/10.1002/adma.202000721
Wu, J.H., Shen, L., Zhang, Z.H., et al.: All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
Xi, G., Xiao, M., Wang, S.J., et al.: Polymer-based solid electrolytes: material selection, design, and application. Adv. Funct. Mater. 31, 2007598 (2021). https://doi.org/10.1002/adfm.202007598
Xu, X.L., Hui, K.S., Hui, K.N., et al.: Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater. Horiz. 7, 1246–1278 (2020). https://doi.org/10.1039/c9mh01701a
Randau, S., Weber, D.A., Kötz, O., et al.: Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
Zhao, Q., Stalin, S., Zhao, C.Z., et al.: Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
Famprikis, T., Canepa, P., Dawson, J.A., et al.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
Shi, S.Q., Gao, J., Liu, Y., et al.: Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016). https://doi.org/10.1088/1674-1056/25/1/018212
Urban, A., Seo, D.H., Ceder, G.: Computational understanding of Li-ion batteries. NPJ Comput. Mater. 2, 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2
He, Q., Yu, B., Li, Z.H., et al.: Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056
Islam, M.S., Fisher, C.A.: Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014). https://doi.org/10.1039/c3cs60199d
Deng, Z., Mo, Y.F., Ong, S.P.: Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater. 8, e254 (2016). https://doi.org/10.1038/am.2016.7
Xu, H.J., Yu, Y.R., Wang, Z., et al.: First principle material genome approach for all solid-state batteries. Energy Environ. Mater. 2, 234–250 (2019). https://doi.org/10.1002/eem2.12053
Leung, K.: DFT modelling of explicit solid-solid interfaces in batteries: methods and challenges. Phys. Chem. Chem. Phys. 22, 10412–10425 (2020). https://doi.org/10.1039/c9cp06485k
Mehrer, H.: In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer, Berlin (2007)
He, X.F., Zhu, Y.Z., Epstein, A., et al.: Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4, 18 (2018). https://doi.org/10.1038/s41524-018-0074-y
Wang, S., Bai, Q., Nolan, A.M., et al.: Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019). https://doi.org/10.1002/anie.201901938
Huang, Y., Jiang, Y., Zhou, Y.X., et al.: One-step low-temperature synthesis of Li0.33La0.55TiO3 solid electrolytes by tape casting method. Ionics 27, 145–155 (2021). https://doi.org/10.1007/s11581-020-03823-y
Chen, C.H., Du, J.C.: Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 98, 534–542 (2015). https://doi.org/10.1111/jace.13307
Safanama, D., Adams, S.: High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes. J. Power Sources 340, 294–301 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.076
Kang, J., Chung, H., Doh, C., et al.: Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources 293, 11–16 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.060
Kuo, P.H., Du, J.C.: Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2−x(PO4)3 solid-state electrolytes. J. Phys. Chem. C 123, 27385–27398 (2019). https://doi.org/10.1021/acs.jpcc.9b08390
Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144
Zhao, Y., Daemen, L.L.: Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012). https://doi.org/10.1021/ja305709z
Zhang, Y., Zhao, Y.S., Chen, C.F.: Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B 87, 134303 (2013). https://doi.org/10.1103/physrevb.87.134303
Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
Mo, Y.F., Ong, S.P., Ceder, G.: First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y
Chu, I.H., Nguyen, H., Hy, S., et al.: Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl Mater Interfaces 8, 7843–7853 (2016). https://doi.org/10.1021/acsami.6b00833
Asano, T., Sakai, A., Ouchi, S., et al.: Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). https://doi.org/10.1002/adma.201803075
He, X.F., Zhu, Y.Z., Mo, Y.F.: Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017). https://doi.org/10.1038/ncomms15893
Jalem, R., Yamamoto, Y., Shiiba, H., et al.: Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013). https://doi.org/10.1021/cm303542x
de Klerk, N.J.J., van der Maas, E., Wagemaker, M.: Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in β-Li3PS4 as an example. ACS Appl. Energy Mater. 1, 3230–3242 (2018). https://doi.org/10.1021/acsaem.8b00457
Deng, Z., Zhu, Z.Y., Chu, I.H., et al.: Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017). https://doi.org/10.1021/acs.chemmater.6b02648
Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett 67, 2339–2342 (1991). https://doi.org/10.1103/physrevlett.67.2339
Lee, E.C., Chang, K.J.: Possiblep-type doping with group-I elements in ZnO. Phys. Rev. B 70, 115210 (2004). https://doi.org/10.1103/physrevb.70.115210
Shi, S., Lu, P., Liu, Z., et al.: Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). https://doi.org/10.1021/ja305366r
Shi, S.Q., Qi, Y., Li, H., et al.: Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J. Phys. Chem. C 117, 8579–8593 (2013). https://doi.org/10.1021/jp310591u
Yu, S., Siegel, D.J.: Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017). https://doi.org/10.1021/acs.chemmater.7b02805
Dawson, J.A., Canepa, P., Famprikis, T., et al.: Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140, 362–368 (2018). https://doi.org/10.1021/jacs.7b10593
Chen, B.B., Xu, C.Q., Zhou, J.Q.: Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes. J. Electrochem. Soc. 165, A3946–A3951 (2018). https://doi.org/10.1149/2.0831816jes
Dawson, J.A., Canepa, P., Clarke, M.J., et al.: Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes. Chem. Mater. 31, 5296–5304 (2019). https://doi.org/10.1021/acs.chemmater.9b01794
Sun, W.H., Dacek, S.T., Ong, S.P., et al.: The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016). https://doi.org/10.1126/sciadv.1600225
Ong, S.P., Mo, Y.F., Richards, W.D., et al.: Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013). https://doi.org/10.1039/c2ee23355j
Miara, L.J., Ong, S.P., Mo, Y.F., et al.: Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x−y(La3−xRbx)(Zr2−yTay)O12 (0 \(\leqslant\) x \(\leqslant\) 0.375, 0 \(\leqslant\) y \(\leqslant\) 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 3048–3055 (2013). https://doi.org/10.1021/cm401232r
Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
Tian, Y.S., Zeng, G.B., Rutt, A., et al.: Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
Zhu, Y., He, X., Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
Xiao, Y.H., Wang, Y., Bo, S.H., et al.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5
Tian, Y.S., Shi, T., Richards, W.D., et al.: Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017). https://doi.org/10.1039/c7ee00534b
Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0
Deng, Z., Wang, Z.B., Chu, I.H., et al.: Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2015). https://doi.org/10.1149/2.0061602jes
Cheng, E.J., Sharafi, A., Sakamoto, J.: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018
Nagao, M., Hayashi, A., Tatsumisago, M., et al.: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600 (2013). https://doi.org/10.1039/c3cp51059j
Han, F.D., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
Tsai, C.L., Roddatis, V., Chandran, C.V., et al.: Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016). https://doi.org/10.1021/acsami.6b00831
Kraft, M.A., Culver, S.P., Calderon, M., et al.: Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 139, 10909–10918 (2017). https://doi.org/10.1021/jacs.7b06327
Culver, S.P., Koerver, R., Krauskopf, T., et al.: Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries. Chem. Mater. 30, 4179–4192 (2018). https://doi.org/10.1021/acs.chemmater.8b01293
Krauskopf, T., Pompe, C., Kraft, M.A., et al.: Influence of lattice dynamics on Na+ transport in the solid electrolyte Na3PS4−xSex. Chem. Mater. 29, 8859–8869 (2017). https://doi.org/10.1021/acs.chemmater.7b03474
Muy, S., Bachman, J.C., Giordano, L., et al.: Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018). https://doi.org/10.1039/C7EE03364H
Deng, Y., Eames, C., Chotard, J.N., et al.: Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015). https://doi.org/10.1021/jacs.5b04444
Deng, Y., Eames, C., Fleutot, B., et al.: Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl Mater Interfaces 9, 7050–7058 (2017). https://doi.org/10.1021/acsami.6b14402
Thangadurai, V., Weppner, W.: Li6ALa2Nb2O12 (A=Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure. J. Am. Ceram. Soc. 88, 411–418 (2005). https://doi.org/10.1111/j.1551-2916.2005.00060.x
Geiger, C.A., Alekseev, E., Lazic, B., et al.: Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem 50, 1089–1097 (2011). https://doi.org/10.1021/ic101914e
Kozinsky, B., Akhade, S.A., Hirel, P., et al.: Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes. Phys Rev Lett 116, 055901 (2016). https://doi.org/10.1103/physrevlett.116.055901
Rettenwander, D., Blaha, P., Laskowski, R., et al.: DFT study of the role of Al3+ in the fast ion-conductor Li7−3xAl3+xLa3Zr2O12 garnet. Chem. Mater. 26, 2617–2623 (2014). https://doi.org/10.1021/cm5000999
Bernstein, N., Johannes, M.D., Hoang, K.: Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109, 205702 (2012). https://doi.org/10.1103/physrevlett.109.205702
Xie, H., Alonso, J.A., Li, Y.T., et al.: Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23, 3587–3589 (2011). https://doi.org/10.1021/cm201671k
Zeier, W.G.: Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans. 43, 16133–16138 (2014). https://doi.org/10.1039/c4dt02162b
Mukhopadhyay, S., Thompson, T., Sakamoto, J., et al.: Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 27, 3658–3665 (2015). https://doi.org/10.1021/acs.chemmater.5b00362
Morgan, B.J.: Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study. R Soc. Open Sci. 4, 170824 (2017). https://doi.org/10.1098/rsos.170824
Squires, A.G., Scanlon, D.O., Morgan, B.J.: Native defects and their doping response in the lithium solid electrolyte Li7La3Zr2O12. Chem. Mater. 32, 1876–1886 (2020). https://doi.org/10.1021/acs.chemmater.9b04319
Richards, W.D., Wang, Y., Miara, L.J., et al.: Design of Li1+2xZn1–xPS4, a new lithium ion conductor. Energy Environ. Sci. 9, 3272–3278 (2016). https://doi.org/10.1039/c6ee02094a
Kaup, K., Lalère, F., Huq, A., et al.: Correlation of structure and fast ion conductivity in the solid solution series Li1+2xZn1−xPS4. Chem. Mater. 30, 592–596 (2018). https://doi.org/10.1021/acs.chemmater.7b05108
Ngai, K.L.: Meyer-Neldel rule and anti Meyer-Neldel rule of ionic conductivity: conclusions from the coupling model. Solid State Ionics 105, 231–235 (1998). https://doi.org/10.1016/S0167-2738(97)00469-4
de di Stefano, D., Miglio, A., Robeyns, K., et al.: Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019). https://doi.org/10.1016/j.chempr.2019.07.001
Krauskopf, T., Culver, S.P., Zeier, W.G.: Bottleneck of diffusion and inductive effects in Li10Ge1−xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018). https://doi.org/10.1021/acs.chemmater.8b00266
Xu, Z.M., Bo, S.H., Zhu, H.: LiCrS2 and LiMnS2 cathodes with extraordinary mixed electron-ion conductivities and favorable interfacial compatibilities with sulfide electrolyte. ACS Appl. Mater. Interfaces 10, 36941–36953 (2018). https://doi.org/10.1021/acsami.8b12026
Xu, Z.M., Chen, X., Chen, R.H., et al.: Anion charge and lattice volume dependent lithium ion migration in compounds with fcc anion sublattices. NPJ Comput. Mater. 6, 47 (2020). https://doi.org/10.1038/s41524-020-0324-7
Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894 (2002). https://doi.org/10.1038/nrd941
Hautier, G., Jain, A., Chen, H.L., et al.: Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 21, 17147 (2011). https://doi.org/10.1039/c1jm12216a
Hautier, G., Jain, A., Ong, S.P., et al.: Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011). https://doi.org/10.1021/cm200949v
Avdeev, M., Sale, M., Adams, S., et al.: Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 225, 43–46 (2012). https://doi.org/10.1016/j.ssi.2012.02.014
Cheng, L., Assary, R.S., Qu, X., et al.: Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015). https://doi.org/10.1021/jz502319n
Xiao, R.J., Li, H., Chen, L.Q.: High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015). https://doi.org/10.1038/srep14227
Aykol, M., Kim, S., Hegde, V.I., et al.: High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016). https://doi.org/10.1038/ncomms13779
Liu, P., Guo, B.K., An, T.L., et al.: High throughput materials research and development for lithium ion batteries. J. Materiomics 3, 202–208 (2017). https://doi.org/10.1016/j.jmat.2017.07.004
Chen, D.J., Jie, J.S., Weng, M.Y., et al.: High throughput identification of Li-ion diffusion pathways in typical solid state electrolytes and electrode materials by BV-Ewald method. J. Mater. Chem. A 7, 1300–1306 (2019). https://doi.org/10.1039/c8ta09345h
Fitzhugh, W., Wu, F., Ye, L.H., et al.: A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors. Adv. Energy Mater. 9, 1900807 (2019). https://doi.org/10.1002/aenm.201900807
Liu, B., Wang, D., Avdeev, M., et al.: High-throughput computational screening of Li-containing fluorides for battery cathode coatings. ACS Sustain. Chem. Eng. 8, 948–957 (2020). https://doi.org/10.1021/acssuschemeng.9b05557
Muy, S., Voss, J., Schlem, R., et al.: High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019). https://doi.org/10.1016/j.isci.2019.05.036
Kahle, L., Marcolongo, A., Marzari, N.: High-throughput computational screening for solid-state Li-ion conductors. Energy Environ. Sci. 13, 928–948 (2020). https://doi.org/10.1039/c9ee02457c
Sendek, A.D., Cubuk, E.D., Antoniuk, E.R., et al.: Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater. 31, 342–352 (2019). https://doi.org/10.1021/acs.chemmater.8b03272
Liu, Y., Zhao, T.L., Ju, W.W., et al.: Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017). https://doi.org/10.1016/j.jmat.2017.08.002
Lu, W.C., Xiao, R.J., Yang, J., et al.: Data mining-aided materials discovery and optimization. J. Materiomics 3, 191–201 (2017). https://doi.org/10.1016/j.jmat.2017.08.003
Zhang, W.W., Sun, P.K., Sun, S.R.: A precise theoretical method for high-throughput screening of novel organic electrode materials for Li-ion batteries. J. Materiomics 3, 184–190 (2017). https://doi.org/10.1016/j.jmat.2016.11.009
Ahmad, Z., Xie, T., Maheshwari, C., et al.: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996–1006 (2018). https://doi.org/10.1021/acscentsci.8b00229
Duy, T.V.T., Ohwaki, T., Ikeshoji, T., et al.: High-throughput computational approach to Li/vacancy configurations and structural evolution during delithiation: the case of Li2MnO3 surface. J. Phys. Chem. C 122, 5496–5508 (2018). https://doi.org/10.1021/acs.jpcc.7b12275
Ong, S.P.: Accelerating materials science with high-throughput computations and machine learning. Comput. Mater. Sci. 161, 143–150 (2019). https://doi.org/10.1016/j.commatsci.2019.01.013
Chen, C., Zuo, Y.X., Ye, W.K., et al.: A critical review of machine learning of energy materials. Adv. Energy Mater. 10, 1903242 (2020). https://doi.org/10.1002/aenm.201903242
Gao, J., Chu, G., He, M., et al.: Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci. China Phys. Mech. Astron. 57, 1526–1536 (2014). https://doi.org/10.1007/s11433-014-5511-4
Zhang, Y., He, X., Chen, Z., et al.: Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019). https://doi.org/10.1038/s41467-019-13214-1
Morgan, D., Ceder, G., Curtarolo, S.: High-throughput and data mining with ab initio methods. Meas. Sci. Technol. 16, 296–301 (2005). https://doi.org/10.1088/0957-0233/16/1/039
Ong, S.P., Richards, W.D., Jain, A., et al.: Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). https://doi.org/10.1016/j.commatsci.2012.10.028
Jain, A., Ong, S.P., Chen, W., et al.: FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exper. 27, 5037–5059 (2015). https://doi.org/10.1002/cpe.3505
Pizzi, G., Cepellotti, A., Sabatini, R., et al.: AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016). https://doi.org/10.1016/j.commatsci.2015.09.013
Ghiringhelli, L.M., Carbogno, C., Levchenko, S., et al.: Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. NPJ Comput. Mater. 3, 46 (2017). https://doi.org/10.1038/s41524-017-0048-5
NOMAD Laboratory. NOMAD Repository and Archive. http://nomad-repository.eu/. Accessed 4 Dec 2021
National Institute for Material Science, Japan. Computational Electronic Structure Database (CompES-X) http://compes-x.nims.go.jp/index en.html. Accessed 4 Dec 2021
Computer Network Information Center, Chinese Academy of Sciences. MatCloud. http://matcloud.cnic.cn/index.html. Accessed 4 Dec 2021
Alberi, K., Nardelli, M.B., Zakutayev, A., et al.: The 2019 materials by design roadmap. J. Phys. D: Appl. Phys. 52, 013001 (2019). https://doi.org/10.1088/1361-6463/aad926
Wang, X.L., Xiao, R.J., Li, H., et al.: Discovery and design of lithium battery materials via high-throughput modeling. Chin. Phys. B 27, 128801 (2018). https://doi.org/10.1088/1674-1056/27/12/128801
He, B., Chi, S.T., Ye, A.J., et al.: High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci. Data 7, 151 (2020). https://doi.org/10.1038/s41597-020-0474-y
Zhang, L.W., He, B., Zhao, Q., et al.: A database of ionic transport characteristics for over 29 000 inorganic compounds. Adv. Funct. Mater. 30, 2003087 (2020). https://doi.org/10.1002/adfm.202003087
Katcho, N.A., Carrete, J., Reynaud, M., et al.: An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning. J. Appl. Crystallogr. 52, 148–157 (2019). https://doi.org/10.1107/S1600576718018484
Sendek, A.D., Yang, Q., Cubuk, E.D., et al.: Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017). https://doi.org/10.1039/c6ee02697d
Li, X., Liang, J., Chen, N., et al.: Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019). https://doi.org/10.1002/anie.201909805
Li, X.N., Liang, J.W., Luo, J., et al.: Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). https://doi.org/10.1039/c9ee02311a
Kahle, L., Cheng, X., Binninger, T., et al.: The solid-state Li-ion conductor Li7TaO6: a combined computational and experimental study. Solid State Ionics 347, 115226 (2020). https://doi.org/10.1016/j.ssi.2020.115226
Brown, I.D.: Recent developments in the methods and applications of the bond valence model. Chem. Rev. 109, 6858–6919 (2009). https://doi.org/10.1021/cr900053k
Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). https://doi.org/10.1016/j.surfrep.2006.04.001
Koerver, R., Aygün, I., Leichtweiß, T., et al.: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931
Koerver, R., Zhang, W.B., de Biasi, L., et al.: Chemo-mechanical expansion of lithium electrode materials: on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018). https://doi.org/10.1039/c8ee00907d
Shi, T., Zhang, Y.Q., Tu, Q.S., et al.: Characterization of mechanical degradation in an all-solid-state battery cathode. J. Mater. Chem. A 8, 17399–17404 (2020). https://doi.org/10.1039/d0ta06985j
Tian, H.K., Qi, Y.: Simulation of the effect of contact area loss in all-solid-state Li-ion batteries. J. Electrochem. Soc. 164, E3512–E3521 (2017). https://doi.org/10.1149/2.0481711jes
Bucci, G., Talamini, B., Renuka Balakrishna, A., et al.: Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys. Rev. Mater. 2, 105407 (2018). https://doi.org/10.1103/physrevmaterials.2.105407
Yamamoto, M., Takahashi, M., Terauchi, Y., et al.: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery. J. Ceram. Soc. Japan 125, 391–395 (2017). https://doi.org/10.2109/jcersj2.16321
Choi, S., Jeon, M., Ahn, J., et al.: Quantitative analysis of microstructures and reaction interfaces on composite cathodes in all-solid-state batteries using a three-dimensional reconstruction technique. ACS Appl. Mater. Interfaces 10, 23740–23747 (2018). https://doi.org/10.1021/acsami.8b04204
Wang, M.J., Choudhury, R., Sakamoto, J.: Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019). https://doi.org/10.1016/j.joule.2019.06.017
Krauskopf, T., Mogwitz, B., Rosenbach, C., et al.: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019). https://doi.org/10.1002/aenm.201902568
Lewis, J.A., Cortes, F.J.Q., Liu, Y., et al.: Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2
Sharafi, A., Meyer, H.M., Nanda, J., et al.: Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.053
Sharafi, A., Yu, S., Naguib, M., et al.: Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017). https://doi.org/10.1039/c7ta03162a
Gao, J., Guo, X.Y., Li, Y.T., et al.: The ab initio calculations on the areal specific resistance of Li-metal/Li7La3Zr2O12 interphase. Adv. Theory Simul. 2, 1900028 (2019). https://doi.org/10.1002/adts.201900028
Zheng, H.P., Wu, S.P., Tian, R., et al.: Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 30, 1906189 (2020). https://doi.org/10.1002/adfm.201906189
Haruyama, J., Sodeyama, K., Han, L.Y., et al.: Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014). https://doi.org/10.1021/cm5016959
Gao, B., Jalem, R., Ma, Y.M., et al.: Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem. Mater. 32, 85–96 (2020). https://doi.org/10.1021/acs.chemmater.9b02311
Bunde, D.: Roman: dispersed ionic conductors and percolation theory. Phys. Rev. Lett. 55, 5–8 (1985). https://doi.org/10.1103/PhysRevLett.55.5
Morgan, B.J., Madden, P.A.: Effects of lattice polarity on interfacial space charges and defect disorder in ionically conducting AgI heterostructures. Phys. Rev. Lett. 107, 206102 (2011). https://doi.org/10.1103/PhysRevLett.107.206102
Stegmaier, S., Voss, J., Reuter, K., et al.: Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem. Mater. 29, 4330–4340 (2017). https://doi.org/10.1021/acs.chemmater.7b00659
Fu, L.J., Chen, C.C., Samuelis, D., et al.: Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys. Rev. Lett. 112, 208301 (2014). https://doi.org/10.1103/physrevlett.112.208301
de Klerk, N.J.J., Wagemaker, M.: Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018). https://doi.org/10.1021/acsaem.8b01141
Zhang, Q., Pan, J., Lu, P., et al.: Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
Kasamatsu, S., Tada, T., Watanabe, S.: Parallel-sheets model analysis of space charge layer formation at metal/ionic conductor interfaces. Solid State Ionics 226, 62–70 (2012). https://doi.org/10.1016/j.ssi.2012.08.009
Landstorfer, M., Funken, S., Jacob, T.: An advanced model framework for solid electrolyte intercalation batteries. Phys. Chem. Chem. Phys. 13, 12817–12825 (2011). https://doi.org/10.1039/c0cp02473b
Braun, S., Yada, C., Latz, A.: Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte. J. Phys. Chem. C 119, 22281–22288 (2015). https://doi.org/10.1021/acs.jpcc.5b02679
Swift, M.W., Qi, Y.: First-principles prediction of potentials and space-charge layers in all-solid-state batteries. Phys. Rev. Lett. 122, 167701 (2019). https://doi.org/10.1103/physrevlett.122.167701
Cheng, Z., Liu, M., Ganapathy, S., et al.: Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020). https://doi.org/10.1016/j.joule.2020.04.002
Zhu, Y.Z., He, X.F., Mo, Y.F.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). https://doi.org/10.1039/c5ta08574h
Nolan, A.M., Liu, Y.S., Mo, Y.F.: Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries. ACS Energy Lett. 4, 2444–2451 (2019). https://doi.org/10.1021/acsenergylett.9b01703
Han, F.D., Zhu, Y.Z., He, X.F., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590
Zhu, Y.Z., He, X.F., Mo, Y.F.: Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4, 1600517 (2017). https://doi.org/10.1002/advs.201600517
Hartmann, P., Leichtweiss, T., Busche, M.R., et al.: Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013). https://doi.org/10.1021/jp4051275
Lewis, J.A., Cortes, F.J., Boebinger, M.G., et al.: Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019). https://doi.org/10.1021/acsenergylett.9b00093
Cheng, T., Merinov, B.V., Morozov, S., et al.: Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2, 1454–1459 (2017). https://doi.org/10.1021/acsenergylett.7b00319
Tang, H.M., Deng, Z., Lin, Z.N., et al.: Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2018). https://doi.org/10.1021/acs.chemmater.7b04096
Li, Q., Yi, T.C., Wang, X.L., et al.: In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 63, 103895 (2019). https://doi.org/10.1016/j.nanoen.2019.103895
Wang, S., Xu, H., Li, W., et al.: Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J. Am. Chem. Soc. 140, 250–257 (2018). https://doi.org/10.1021/jacs.7b09531
Song, Y.L., Yang, L.Y., Zhao, W.G., et al.: Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 9, 1900671 (2019). https://doi.org/10.1002/aenm.201900671
Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003
Liu, H., Cheng, X.B., Huang, J.Q., et al.: Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5, 833–843 (2020). https://doi.org/10.1021/acsenergylett.9b02660
Ren, Y.Y., Shen, Y., Lin, Y.H., et al.: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015). https://doi.org/10.1016/j.elecom.2015.05.001
Aguesse, F., Manalastas, W., Buannic, L., et al.: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017). https://doi.org/10.1021/acsami.6b13925
Garcia-Mendez, R., Mizuno, F., Zhang, R.G., et al.: Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta 237, 144–151 (2017). https://doi.org/10.1016/j.electacta.2017.03.200
Han, F.D., Yue, J., Zhu, X.Y., et al.: Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018). https://doi.org/10.1002/aenm.201703644
Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005). https://doi.org/10.1149/1.1850854
Brissot, C., Rosso, M., Chazalviel, J.N., et al.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81(82), 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0
Yu, S., Siegel, D.J.: Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Interfaces 10, 38151–38158 (2018). https://doi.org/10.1021/acsami.8b17223
Barai, P., Higa, K., Ngo, A.T., et al.: Mechanical stress induced current focusing and fracture in grain boundaries. J. Electrochem. Soc. 166, A1752–A1762 (2019). https://doi.org/10.1149/2.0321910jes
Tian, H.K., Xu, B., Qi, Y.: Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.098
Raj, R., Wolfenstine, J.: Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.037
Barai, P., Ngo, A.T., Narayanan, B., et al.: The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes. J. Electrochem. Soc. 167, 100537 (2020). https://doi.org/10.1149/1945-7111/ab9b08
Ban, C.W., Choi, G.M.: The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140, 285–292 (2001). https://doi.org/10.1016/S0167-2738(01)00821-9
David, I.N., Thompson, T., Wolfenstine, J., et al.: Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 98, 1209–1214 (2015). https://doi.org/10.1111/jace.13455
Im, C., Park, D., Kim, H., et al.: Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries. J. Energy Chem. 27, 1501–1508 (2018). https://doi.org/10.1016/j.jechem.2017.10.006
Hongahally Basappa, R., Ito, T., Morimura, T., et al.: Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J. Power Sources 363, 145–152 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.088
Huang, Z.Y., Chen, L.H., Huang, B., et al.: Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases. ACS Appl. Mater. Interfaces 12, 56118–56125 (2020). https://doi.org/10.1021/acsami.0c18674
Polczyk, T., Zając, W., Ziąbka, M., et al.: Mitigation of grain boundary resistance in La2/3−xLi3xTiO3 perovskite as an electrolyte for solid-state Li-ion batteries. J. Mater. Sci. 56, 2435–2450 (2021). https://doi.org/10.1007/s10853-020-05342-7
Chung, H., Kang, B.: Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium. Solid State Ionics 263, 125–130 (2014). https://doi.org/10.1016/j.ssi.2014.05.016
Liu, Z., Li, Y.S., Ji, Y.Z., et al.: Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations. Cell Rep. Phys. Sci. 2, 100294 (2021). https://doi.org/10.1016/j.xcrp.2020.100294
Monroe, C., Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377–A1384 (2003). https://doi.org/10.1149/1.1606686
Guyer, J.E., Boettinger, W.J., Warren, J.A., et al.: Phase field modeling of electrochemistry. II. Kinetics. Phys. Rev. E 69, 021604 (2004). https://doi.org/10.1103/physreve.69.021604
Guyer, J.E., Boettinger, W.J., Warren, J.A., et al.: Phase field modeling of electrochemistry. I. Equilibrium. Phys. Rev. E 69, 021603 (2004). https://doi.org/10.1103/physreve.69.021603
Liang, L.Y., Chen, L.Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 263903 (2014). https://doi.org/10.1063/1.4905341
Enrique, R.A., DeWitt, S., Thornton, K.: Morphological stability during electrodeposition. MRS Commun. 7, 658–663 (2017). https://doi.org/10.1557/mrc.2017.38
Chen, L., Zhang, H.W., Liang, L.Y., et al.: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055
Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301 (2015). https://doi.org/10.1103/physreve.92.011301
Hu, J.M., Wang, B., Ji, Y.Z., et al.: Phase-field based multiscale modeling of heterogeneous solid electrolytes: applications to nanoporous Li3PS4. ACS Appl. Mater. Interfaces 9, 33341–33350 (2017). https://doi.org/10.1021/acsami.7b11292
Yan, H.H., Bie, Y.H., Cui, X.Y., et al.: A computational investigation of thermal effect on lithium dendrite growth. Energy Convers. Manag. 161, 193–204 (2018). https://doi.org/10.1016/j.enconman.2018.02.002
Yurkiv, V., Foroozan, T., Ramasubramanian, A., et al.: Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior. Electrochim. Acta 265, 609–619 (2018). https://doi.org/10.1016/j.electacta.2018.01.212
Yurkiv, V., Foroozan, T., Ramasubramanian, A., et al.: The influence of stress field on Li electrodeposition in Li-metal battery. MRS Commun. 8, 1285–1291 (2018). https://doi.org/10.1557/mrc.2018.146
Hong, Z.J., Viswanathan, V.: Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett. 4, 1012–1019 (2019). https://doi.org/10.1021/acsenergylett.9b00433
Mu, W., Liu, X.L., Wen, Z., et al.: Numerical simulation of the factors affecting the growth of lithium dendrites. J. Energy Storage 26, 100921 (2019). https://doi.org/10.1016/j.est.2019.100921
Zhang, R., Shen, X., Cheng, X.B., et al.: The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029
Zhang, X., Wang, Q.J., Harrison, K.L., et al.: Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019). https://doi.org/10.1149/2.0701914jes
Gao, L.T., Guo, Z.S.: Phase-field simulation of Li dendrites with multiple parameters influence. Comput. Mater. Sci. 183, 109919 (2020). https://doi.org/10.1016/j.commatsci.2020.109919
Tian, H.K., Liu, Z., Ji, Y.Z., et al.: Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967
Ren, Y., Zhou, Y., Cao, Y.: Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling. J. Phys. Chem. C 124, 12195–12204 (2020). https://doi.org/10.1021/acs.jpcc.0c01116
Wang, Q., Zhang, G., Li, Y.J., et al.: Application of phase-field method in rechargeable batteries. NPJ Comput. Mater. 6, 176 (2020). https://doi.org/10.1038/s41524-020-00445-w
Xiao, Y.H., Miara, L.J., Wang, Y., et al.: Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019). https://doi.org/10.1016/j.joule.2019.02.006
Wang, C.H., Li, X., Zhao, Y., et al.: Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries. Small Methods 3, 1900261 (2019). https://doi.org/10.1002/smtd.201900261
Sakuda, A., Kitaura, H., Hayashi, A., et al.: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte. J. Power Sources 189, 527–530 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.129
Ito, S., Fujiki, S., Yamada, T., et al.: A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.005
Liu, G.Z., Lu, Y., Wan, H.L., et al.: Passivation of the cathode-electrolyte interface for 5 V-class all-solid-state batteries. ACS Appl. Mater. Interfaces 12, 28083–28090 (2020). https://doi.org/10.1021/acsami.0c03610
Okada, K., Machida, N., Naito, M., et al.: Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255, 120–127 (2014). https://doi.org/10.1016/j.ssi.2013.12.019
Ohta, N., Takada, K., Zhang, L., et al.: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006). https://doi.org/10.1002/adma.200502604
Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179, 1333–1337 (2008). https://doi.org/10.1016/j.ssi.2008.02.017
Zhang, Y.Q., Tian, Y.S., Xiao, Y.H., et al.: Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: a combined experimental and computational study. Adv. Energy Mater. 10, 1903778 (2020). https://doi.org/10.1002/aenm.201903778
Jung, S.H., Oh, K., Nam, Y.J., et al.: Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018). https://doi.org/10.1021/acs.chemmater.8b03321
Han, F.D., Yue, J., Chen, C., et al.: Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018). https://doi.org/10.1016/j.joule.2018.02.007
Zhang, W.B., Weber, D.A., Weigand, H., et al.: Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017). https://doi.org/10.1021/acsami.7b01137
Cao, D., Zhang, Y., Nolan, A.M., et al.: Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020). https://doi.org/10.1021/acs.nanolett.9b02678
Zhang, N., Li, Y., Luo, Y.D., et al.: Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method. Ionics 27, 1465–1475 (2021). https://doi.org/10.1007/s11581-021-03946-w
Wang, C.W., Gong, Y.H., Liu, B.Y., et al.: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017). https://doi.org/10.1021/acs.nanolett.6b04695
Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821
Shao, Y.J., Wang, H.C., Gong, Z.L., et al.: Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 3, 1212–1218 (2018). https://doi.org/10.1021/acsenergylett.8b00453
Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016). https://doi.org/10.1021/jacs.6b06777
Lu, Y., Huang, X., Ruan, Y.D., et al.: An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J. Mater. Chem. A 6, 18853–18858 (2018). https://doi.org/10.1039/c8ta07241h
Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017). https://doi.org/10.1002/adma.201606042
Feng, W.L., Dong, X.L., Li, P.L., et al.: Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J. Power Sources 419, 91–98 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.066
Zhao, N., Fang, R., He, M.H., et al.: Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 37, 473–479 (2018). https://doi.org/10.1007/s12598-018-1057-3
Fu, K., Gong, Y.H., Fu, Z.Z., et al.: Transient behavior of the metal interface in lithium metal-garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017). https://doi.org/10.1002/anie.201708637
Zhu, J.X., Li, X.L., Wu, C.W., et al.: A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chem. Int. Ed. 60, 3781–3790 (2021). https://doi.org/10.1002/anie.202014265
Wu, J.F., Pu, B.W., Wang, D., et al.: In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 11, 898–905 (2019). https://doi.org/10.1021/acsami.8b18356
Acknowledgements
This work was supported by the Key-Area Research and Development Program of Guangdong Province (2020B090919005), the National Natural Science Foundation of China (21975274), Shandong Provincial Natural Science Foundation (ZR2020KE032), the Youth Innovation Promotion Association of CAS (2021210), the Shandong Energy Institute (SEI) (SEI I202117), and the Taishan Scholars of Shandong Province (ts201511063).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Zhang, S., Ma, J., Dong, S. et al. Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochem. Energy Rev. 6, 4 (2023). https://doi.org/10.1007/s41918-022-00143-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41918-022-00143-9