Skip to main content

Advertisement

Log in

How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Research on the chemistry of high-energy-density transition metal oxide cathodes (TMOCs) is at the forefront in the pursuit of lithium-ion batteries with increased energy density. As a critical component of these cathodes, binders not only glue cathode active material particles and conducting carbons together and to current collectors but also play pivotal roles in building multiscale compatible interphases between electrolytes and cathodes. In this review, we outline several vital design considerations of high-voltage binders, several of which are already present in traditional binder design that need to be highlighted, and systematically reveal the chemistry and mechanisms underpinning such binders for in-depth understanding. Further optimization of the design of polymer binders to improve battery performance is also discussed. Finally, perspectives regarding the future rational design and promising research opportunities of state-of-the-art binders for high-voltage TMOCs are presented.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sina, C., Qili, H.: Hydrogen fuel cell vehicles are in the incubation period. https://www.sohu.com/a/365984672_418320 (2020). Accessed 5 March 2021

  2. Mark, V.: Tesla (TSLA) rolls out first Model 3s built in Shanghai. https://finance.yahoo.com/news/tesla-tsla-rolls-first-model-150303621.html (2019). Accessed 5 March 2021

  3. US Council for Automotive Research: US DRIVE electrochemical energy storage technical team roadmap. https://doi.org/10.2172/1220126 (2013). Accessed 5 March 2021

  4. Hou, P.Y., Yin, J.M., Ding, M., et al.: Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives. Small 13, 1701802 (2017). https://doi.org/10.1002/smll.201701802

  5. Kim, J., Lee, H., Cha, H., et al.: Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 8, 1702028 (2018). https://doi.org/10.1002/aenm.201702028

  6. Xia, Y., Zheng, J.M., Wang, C.M., et al.: Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49, 434–452 (2018). https://doi.org/10.1016/j.nanoen.2018.04.062

  7. Li, M., Wang, Y.L., Wu, X.Y., et al.: The mechanism of ion-doping, surface coating, surface oxygen vacancy modification and their joint mechanism in lithium-rich material for Li-ion battery. Prog. Chem. 29, 1526–1536 (2017,29(12))

  8. Lan, X.W., Xin, Y., Wang, L.B., et al.: Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries. J. Nanoparticle Res. 20, 1–38 (2018). https://doi.org/10.1007/s11051-018-4165-y

  9. Pan, H.G., Zhang, S.M., Chen, J., et al.: Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: A review from fundamentals to research progress and applications. Mol. Syst. Des. Eng. 3, 748–803 (2018). https://doi.org/10.1039/c8me00025e

  10. Nayak, P.K., Erickson, E.M., Schipper, F., et al.: Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397

  11. Mauger, A., Julien, C.M., Armand, M., et al.: Li(Ni, Co)PO4 as cathode materials for lithium batteries: Will the dream come true? Curr. Opin. Electrochem. 6, 63–69 (2017). https://doi.org/10.1016/j.coelec.2017.10.015

  12. Zhang, M., Garcia-Araez, N., Hector, A.L.: Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14483–14517 (2018). https://doi.org/10.1039/c8ta04063j

  13. Ludwig, J., Nilges, T.: Recent progress and developments in lithium cobalt phosphate chemistry: syntheses, polymorphism and properties. J. Power Sources 382, 101–115 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.038

  14. Kim, J.H., Pieczonka, N.P.W., Li, Z.C., et al.: Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim. Acta 90, 556–562 (2013). https://doi.org/10.1016/j.electacta.2012.12.069

  15. Pieczonka, N.P.W., Liu, Z.Y., Lu, P., et al.: Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117, 15947–15957 (2013). https://doi.org/10.1021/jp405158m

  16. Liu, M., Deng, N.P., Ju, J.G., et al.: A review: electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 29, 1905467 (2019). https://doi.org/10.1002/adfm.201905467

  17. Wang, L., Chen, B., Ma, J., et al.: Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018). https://doi.org/10.1039/c8cs00322j

  18. Cabana, J., Kwon, B.J., Hu, L.: Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries. Acc. Chem. Res. 51, 299–308 (2018). https://doi.org/10.1021/acs.accounts.7b00482

  19. Xiao, B.W., Sun, X.L.: Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 8, 1802057 (2018). https://doi.org/10.1002/aenm.201802057

  20. You, Y., Manthiram, A.: Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1701785 (2018). https://doi.org/10.1002/aenm.201701785

  21. Fu, X.W., Zhong, W.H.: Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater. 9, 1901774 (2019). https://doi.org/10.1002/aenm.201901774

  22. Wu, Z., Adekoya, D., Huang, X., et al.: Highly conductive two-dimensional metal-organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 14, 12016–12026 (2020). https://doi.org/10.1021/acsnano.0c05200

    Article  CAS  PubMed  Google Scholar 

  23. John, B., Cheruvally, G.: Polymeric materials for lithium-ion cells. Polym. Adv. Technol. 28, 1528–1538 (2017). https://doi.org/10.1002/pat.4049

  24. Pieczonka, N.P.W., Borgel, V., Ziv, B., et al.: Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater. 5, 1501008 (2015). https://doi.org/10.1002/aenm.201501008

  25. Yabuuchi, N., Kinoshita, Y., Misaki, K., et al.: Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J. Electrochem. Soc. 162, A538–A544 (2015). https://doi.org/10.1149/2.0151504jes

  26. Bigoni, F., de Giorgio, F., Soavi, F., et al.: Sodium alginate: a water-processable binder in high-voltage cathode formulations. J. Electrochem. Soc. 164, A6171–A6177 (2016). https://doi.org/10.1149/2.0281701jes

  27. Luo, X., Lu, X.B., Chen, X.D., et al.: A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery. J. Energy Chem. 50, 63–72 (2020). https://doi.org/10.1016/j.jechem.2020.02.041

  28. Chen, H., Ling, M., Hencz, L., et al.: Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118, 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241

  29. Chou, W.Y., Jin, Y.C., Duh, J.G., et al.: A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation. Appl. Surf. Sci. 355, 1272–1278 (2015). https://doi.org/10.1016/j.apsusc.2015.08.046

  30. Hitomi, S., Kubota, K., Horiba, T., et al.: Application of acrylic-rubber-based latex binder to high-voltage spinel electrodes of lithium-ion batteries. ChemElectroChem 6, 5070–5079 (2019). https://doi.org/10.1002/celc.201901227

  31. Li, G.J., Liao, Y.H., He, Z.Y., et al.: A new strategy to improve the cyclic stability of high voltage lithium nickel manganese oxide cathode by poly(butyl methacrylate-acrylonitrile-styrene) terpolymer as co-binder in lithium ion batteries. Electrochim. Acta 319, 527–540 (2019). https://doi.org/10.1016/j.electacta.2019.07.011

  32. Kaneko, M., Sugimoto, T., Takahashi, N., et al.: Improvement of high voltage cyclic performance by novel binder for high energy lithium ion battery application. ECS Trans. 62, 35–43 (2014). https://doi.org/10.1149/06201.0035ecst

  33. Tanaka, S., Narutomi, T., Suzuki, S., et al.: Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode. J. Power Sources 358, 121–127 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.032

  34. Su, A.Y., Pang, Q., Chen, X., et al.: Lithium poly-acrylic acid as a fast Li+ transport media and a highly stable aqueous binder for Li3V2(PO4)3 cathode electrodes. J. Mater. Chem. A 6, 23357–23365 (2018). https://doi.org/10.1039/c8ta08663j

  35. Ma, Y., Chen, K., Ma, J., et al.: A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ. Sci. 12, 273–280 (2019). https://doi.org/10.1039/c8ee02555j

  36. Hencz, L., Chen, H., Ling, H.Y., et al.: Housing sulfur in polymer composite frameworks for Li-S batteries. Nano-Micro Lett. 11, 1–44 (2019). https://doi.org/10.1007/s40820-019-0249-1

  37. Choi, N.S., Han, J.G., Ha, S.Y., et al.: Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. Rsc Adv. 5, 2732–2748 (2015)

    Article  CAS  Google Scholar 

  38. Zhang, H.R., Zhang, J.J., Ma, J., et al.: Polymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev. 2, 128–148 (2019). https://doi.org/10.1007/s41918-018-00027-x

  39. Chen, H., Adekoya, D., Hencz, L., et al.: Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10, 2000049 (2020). https://doi.org/10.1002/aenm.202000049

  40. Tiurin, O., Ein-Eli, Y.: A critical review: The impact of the battery electrode material substrate on the composition and properties of atomic layer deposition (ALD) coatings. Adv. Mater. Interfaces 6, 1901455 (2019). https://doi.org/10.1002/admi.201901455

  41. Guan, P., Zhou, L., Yu, Z., et al.: Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 43, 220–235 (2020). https://doi.org/10.1016/j.jechem.2019.08.022

    Article  Google Scholar 

  42. Wang, F., Jiang, Y., Lin, S., et al.: High-voltage performance of LiCoO2 cathode studied by single particle microelectrodes-influence of surface modification with TiO2. Electrochim. Acta 295, 1017–1026 (2019). https://doi.org/10.1016/j.electacta.2018.09.050

    Article  CAS  Google Scholar 

  43. Yao, Z.D., Wei, W., Wang, J.L., et al.: Review of sulfur-based cathodes for high performance lithium rechargeable batteries. Acta Phys-Chim. Sin. 27, 1005–1016 (2011). https://doi.org/10.3866/PKU.WHXB20110345

    Article  CAS  Google Scholar 

  44. Li, J.T., Wu, Z.Y., Lu, Y.Q., et al.: Water soluble binder, an electrochemical performance booster for electrode materials with high energy density. Adv. Energy Mater. 7, 1701185 (2017). https://doi.org/10.1002/aenm.201701185

    Article  CAS  Google Scholar 

  45. Bresser, D., Buchholz, D., Moretti, A., et al.: Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11, 3096–3127 (2018). https://doi.org/10.1039/C8EE00640G

    Article  CAS  Google Scholar 

  46. Yuan, H., Huang, J.Q., Peng, H.J., et al.: A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 8, 1802107 (2018). https://doi.org/10.1002/aenm.201802107

    Article  CAS  Google Scholar 

  47. Qi, Q., Lv, X., Lv, W., et al.: Multifunctional binder designs for lithium-sulfur batteries. J. Energy Chem. 39, 88–100 (2019). https://doi.org/10.1016/j.jechem.2019.02.001

    Article  Google Scholar 

  48. Guo, Q.Y., Zheng, Z.J.: Rational design of binders for stable Li-S and Na-S batteries. Adv. Funct. Mater. 30, 1907931 (2020). https://doi.org/10.1002/adfm.201907931

  49. Nirmale, T.C., Kale, B.B., Varma, A.J.: A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery. Int. J. Biol. Macromol. 103, 1032–1043 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.155

  50. Jeong, Y.K., Park, S.H., Choi, J.W.: Mussel-inspired coating and adhesion for rechargeable batteries: a review. ACS Appl. Mater. Interfaces 10, 7562–7573 (2018). https://doi.org/10.1021/acsami.7b08495

  51. Ma, Y., Ma, J., Cui, G.L.: Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater. 20, 146–175 (2019). https://doi.org/10.1016/j.ensm.2018.11.013

  52. Lopez, J., Mackanic, D.G., Cui, Y., et al.: Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6

  53. Kwon, T.W., Choi, J.W., Coskun, A.: The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 47, 2145–2164 (2018). https://doi.org/10.1039/c7cs00858a

  54. Wu, N.L., Weng, Y.T., Li, F.S., et al.: Polymeric artificial solid/electrolyte interphases for Li-ion batteries. Prog. Nat. Sci.: Mater. Int. 25, 563–571 (2015). https://doi.org/10.1016/j.pnsc.2015.11.009

  55. Mazouzi, D., Karkar, Z., Reale Hernandez, C., et al.: Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources 280, 533–549 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.140

  56. Qin, J.L., Peng, H.J., Huang, J.Q., et al.: Solvent-engineered scalable production of polysulfide-blocking shields to enhance practical lithium-sulfur batteries. Small Methods 2, 1800100 (2018). https://doi.org/10.1002/smtd.201800100

  57. Kim, S., Cho, M., Chanthad, C., et al.: New redox-mediating polymer binder for enhancing performance of Li-S batteries. J. Energy Chem. 44, 154–161 (2020). https://doi.org/10.1016/j.jechem.2019.09.001

  58. Wang, F., Li, L., Lei, D., et al.: Quaternized polymer binder for lithium-sulfur batteries: The effect of cation structure on battery performance. J. Energy Chem. 43, 165–172 (2020). https://doi.org/10.1016/j.jechem.2019.08.019

  59. Miranda, A., Li, X., Haregewoin, A.M., et al.: A comprehensive study of hydrolyzed polyacrylamide as a binder for silicon anodes. ACS Appl. Mater. Interfaces 11, 44090–44100 (2019). https://doi.org/10.1021/acsami.9b13257

  60. Yabuuchi, N., Shimomura, K., Shimbe, Y., et al.: Graphite-silicon-polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li-ion batteries. Adv. Energy Mater. 1, 759–765 (2011). https://doi.org/10.1002/aenm.201100236

  61. Zhang, Z.A., Zeng, T., Lai, Y.Q., et al.: A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J. Power Sources 247, 1–8 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.051

  62. Tang, Y.X., Deng, J.Y., Li, W.L., et al.: Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 29, 1701828 (2017). https://doi.org/10.1002/adma.201701828

  63. Dong, T.T., Zhang, H.R., Ma, Y., et al.: A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes. J. Mater. Chem. A 7, 24594–24601 (2019). https://doi.org/10.1039/c9ta08299a

  64. Kim, E.J., Yue, X.L., Irvine, J.T.S., et al.: Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders. J. Power Sources 403, 11–19 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.073

  65. Zhao, T.L., Meng, Y., Ji, R.X., et al.: Maintaining structure and voltage stability of Li-rich cathode materials by green water-soluble binders containing Na+ ions. J. Alloy. Compd. 811, 152060 (2019). https://doi.org/10.1016/j.jallcom.2019.152060

  66. Kasinathan, R., Marinaro, M., Axmann, P., et al.: Influence of the molecular weight of poly-acrylic acid binder on performance of Si-alloy/graphite composite anodes for lithium-ion batteries. Energy Technol. 6, 2256–2263 (2018). https://doi.org/10.1002/ente.201800302

  67. Shaibani, M., Mirshekarloo, M.S., Singh, R., et al.: Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 6, eaay2757 (2020). https://doi.org/10.1126/sciadv.aay2757

  68. Nguyen, V.H., Wang, W.L., Jin, E.M., et al.: Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Appl. Surf. Sci. 282, 444–449 (2013). https://doi.org/10.1016/j.apsusc.2013.05.149

  69. Wang, Z.L., Dupré, N., Gaillot, A.C., et al.: CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries. Electrochim. Acta 62, 77–83 (2012). https://doi.org/10.1016/j.electacta.2011.11.094

  70. Prosini, P.P., Carewska, M., Masci, A.: A high voltage cathode prepared by using polyvinyl acetate as a binder. Solid State Ionics 274, 88–93 (2015). https://doi.org/10.1016/j.ssi.2015.03.008

  71. Wu, F., Li, W.K., Chen, L., et al.: Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides. J. Power Sources 359, 226–233 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.063

  72. Kuenzel, M., Choi, H., Wu, F.L., et al.: Co-crosslinked water-soluble biopolymers as a binder for high-voltage LiNi0.5Mn1.5O4|Graphite lithium-ion full cells. ChemSusChem 13, 2650–2660 (2020). https://doi.org/10.1002/cssc.201903483

  73. Zhong, H.X., He, J.R., Zhang, L.Z.: Better cycle stability and rate capability of high-voltage LiNi0.5Mn1.5O4 cathode using water soluble binder. Mater. Res. Bull. 93, 194–200 (2017). https://doi.org/10.1016/j.materresbull.2017.04.036

  74. Kuenzel, M., Porhiel, R., Bresser, D., et al.: Deriving structure-performance relations of chemically modified chitosan binders for sustainable high-voltage LiNi0.5Mn1.5O4 cathodes. Batter. Supercaps 3, 155–164 (2020). https://doi.org/10.1002/batt.201900140

  75. Zhang, T., Li, J.T., Liu, J., et al.: Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun. 52, 4683–4686 (2016). https://doi.org/10.1039/c5cc10534j

  76. Notake, K., Gunji, T.K., Kokubun, H., et al.: The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries. J. Appl. Electrochem. 46, 267–278 (2016). https://doi.org/10.1007/s10800-016-0930-8

  77. Yoo, D.J., Elabd, A., Choi, S., et al.: Highly elastic polyrotaxane binders for mechanically stable lithium hosts in lithium-metal batteries. Adv. Mater. 31, 1901645 (2019). https://doi.org/10.1002/adma.201901645

  78. Lee, J., Lee, K., Lee, T., et al.: In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries. Adv. Mater. 32, 2001702 (2020). https://doi.org/10.1002/adma.202001702

  79. Rashid, A., Zhu, X.Y., Wang, G.L., et al.: Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries. J. Energy Chem. 49, 71–79 (2020). https://doi.org/10.1016/j.jechem.2020.01.031

  80. Lee, J.H., Paik, U., Hackley, V.A., et al.: Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J. Electrochem. Soc. 152, A1763 (2005). https://doi.org/10.1149/1.1979214

  81. Hu, M., Pang, X.L., Zhou, Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229–242 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.024

  82. Hao, Z.D., Xu, X.L., Wang, H., et al.: Research progress on surface coating layers on the positive electrode for lithium ion batteries. Nano 13, 1830007 (2018). https://doi.org/10.1142/s1793292018300074

  83. Li, Z., Wang, Z., Ban, L.Q., et al.: Recent advances on surface modification of Li- and Mn-rich cathode materials. Acta Chim. Sin. 77, 1115–1128 (2019,77(11))

  84. Wang, D., Liu, W.H., Zhang, X.H., et al.: Review of modified nickel-cobalt lithium aluminate cathode materials for lithium-ion batteries. Int. J. Photoenergy 2019, 1–13 (2019). https://doi.org/10.1155/2019/2730849

  85. Yan, W.W., Yang, S.Y., Huang, Y.Y., et al.: A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J. Alloy. Compd. 819, 153048 (2020). https://doi.org/10.1016/j.jallcom.2019.153048

  86. Kovalenko, I., Zdyrko, B., Magasinski, A., et al.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011). https://doi.org/10.1126/science.1209150

  87. De Giorgio, F., Laszczynski, N., Von Zamory, J., et al.: Graphite//LiNi0.5Mn1.5O4 cells based on environmentally friendly made-in-water electrodes. ChemSusChem 10, 379–386 (2017). https://doi.org/10.1002/cssc.201601249

  88. Yoon, T., Park, S., Mun, J., et al.: Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. J. Power Sources 215, 312–316 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103

  89. Pham, H.Q., Lee, J., Jung, H.M., et al.: Non-flammable LiNi0.8Co0.1Mn0.1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries. Electrochim. Acta 317, 711–721 (2019). https://doi.org/10.1016/j.electacta.2019.06.034

  90. Santhanam, R., Rambabu, B.: Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 195, 5442–5451 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.067

  91. Hunter, J.C.: Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 39, 142–147 (1981). https://doi.org/10.1016/0022-4596(81)90323-6

  92. Pan, Y.Y., Gao, S.L., Sun, F.Y., et al.: Polymer binders constructed through dynamic noncovalent bonds for high-capacity silicon-based anodes. Chem.-A Eur. J. 25, 10976–10994 (2019). https://doi.org/10.1002/chem.201900988

  93. Pham, H.Q., Kim, G., Jung, H.M., et al.: Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv. Funct. Mater. 28, 1704690 (2018). https://doi.org/10.1002/adfm.201704690

  94. Li, J., Klöpsch, R., Nowak, S., et al.: Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J. Power Sources 196, 7687–7691 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.030

  95. Doberdò, I., Löffler, N., Laszczynski, N., et al.: Enabling aqueous binders for lithium battery cathodes: carbon coating of aluminum current collector. J. Power Sources 248, 1000–1006 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.039

  96. Loeffler, N., von Zamory, J., Laszczynski, N., et al.: Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder. J. Power Sources 248, 915–922 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.018

  97. Soeda, K., Yamagata, M., Ishikawa, M.: Alginic acid as a new aqueous slurry-based binder for cathode materials of LIB. ECS Trans. 64, 13–22 (2015). https://doi.org/10.1149/06418.0013ecst

  98. Wood, M., Li, J.L., Ruther, R.E., et al.: Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Storage Mater. 24, 188–197 (2020). https://doi.org/10.1016/j.ensm.2019.08.020

  99. Kuenzel, M., Bresser, D., Diemant, T., et al.: Complementary strategies toward the aqueous processing of high-voltage LiNi0.5Mn1.5O4 lithium-ion cathodes. ChemSusChem 11, 562–573 (2018). https://doi.org/10.1002/cssc.201702021

  100. Hekmatfar, M., Kazzazi, A., Eshetu, G.G., et al.: Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS. ACS Appl. Mater. Interfaces 11, 43166–43179 (2019). https://doi.org/10.1021/acsami.9b14389

Download references

Acknowledgements

This work was financially supported by the NSFC-Shandong Joint Fund (U1706229), the Science Foundation for the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22010603), the National Natural Science Foundation of China (51803230) and the Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanrui Zhang, Wei Liu or Guanglei Cui.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Mu, P., Zhang, S. et al. How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?. Electrochem. Energ. Rev. 4, 545–565 (2021). https://doi.org/10.1007/s41918-021-00102-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00102-w

Keywords

Navigation