Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
CAS
Article
PubMed
Google Scholar
Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
CAS
Article
PubMed
Google Scholar
Cao, Y.L., Xiao, L.F., Sushko, M.L., et al.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012). https://doi.org/10.1021/nl3016957
CAS
Article
PubMed
Google Scholar
Ji, X.L.: A paradigm of storage batteries. Energy Environ. Sci. 12, 3203–3224 (2019). https://doi.org/10.1039/c9ee02356a
CAS
Article
Google Scholar
Bin, D., Wang, F., Tamirat, A.G., et al.: Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018). https://doi.org/10.1002/aenm.201703008
CAS
Article
Google Scholar
Chao, D.L., Zhou, W.H., Xie, F.X., et al.: Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
CAS
Article
PubMed
PubMed Central
Google Scholar
Gao, X.Y., Zhang, H.Z., Liu, X.Q., et al.: Flexible Zn-ion batteries based on manganese oxides: progress and prospect. Carbon Energy 2, 387–407 (2020). https://doi.org/10.1002/cey2.63
CAS
Article
Google Scholar
Lai, C.S., McCulloch, M.D.: Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 190, 191–203 (2017). https://doi.org/10.1016/j.apenergy.2016.12.153
Article
Google Scholar
Li, W., Dahn, J.R., Wainwright, D.S.: Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
CAS
Article
PubMed
Google Scholar
Li, Z., Young, D., Xiang, K., et al.: Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013). https://doi.org/10.1002/aenm.201200598
CAS
Article
Google Scholar
Pasta, M., Wessells, C.D., Huggins, R.A., et al.: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2139
CAS
Article
Google Scholar
Dong, S.Y., Shin, W., Jiang, H., et al.: Ultra-fast NH4+ storage: strong h bonding between NH4+ and bi-layered V2O5. Chem 5, 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
CAS
Article
Google Scholar
Chen, L., Bao, J.L., Dong, X., et al.: Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040
CAS
Article
Google Scholar
Gheytani, S., Liang, Y.L., Wu, F.L., et al.: An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465
CAS
Article
Google Scholar
Wang, P.J., Shi, X.D., Wu, Z.X., et al.: Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy 2, 294–301 (2020). https://doi.org/10.1002/cey2.39
CAS
Article
Google Scholar
Li, Z., Xiang, K., Xing, W.T., et al.: Reversible aluminum-ion intercalation in Prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5, 1401410 (2015). https://doi.org/10.1002/aenm.201401410
CAS
Article
Google Scholar
Suo, L.M., Borodin, O., Gao, T., et al.: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595
Article
PubMed
Google Scholar
Kim, H., Hong, J., Park, K.Y., et al.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014). https://doi.org/10.1021/cr500232y
CAS
Article
PubMed
Google Scholar
Wang, Y.S., Liu, J., Lee, B., et al.: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms7401
CAS
Article
Google Scholar
Whitacre, J.F., Tevar, A., Sharma, S.: Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12, 463–466 (2010). https://doi.org/10.1016/j.elecom.2010.01.020
CAS
Article
Google Scholar
Park, S.I., Gocheva, I., Okada, S., et al.: Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067 (2011). https://doi.org/10.1149/1.3611434
CAS
Article
Google Scholar
Qiu, S., Wu, X.Y., Wang, M.Y., et al.: NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64, 103941 (2019). https://doi.org/10.1016/j.nanoen.2019.103941
CAS
Article
Google Scholar
Zhang, Y.D., An, Y.F., Yin, B., et al.: A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7, 11314–11320 (2019). https://doi.org/10.1039/c9ta00254e
CAS
Article
Google Scholar
Luo, J.Y., Xia, Y.Y.: Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877–3884 (2007). https://doi.org/10.1002/adfm.200700638
CAS
Article
Google Scholar
Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013). https://doi.org/10.1021/cr3001862
CAS
Article
PubMed
Google Scholar
Nevers, D.R., Brushett, F.R., Wheeler, D.R.: Engineering radical polymer electrodes for electrochemical energy storage. J. Power Sources 352, 226–244 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.077
CAS
Article
Google Scholar
Eftekhari, A.: Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126, 221–228 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007
CAS
Article
Google Scholar
Luo, J.H., Sun, S.X., Peng, J., et al.: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 25317–25322 (2017). https://doi.org/10.1021/acsami.7b06334
CAS
Article
PubMed
Google Scholar
Wu, X.Y., Shao, M.M., Wu, C.H., et al.: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8, 23706–23712 (2016). https://doi.org/10.1021/acsami.6b06880
CAS
Article
PubMed
Google Scholar
Asakura, D., Okubo, M., Mizuno, Y., et al.: Fabrication of a cyanide-bridged coordination polymer electrode for enhanced electrochemical ion storage ability. J. Phys. Chem. C 116, 8364–8369 (2012). https://doi.org/10.1021/jp2118949
CAS
Article
Google Scholar
Asakura, D., Li, C.H., Mizuno, Y., et al.: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 135, 2793–2799 (2013). https://doi.org/10.1021/ja312160v
CAS
Article
PubMed
Google Scholar
Pasta, M., Wessells, C.D., Liu, N., et al.: Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms4007
CAS
Article
Google Scholar
Wang, L., Song, J., Qiao, R.M., et al.: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015). https://doi.org/10.1021/ja510347s
CAS
Article
PubMed
Google Scholar
You, Y., Wu, X.L., Yin, Y.X., et al.: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J. Mater. Chem. A 1, 14061 (2013). https://doi.org/10.1039/c3ta13223d
CAS
Article
Google Scholar
Wu, X.Y., Deng, W.W., Qian, J.F., et al.: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1, 10130 (2013). https://doi.org/10.1039/c3ta12036h
CAS
Article
Google Scholar
Imanishi, N., Morikawa, T., Kondo, J., et al.: Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power Sources 79, 215–219 (1999). https://doi.org/10.1016/s0378-7753(99)00061-0
CAS
Article
Google Scholar
Jiang, Y.Z., Yu, S.L., Wang, B.Q., et al.: Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
CAS
Article
Google Scholar
Liu, Q.N., Hu, Z., Chen, M.Z., et al.: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 30, 1909530 (2020). https://doi.org/10.1002/adfm.201909530
CAS
Article
Google Scholar
Goda, E.S., Lee, S., Sohail, M., et al.: Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031
Article
Google Scholar
Rajagopalan, R., Tang, Y.G., Ji, X.B., et al.: Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30, 1909486 (2020). https://doi.org/10.1002/adfm.201909486
CAS
Article
Google Scholar
Lee, H.W., Wang, R.Y., Pasta, M., et al.: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms6280
CAS
Article
Google Scholar
Xiao, B.W.: Intercalated water in aqueous batteries. Carbon Energy 2, 251–264 (2020). https://doi.org/10.1002/cey2.55
CAS
Article
Google Scholar
Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012). https://doi.org/10.1016/j.seppur.2011.10.033
CAS
Article
Google Scholar
Wu, X.Y., Xu, Y.K., Jiang, H., et al.: NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077–3083 (2018). https://doi.org/10.1021/acsaem.8b00789
CAS
Article
Google Scholar
Wessells, C.D., Peddada, S.V., McDowell, M.T., et al.: The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98–A103 (2011). https://doi.org/10.1149/2.060202jes
CAS
Article
Google Scholar
Wang, R.Y., Wessells, C.D., Huggins, R.A., et al.: Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013). https://doi.org/10.1021/nl403669a
CAS
Article
PubMed
Google Scholar
Zhou, A.X., Jiang, L.W., Yue, J.M., et al.: Water-in-salt electrolyte promotes high-capacity FeFe(CN)6 cathode for aqueous Al-ion battery. ACS Appl. Mater. Interfaces 11, 41356–41362 (2019). https://doi.org/10.1021/acsami.9b14149
CAS
Article
PubMed
Google Scholar
Yang, Q., Mo, F.N., Liu, Z.X., et al.: Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10,000-cycle lifespan and superior rate capability. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901521
Article
PubMed
PubMed Central
Google Scholar
Wu, X.Y., Markir, A., Xu, Y.K., et al.: A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 29, 1900911 (2019). https://doi.org/10.1002/adfm.201900911
CAS
Article
Google Scholar
Wang, R.Y., Shyam, B., Stone, K.H., et al.: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv. Energy Mater. 5, 1401869 (2015). https://doi.org/10.1002/aenm.201401869
CAS
Article
Google Scholar
Guo, X.Y., Wang, Z.B., Deng, Z., et al.: Water contributes to higher energy density and cycling stability of Prussian blue analogue cathodes for aqueous sodium-ion batteries. Chem. Mater. 31, 5933–5942 (2019). https://doi.org/10.1021/acs.chemmater.9b02269
CAS
Article
Google Scholar
Neff, V.D.: Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886–887 (1978). https://doi.org/10.1149/1.2131575
CAS
Article
Google Scholar
Ellis, D., Eckhoff, M., Neff, V.D.: Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85, 1225–1231 (1981). https://doi.org/10.1021/j150609a026
CAS
Article
Google Scholar
Itaya, K., Ataka, T., Toshima, S.: Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982). https://doi.org/10.1021/ja00382a006
CAS
Article
Google Scholar
Itaya, K., Uchida, I., Neff, V.D.: Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19, 162–168 (1986). https://doi.org/10.1021/ar00126a001
CAS
Article
Google Scholar
Karyakin, A.A.: Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10813:aid-elan813%3e3.0.co;2-z
CAS
Article
Google Scholar
Scholz, F., Dostal, A.: The formal potentials of solid metal hexacyanometalates. Angew. Chem. Int. Ed. Engl. 34, 2685–2687 (1996). https://doi.org/10.1002/anie.199526851
Article
Google Scholar
Yang, C., Chen, J., Ji, X., et al.: Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
CAS
Article
PubMed
Google Scholar
Yang, C.Y., Suo, L.M., Borodin, O., et al.: Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. 114, 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang, Q., Wang, W., Li, H., et al.: Investigation of iron hexacyanoferrate as a high rate cathode for aqueous batteries: sodium-ion batteries and lithium-ion batteries. Electrochim. Acta 270, 96–103 (2018). https://doi.org/10.1016/j.electacta.2018.02.171
CAS
Article
Google Scholar
Ling, C., Chen, J.J., Mizuno, F.: First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J. Phys. Chem. C 117, 21158–21165 (2013). https://doi.org/10.1021/jp4078689
CAS
Article
Google Scholar
Wessells, C.D., Peddada, S.V., Huggins, R.A., et al.: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011). https://doi.org/10.1021/nl203193q
CAS
Article
PubMed
Google Scholar
Wu, X.Y., Cao, Y.L., Ai, X.P., et al.: A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
CAS
Article
Google Scholar
Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
CAS
Article
PubMed
Google Scholar
Wu, X.Y., Sun, M.Y., Shen, Y.F., et al.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2 (PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036
CAS
Article
PubMed
Google Scholar
Fernández-Ropero, A.J., Piernas-Muñoz, M.J., Castillo-Martínez, E., et al.: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries. Electrochim. Acta 210, 352–357 (2016). https://doi.org/10.1016/j.electacta.2016.05.176
CAS
Article
Google Scholar
Wu, X.Y., Sun, M.Y., Guo, S.M., et al.: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021
CAS
Article
Google Scholar
Nakamoto, K., Sakamoto, R., Ito, M., et al.: Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
CAS
Article
Google Scholar
Wessells, C.D., McDowell, M.T., Peddada, S.V., et al.: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688–1694 (2012). https://doi.org/10.1021/nn204666v
CAS
Article
PubMed
Google Scholar
Wang, J., Mi, C.H., Nie, P., et al.: Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. J. Electroanal. Chem. 818, 10–18 (2018). https://doi.org/10.1016/j.jelechem.2018.04.011
CAS
Article
Google Scholar
Li, W.F., Zhang, F., Xiang, X.D., et al.: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. J. Phys. Chem. C 121, 27805–27812 (2017). https://doi.org/10.1021/acs.jpcc.7b07920
CAS
Article
Google Scholar
Wu, X.Y., Luo, Y., Sun, M.Y., et al.: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117–123 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006
CAS
Article
Google Scholar
Wu, X.Y., Wu, C.H., Wei, C.X., et al.: Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016). https://doi.org/10.1021/acsami.5b12620
CAS
Article
PubMed
Google Scholar
Lu, Y.H., Wang, L., Cheng, J.G., et al.: Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544 (2012). https://doi.org/10.1039/c2cc31777j
CAS
Article
Google Scholar
Azhar, A., Li, Y.C., Cai, Z.X., et al.: Nanoarchitectonics: a new materials horizon for Prussian blue and its analogues. Bull. Chem. Soc. Jpn. 92, 875–904 (2019). https://doi.org/10.1246/bcsj.20180368
CAS
Article
Google Scholar
Li, W.J., Han, C., Cheng, G., et al.: Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, e1900470 (2019). https://doi.org/10.1002/smll.201900470
CAS
Article
PubMed
Google Scholar
de Wet, J.F., Rolle, R.: On the existence and Autoreduction of Iron(III)-hexacyanoferrate(III). Z. Anorg. Allg. Chem. 336, 96–103 (1965). https://doi.org/10.1002/zaac.19653360114
Article
Google Scholar
Walker, R.G., Watkins, K.O.: Kinetics of complex formation between hexacyanoferrate(III) ions and iron(III) to form FeFe(CN)6 (Prussian brown). Inorg. Chem. 7, 885–888 (1968). https://doi.org/10.1021/ic50063a009
CAS
Article
Google Scholar
Kumar, A., Yusuf, S.M., Keller, L.: Structural and magnetic properties ofFe[Fe(CN)6]·4H2O. Phys. Rev. B 71, 054414 (2005). https://doi.org/10.1103/physrevb.71.054414
Article
Google Scholar
Buser, H.J., Ludi, A., Petter, W., et al.: Single-crystal study of Prussian blue: Fe4[Fe(CN)6]3·14H2O. J. Chem. Soc. Chem. Commun. (1972). https://doi.org/10.1039/c39720001299
Article
Google Scholar
You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014). https://doi.org/10.1039/c3ee44004d
CAS
Article
Google Scholar
Hu, M., Ishihara, S., Ariga, K., et al.: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem. Eur. J. 19, 1882–1885 (2013). https://doi.org/10.1002/chem.201203138
CAS
Article
PubMed
Google Scholar
Liu, Y., Qiao, Y., Zhang, W.X., et al.: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12, 386–393 (2015). https://doi.org/10.1016/j.nanoen.2015.01.012
CAS
Article
Google Scholar
Shao, T.L., Li, C., Liu, C.Y., et al.: Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 7, 1749–1755 (2019). https://doi.org/10.1039/c8ta10860a
CAS
Article
Google Scholar
Xu, L., Li, H., Wu, X.Y., et al.: Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. Electrochem. Commun. 98, 78–81 (2019). https://doi.org/10.1016/j.elecom.2018.11.019
CAS
Article
Google Scholar
Peng, J., Wang, J.S., Yi, H.C., et al.: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Adv. Energy Mater. 8, 1702856 (2018). https://doi.org/10.1002/aenm.201702856
CAS
Article
Google Scholar
Yan, C.X., Zhao, A.L., Zhong, F.P., et al.: A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 332, 135533 (2020). https://doi.org/10.1016/j.electacta.2019.135533
CAS
Article
Google Scholar
Xu, Y., Wan, J., Huang, L., et al.: Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 33, 432–441 (2020). https://doi.org/10.1016/j.ensm.2020.08.008
Article
Google Scholar
Song, J., Wang, L., Lu, Y.H., et al.: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015). https://doi.org/10.1021/ja512383b
CAS
Article
PubMed
Google Scholar
Li, W.J., Chou, S.L., Wang, J.Z., et al.: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015). https://doi.org/10.1016/j.nanoen.2015.02.019
CAS
Article
Google Scholar
Nakamoto, K., Sakamoto, R., Sawada, Y., et al.: Prussian blue-type electrodes: over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods 3, 1970010 (2019). https://doi.org/10.1002/smtd.201970010
Article
Google Scholar
Han, J., Zhang, H., Varzi, A., et al.: Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
CAS
Article
PubMed
Google Scholar
Jiang, L.W., Liu, L.L., Yue, J.M., et al.: High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, 1904427 (2020). https://doi.org/10.1002/adma.201904427
CAS
Article
Google Scholar
Betz, J., Bieker, G., Meister, P., et al.: Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019). https://doi.org/10.1002/aenm.201803170
CAS
Article
Google Scholar
Paulitsch, B., Yun, J., Bandarenka, A.S.: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Inter. 9, 8107–8112 (2017). https://doi.org/10.1021/acsami.6b15666
CAS
Article
Google Scholar
Shao, M.M., Wang, B., Liu, M.C., et al.: A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2–NaTi2(PO4)3 intercalation chemistry. ACS Appl. Energy Mater. 2, 5809–5815 (2019). https://doi.org/10.1021/acsaem.9b00935
CAS
Article
Google Scholar
Chen, L., Zhang, L.Y., Zhou, X.F., et al.: Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7, 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084
CAS
Article
PubMed
Google Scholar
Lee, J.H., Ali, G., Kim, D.H., et al.: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2017). https://doi.org/10.1002/aenm.201601491
CAS
Article
Google Scholar
Chen, H., Zhang, Z., Wei, Z., et al.: Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries. Sustain. Energy Fuels 4, 128–131 (2020)
CAS
Article
Google Scholar
Leonard, D.P., Wei, Z.X., Chen, G., et al.: Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
CAS
Article
Google Scholar
Ren, W.H., Chen, X.J., Zhao, C.: Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018). https://doi.org/10.1002/aenm.201801413
CAS
Article
Google Scholar
Bie, X.F., Kubota, K., Hosaka, T., et al.: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017). https://doi.org/10.1039/c7ta00220c
CAS
Article
Google Scholar
Phadke, S., Mysyk, R., Anouti, M.: Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J. Energy Chem. 40, 31–38 (2020). https://doi.org/10.1016/j.jechem.2019.01.025
Article
Google Scholar
Su, D.W., McDonagh, A., Qiao, S.Z., et al.: High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
CAS
Article
Google Scholar
He, G., Nazar, L.F.: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017). https://doi.org/10.1021/acsenergylett.7b00179
CAS
Article
Google Scholar
Jiang, L.W., Lu, Y.X., Zhao, C.L., et al.: Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
CAS
Article
Google Scholar
Wu, X.Y., Jian, Z.L., Li, Z.F., et al.: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54–57 (2017). https://doi.org/10.1016/j.elecom.2017.02.012
CAS
Article
Google Scholar
Matsuda, T., Kim, J., Moritomo, Y.: Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J. Am. Chem. Soc. 132, 12206–12207 (2010). https://doi.org/10.1021/ja105482k
CAS
Article
PubMed
Google Scholar
Takachi, M., Matsuda, T., Moritomo, Y.: Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 6, 025802 (2013). https://doi.org/10.7567/apex.6.025802
Article
Google Scholar
Zhang, Q., Wang, Z.J., Zhang, S.L., et al.: Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energy Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y
CAS
Article
Google Scholar
Chen, L., Gu, Q.W., Zhou, X.F., et al.: New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01946
CAS
Article
Google Scholar
Dahn, J.R., Seel, J.A.: Energy and capacity projections for practical dual-graphite cells. J. Electrochem. Soc. 147, 899 (2000). https://doi.org/10.1149/1.1393289
CAS
Article
Google Scholar
Wu, X.Y., Qi, Y.T., Hong, J.J., et al.: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. 129, 13206–13210 (2017). https://doi.org/10.1002/ange.201707473
Article
Google Scholar
Li, C., Wu, J., Ma, F., et al.: High-rate and high-voltage aqueous rechargeable zinc ammonium hybrid battery from selective cation intercalation cathode. ACS Appl. Energy Mater. 2, 6984–6989 (2019)
CAS
Article
Google Scholar
Knight, C., Voth, G.A.: The curious case of the hydrated proton. Acc. Chem. Res. 45, 101–109 (2012). https://doi.org/10.1021/ar200140h
CAS
Article
PubMed
Google Scholar
Yan, L., Huang, J.H., Guo, Z.W., et al.: Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
CAS
Article
Google Scholar
Crumbliss, A.L., Lugg, P.S., Morosoff, N.: Alkali metal cation effects in a Prussian blue surface modified electrode. Inorg. Chem. 23, 4701–4708 (1984). https://doi.org/10.1021/ic00194a057
CAS
Article
Google Scholar
Lee, H.W., Pasta, M., Wang, R.Y., et al.: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discuss. 176, 69–81 (2014). https://doi.org/10.1039/c4fd00147h
CAS
Article
PubMed
Google Scholar
Feiner, A.S., McEvoy, A.J.: The Nernst equation. J. Chem. Educ. 71, 493 (1994). https://doi.org/10.1021/ed071p493
CAS
Article
Google Scholar
Wang, X.F., Bommier, C., Jian, Z.L., et al.: Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. 129, 2955–2959 (2017). https://doi.org/10.1002/ange.201700148
Article
Google Scholar
Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-j
CAS
Article
Google Scholar
Cukierman, S.: Et tu, Grotthuss! And other unfinished stories. Biochim. Biophys. Acta 1757, 876–885 (2006). https://doi.org/10.1016/j.bbabio.2005.12.001
CAS
Article
PubMed
Google Scholar
Wu, X.Y., Hong, J.J., Shin, W., et al.: Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
CAS
Article
Google Scholar
Wu, X.Y., Qiu, S., Xu, Y.K., et al.: Hydrous nickel–iron Turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Inter. 12, 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320
CAS
Article
Google Scholar
Jiang, H., Shin, W., Ma, L., et al.: A high-rate aqueous proton battery delivering power below − 78 ºC via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 2000968 (2020). https://doi.org/10.1002/aenm.202000968
CAS
Article
Google Scholar
Liang, G.J., Mo, F.N., Yang, Q., et al.: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31, 1905873 (2019). https://doi.org/10.1002/adma.201905873
CAS
Article
Google Scholar
Wang, Y., Zhong, H., Hu, L., et al.: Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J. Mater. Chem. A 1, 2621–2630 (2013). https://doi.org/10.1039/c2ta01354a
CAS
Article
Google Scholar
Wu, X.Y., Xu, Y.K., Zhang, C., et al.: Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
CAS
Article
PubMed
Google Scholar
Lee, E., Kim, D.H., Hwang, J., et al.: Soft X-ray absorption spectroscopy study of Prussian blue analogue ACo[Fe(CN)6]H2O nano-particles (A = Na, K). J. Korean Phys. Soc. 62, 1910–1913 (2013). https://doi.org/10.3938/jkps.62.1910
CAS
Article
Google Scholar
Kamioka, H., Nakada, F., Igarashi, K., et al.: Transient photo-induced phenomena in vacancy-controlled Co-Fe cyanides. J. Phys. Conf. Ser. 148, 012031 (2009). https://doi.org/10.1088/1742-6596/148/1/012031
CAS
Article
Google Scholar
Igarashi, K., Nakada, F., Moritomo, Y.: Electronic structure of hole-doped Co–Fe cyanides: Na1.60–δCo[Fe(CN)6]0.90·2.9H2O(0.0 ≤ δ ≤ 0.85). Phys. Rev. B 78, 235106 (2008). https://doi.org/10.1103/physrevb.78.235106
Article
Google Scholar
Bácskai, J., Martinusz, K., Czirók, E., et al.: Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. J. Electroanal. Chem. 385, 241–248 (1995). https://doi.org/10.1016/0022-0728(94)03788-5
Article
Google Scholar
García-Jareño, J.J., Giménez-Romero, D., Vicente, F., et al.: EIS and AC-electrogravimetry study of Pb films in KCl, NaCl, and CsCl aqueous solutions. J. Phys. Chem. B 107, 11321–11330 (2003). https://doi.org/10.1021/jp035387h
CAS
Article
Google Scholar
Agrisuelas, J., García-Jareño, J.J., Vicente, F.: Identification of processes associated with different iron sites in the Prussian blue structure by in situ electrochemical, gravimetric, and spectroscopic techniques in the DC and AC regimes. J. Phys. Chem. C 116, 1935–1947 (2012). https://doi.org/10.1021/jp207269c
CAS
Article
Google Scholar
Ventosa, E., Paulitsch, B., Marzak, P., et al.: The mechanism of the interfacial charge and mass transfer during intercalation of alkali metal cations. Adv. Sci. 3, 1600211 (2016). https://doi.org/10.1002/advs.201600211
CAS
Article
Google Scholar
Yun, J., Pfisterer, J., Bandarenka, A.S.: How simple are the models of Na intercalation in aqueous media? Energy Environ. Sci. 9, 955–961 (2016). https://doi.org/10.1039/c5ee03197d
CAS
Article
Google Scholar
Niu, C.J., Lee, H., Chen, S.R., et al.: High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
CAS
Article
Google Scholar
Wan, P., Xie, H., Zhang, N., et al.: Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 30, 2002624 (2020). https://doi.org/10.1002/adfm.202002624
CAS
Article
Google Scholar
Yuan, X.H., Ma, F.X., Zuo, L.Q., et al.: Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem. Energy Rev. (2020). https://doi.org/10.1007/s41918-020-00075-2
Article
Google Scholar
Shin, J., Choi, J.W.: Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 10, 2001386 (2020). https://doi.org/10.1002/aenm.202001386
CAS
Article
Google Scholar
Luo, J.Y., Cui, W.J., He, P., et al.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). https://doi.org/10.1038/nchem.763
CAS
Article
PubMed
Google Scholar
Borodin, O., Self, J., Persson, K.A., et al.: Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007
CAS
Article
Google Scholar