Abstract
The rapid economic development and immense growth in the portable electronic market create tremendous demand for clean energy sources and energy storage and conversion technologies. To meet this demand, supercapacitors have emerged as a promising technology to store renewable energy resources. Based on this, this review will provide a detailed and current overview of the various materials explored as potential electrodes and electrolytes in the development of efficient supercapacitors along with corresponding synthesis routes and electrochemical properties. In addition, this review will provide introductions into the various types of supercapacitors as well as fundamental parameters that affect supercapacitor performance. Finally, this review will conclude with presentations on the role of electrolytes in supercapacitors and corresponding materials along with challenges and perspectives to guide future development.
Graphic Abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Han, J., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z
Im, H., Gunjakar, J.L., Inamdar, A., et al.: Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 10, 8953–8961 (2018). https://doi.org/10.1039/C7NR09626G
Dong, J., Lu, G., Wu, F., et al.: Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl. Surf. Sci. 427, 986–993 (2018). https://doi.org/10.1016/j.apsusc.2017.07.291
Dubal, D.P., Chodankar, N.R., Kim, D.H., et al.: Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
Song, Q.S., Li, Y.Y., Chan, S.L.I.: Physical and electrochemical characteristics of nanostructured nickel hydroxide powder. J. Appl. Electrochem. 35, 157–162 (2005). https://doi.org/10.1007/s10800-004-6301-x
Cao, L., Xu, F., Liang, Y.Y., et al.: Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16, 1853–1857 (2004). https://doi.org/10.1002/adma.200400183
Bose, S., Kuila, T., Mishra, A.K., et al.: Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767–784 (2012). https://doi.org/10.1039/C1JM14468E
Yuan, J., Tang, S., Zhu, Z., et al.: Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 18022–18030 (2017). https://doi.org/10.1007/s10854-017-7745-1
Wang, R., Sui, Y., Huang, S., et al.: High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018). https://doi.org/10.1016/j.cej.2017.09.004
Sharma, V., Singh, I., Chandra, A.: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018). https://doi.org/10.1038/s41598-018-19815-y
Conway, B.E., Pell, W.G.: Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003). https://doi.org/10.1007/s10008-003-0395-7
Miller, J.R.: Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim. Acta 52, 1703–1708 (2006). https://doi.org/10.1016/j.electacta.2006.02.056
Sugimoto, W., Yokoshima, K., Murakami, Y., et al.: Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 52, 1742–1748 (2006). https://doi.org/10.1016/j.electacta.2006.02.054
Chen, Z., Augustyn, V., Wen, J., et al.: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011). https://doi.org/10.1002/adma.201003658
Paleo, A.J., Staiti, P., Brigandì, A., et al.: Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes. Energy Storage Mater. 12, 204–215 (2018). https://doi.org/10.1016/j.ensm.2017.12.013
Du, C., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006). https://doi.org/10.1088/0957-4484/17/21/005
Park, J.H., Kim, S., Park, O.O., et al.: Improved asymmetric electrochemical capacitor using Zn–Co co-doped Ni(OH)2 positive electrode material. Appl. Phys. A 82, 593–597 (2006). https://doi.org/10.1007/s00339-005-3400-4
Kotz, R., Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)
Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004). https://doi.org/10.1021/cr020730k
Yu, G., Xie, X., Pan, L., et al.: Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006
Zhi, M., Xiang, C., Li, J., et al.: Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013). https://doi.org/10.1039/C2NR32040A
Bello, A., Makgopa, K., Fabiane, M., et al.: Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J. Mater. Sci. 48, 6707–6712 (2013). https://doi.org/10.1007/s10853-013-7471-x
Icaza, J.C., Guduru, R.K.: Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. J. Alloys Compd. 735, 735–740 (2018). https://doi.org/10.1016/j.jallcom.2017.11.184
Subramanian, V.: Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175, 511–515 (2004). https://doi.org/10.1016/j.ssi.2004.01.070
Lee, J.W., Ahn, T., Kim, J.H., et al.: Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 56, 4849–4857 (2011). https://doi.org/10.1016/j.electacta.2011.02.116
Xing, Z., Chu, Q., Ren, X., et al.: Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463–467 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.012
Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J
Tan, Y., Liu, Y., Kong, L., et al.: Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in situ reduction method. J. Power Sources 363, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.054
Srinivasan, V.: An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144, L210 (1997). https://doi.org/10.1149/1.1837859
Jänes, A., Kurig, H., Lust, E.: Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon N.Y. 45, 1226–1233 (2007). https://doi.org/10.1016/j.carbon.2007.01.024
Vangari, M., Pryor, T., Jiang, L.: Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102
Iro, Z.S., Subramani, C., Dash, S.S.: A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50
Jayalakshmi, M., Balasubramanian, K.: Simple capacitors to supercapacitors—an overview. Int. J. Electrochem. Sci. 3, 1196–1217 (2008)
Spyker, R.L.: Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans. Aerosp. Electron. Syst. 36, 829–836 (2000). https://doi.org/10.1109/7.869502
Sharma, P., Bhatti, T.S.: A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51, 2901–2912 (2010). https://doi.org/10.1016/j.enconman.2010.06.031
Gao, H., Xin, S., Goodenough, J.B.: The origin of superior performance of Co(OH)2 in hybrid supercapacitors. Chem 3, 26–28 (2017). https://doi.org/10.1016/j.chempr.2017.06.008
Shi, F., Li, L., Wang, X., et al.: Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4, 41910–41921 (2014). https://doi.org/10.1039/C4RA06136E
Brousse, T., Belanger, D., Long, J.W.: To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015). https://doi.org/10.1149/2.0201505jes
Gund, G.S., Dubal, D.P., Jambure, S.B., et al.: Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties. J. Mater. Chem. A 1, 4793 (2013). https://doi.org/10.1039/c3ta00024a
Wang, H., Lin, J., Shen, Z.X.: Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 1, 225–255 (2016). https://doi.org/10.1016/j.jsamd.2016.08.001
Afzal, A., Abuilaiwi, F.A., Habib, A., et al.: Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.128
Seung, K., Hyo, C., Kim, B.: Electrochimica acta preparation and electrochemical properties of RuO2-containing activated carbon nano fiber composites with hollow cores. Electrochim. Acta 174, 290–296 (2015). https://doi.org/10.1016/j.electacta.2015.05.176
Wang, J.-G., Kang, F., Wei, B.: Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater Sci. 74, 51–124 (2015). https://doi.org/10.1016/j.pmatsci.2015.04.003
Zhang, Y., Zhao, Y., An, W., et al.: Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 5, 10039–10047 (2017). https://doi.org/10.1039/C7TA00963A
Gupta, V., Kusahara, T., Toyama, H., et al.: Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem. Commun. 9, 2315–2319 (2007). https://doi.org/10.1016/j.elecom.2007.06.041
González, A., Goikolea, E., Barrena, J.A., et al.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249
Kate, R.S., Khalate, S.A., Deokate, R.J.: Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262
Zhang, Y., Feng, H., Wu, X., et al.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 34, 4889–4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
Zang, X., Sun, C., Dai, Z., et al.: Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 691, 144–150 (2017). https://doi.org/10.1016/j.jallcom.2016.08.233
Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009). https://doi.org/10.1039/b813846j
Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)
Salunkhe, R.R., Lin, J., Malgras, V., et al.: Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11, 211–218 (2015). https://doi.org/10.1016/j.nanoen.2014.09.030
Yan, J., Wang, Q., Wei, T., et al.: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014). https://doi.org/10.1002/aenm.201300816
Choudhary, N., Li, C., Moore, J., et al.: Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017). https://doi.org/10.1002/adma.201605336
Yuan, C., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
Moreno-Fernandez, G., Ibañez, J., Rojo, J.M., et al.: Activated carbon fiber monoliths as supercapacitor electrodes. Adv. Mater. Sci. Eng. 2017, 1–8 (2017). https://doi.org/10.1155/2017/3625414
Simon, P., Burke, A.: Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 17, 38–43 (2008)
Raymundo-Piñero, E., Leroux, F., Béguin, F.: A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 1877–1882 (2006). https://doi.org/10.1002/adma.200501905
Saleem, A.M., Desmaris, V., Enoksson, P.: Performance enhancement of carbon nanomaterials for supercapacitors. J. Nanomater. 17, 1537269 (2016). https://doi.org/10.1155/2016/1537269
Li, L., Wang, X., Wang, S., et al.: Activated carbon prepared from lignite as supercapacitor electrode materials. Electroanalysis 28, 243–248 (2016). https://doi.org/10.1002/elan.201500532
Liu, L., Niu, Z., Chen, J.: Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45, 4340–4363 (2016). https://doi.org/10.1039/C6CS00041J
Futaba, D.N., Hata, K., Yamada, T., et al.: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006). https://doi.org/10.1038/nmat1782
Zhang, H., Cao, G., Wang, Z., et al.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008). https://doi.org/10.1021/nl800925j
Zheng, H., Wang, J., Jia, Y., et al.: In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J. Power Sources 216, 508–514 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.047
Pan, H., Li, J., Feng, Y.P.: Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010). https://doi.org/10.1007/s11671-009-9508-2
Chen, J.H., Li, W.Z., Wang, D.Z., et al.: Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon N.Y. 40, 1193–1197 (2002). https://doi.org/10.1016/S0008-6223(01)00266-4
Du, C., Pan, N.: Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.092
Lee, S.W., Kim, B.-S.S., Chen, S., et al.: Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2008). https://doi.org/10.1021/ja807059k
Lee, S.W., Yabuuchi, N., Gallant, B.M., et al.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010). https://doi.org/10.1038/nnano.2010.116
Niu, C., Sichel, E.K., Hoch, R., et al.: High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997). https://doi.org/10.1063/1.118568
Shi, R., Jiang, L., Pan, C.: A single-step process for preparing supercapacitor electrodes from carbon nanotubes. Soft Nanosci. Lett. 1, 11–15 (2011). https://doi.org/10.4236/snl.2011.11003
Alam, S.N., Sharma, N., Kumar, L.: Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 6, 1–18 (2017). https://doi.org/10.4236/graphene.2017.61001
Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
Pumera, M.: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146 (2010). https://doi.org/10.1039/c002690p
Tan, Y.B., Lee, J.-M.: Graphene for supercapacitor applications. J. Mater. Chem. A 1, 14814 (2013). https://doi.org/10.1039/c3ta12193c
Zhang, L.L., Zhao, X., Stoller, M.D., et al.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitor. Nano Lett. 12, 1806–1812 (2012). https://doi.org/10.1021/nl203903z
Wang, Y., Shi, Z., Huang, Y., et al.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f
Li, N., Tang, S., Dai, Y., et al.: The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. J. Mater. Sci. 49, 2802–2809 (2014). https://doi.org/10.1007/s10853-013-7986-1
Lokhande, V.C., Lokhande, A.C., Lokhande, C.D., et al.: Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J. Alloys Compd. 682, 381–403 (2016). https://doi.org/10.1016/j.jallcom.2016.04.242
Wang, Y., Guo, J., Wang, T., et al.: Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5, 1667–1689 (2015). https://doi.org/10.3390/nano5041667
Long, J.W., Swider, K.E., Merzbacher, C.I., et al.: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999). https://doi.org/10.1021/la980785a
Sugimoto, W., Iwata, H., Yokoshima, K., et al.: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J. Phys. Chem. B 109, 7330–7338 (2005). https://doi.org/10.1021/jp044252o
Arunachalam, R., Gnanamuthu, R.M., Al Ahmad, M., et al.: Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors. Surf. Coat. Technol. 276, 336–340 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.054
McKeown, D.A., Hagans, P.L., Carette, L.P.L., et al.: Structure of hydrous ruthenium oxides: implications for charge storage. J. Phys. Chem. B 103, 4825–4832 (1999). https://doi.org/10.1021/jp990096n
Kim, H., Popov, B.N.: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sources 104, 52–61 (2002)
Zheng, J.P., Cygan, P.J., Jow, T.R.: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 98–102 (1995)
Ramani, M., Haran, B.S., White, R.E., et al.: Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J. Electrochem. Soc. 148, A374 (2001). https://doi.org/10.1149/1.1357172
Kuratani, K., Kiyobayashi, T., Kuriyama, N.: Influence of the mesoporous structure on capacitance of the RuO2 electrode. J. Power Sources 189, 1284–1291 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.087
Mohajernia, S., Hejazi, S., Mazare, A., et al.: Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. Mater. Today Energy 6, 46–52 (2017). https://doi.org/10.1016/j.mtener.2017.08.001
Ma, H., Kong, D., Xu, Y., et al.: Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017). https://doi.org/10.1002/smll.201701026
Chen, L.Y., Hou, Y., Kang, J.L., et al.: Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3, 851–856 (2013). https://doi.org/10.1002/aenm.201300024
Wu, Z.S., Wang, D.W., Ren, W., et al.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010). https://doi.org/10.1002/adfm.201001054
Kong, S., Cheng, K., Ouyang, T., et al.: Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochim. Acta 246, 433–442 (2017). https://doi.org/10.1016/j.electacta.2017.06.019
Cho, S., Kim, J., Jo, Y., et al.: Bendable RuO2/graphene thin film for fully flexible supercapacitor electrodes with superior stability. J. Alloys Compd. 725, 108–114 (2017). https://doi.org/10.1016/j.jallcom.2017.07.135
Zhang, Y., Park, S.: Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon N.Y. 122, 287–297 (2017). https://doi.org/10.1016/j.carbon.2017.06.085
Wu, N., Kuo, S., Lee, M.: Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J. Power Sources 104, 62–65 (2002)
Hu, C., Chen, W., Chang, K.: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151, A281 (2004). https://doi.org/10.1149/1.1639020
Yong-gang, W., Xiao-gang, Z.: Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim. Acta 49, 1957–1962 (2004). https://doi.org/10.1016/j.electacta.2003.12.023
Hu, C., Chang, K., Lin, M., et al.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)
Kim, I.H., Kim, K.: Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J. Electrochem. Soc. 153, A383 (2006). https://doi.org/10.1149/1.2147406
Yue-feng, S.U., Feng, W.U., Li-ying, B.A.O., et al.: RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Mater. 22, 53–58 (2007)
Wen, J., Ruan, X., Zhou, Z.: Preparation and electrochemical performance of novel ruthenium–manganese oxide electrode materials for electrochemical capacitors. J. Phys. Chem. Solids 70, 816–820 (2009). https://doi.org/10.1016/j.jpcs.2009.03.015
Lin, Y., Lee, K., Chen, K., et al.: Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 256, 1042–1045 (2009). https://doi.org/10.1016/j.apsusc.2009.08.026
Egashira, M., Matsuno, Y., Yoshimoto, N., et al.: Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt. J. Power Sources 195, 3036–3040 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.046
Xia, H., Shirley Meng, Y., Yuan, G., et al.: A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15, A60 (2012). https://doi.org/10.1149/2.023204esl
Fugare, B.Y., Lokhande, B.J.: Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode application. Mater. Sci. Semicond. Process. 71, 121–127 (2017). https://doi.org/10.1016/j.mssp.2017.07.016
Li, X., Zheng, F., Luo, Y., et al.: Preparation and electrochemical performance of TiO2–SnO2 doped RuO2 composite electrode for supercapacitors. Electrochim. Acta 237, 177–184 (2017). https://doi.org/10.1016/j.electacta.2017.03.191
Arunachalam, R., Prataap, R.K.V., Pavul Raj, R., et al.: Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications. Surf. Eng. 844, 1–7 (2018). https://doi.org/10.1080/02670844.2018.1426408
Toupin, M., Brousse, T., Bélanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j
Toupin, M., Brousse, T., Belanger, D.: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002). https://doi.org/10.1021/cm020408q
Devaraj, S., Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008). https://doi.org/10.1021/jp7108785
Zhu, J., Shi, W., Xiao, N., et al.: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769–2774 (2012). https://doi.org/10.1021/am300388u
Chang, J.K., Huang, C.H., Lee, M.T., et al.: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim. Acta 54, 3278–3284 (2009). https://doi.org/10.1016/j.electacta.2008.12.042
Subramanian, V., Zhu, H., Vajtai, R., et al.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207–20214 (2005). https://doi.org/10.1021/jp0543330
Sun, C., Zhang, Y., Song, S., et al.: Tunnel-dependent supercapacitance of MnO2: effects of crystal structure. J. Appl. Crystallogr. 46, 1128–1135 (2013). https://doi.org/10.1107/S0021889813015999
Ghodbane, O., Pascal, J.L., Favier, F.: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009). https://doi.org/10.1021/am900094e
Dongale, T.D., Jadhav, P.R., Navathe, G.J., et al.: Development of nano fiber MnO2 thin film electrode and cyclic voltammetry behavior modeling using artificial neural network for supercapacitor application. Mater. Sci. Semicond. Process. 36, 43–48 (2015). https://doi.org/10.1016/j.mssp.2015.02.084
Wei, J., Nagarajan, N., Zhitomirsky, I.: Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 186, 356–361 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.003
Ghodbane, O., Pascal, J.L., Fraisse, B., et al.: Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493–3505 (2010). https://doi.org/10.1021/am100669k
Lu, W., Huang, S., Miao, L., et al.: Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 28, 1324–1329 (2017). https://doi.org/10.1016/j.cclet.2017.04.007
Pang, S.-C., Anderson, M.A., Chapman, T.W.: Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147, 444 (2000). https://doi.org/10.1149/1.1393216
Hu, C.-C.: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4, 105–109 (2002). https://doi.org/10.1016/S1388-2481(01)00285-5
Ali, G.A.M., Yusoff, M.M., Shaaban, E.R., et al.: High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram. Int. 43, 8440–8448 (2017). https://doi.org/10.1016/j.ceramint.2017.03.195
Liu, J., Jiang, J., Bosman, M., et al.: Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem. 22, 2419–2426 (2012). https://doi.org/10.1039/C1JM14804D
Jiang, H., Li, C., Sun, T., et al.: High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core–shell nanostructures. Chem. Commun. 48, 2606 (2012). https://doi.org/10.1039/c2cc18079k
Yang, P., Xiao, X., Li, Y., et al.: Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013). https://doi.org/10.1021/nn306044d
Sarkar, D., Khan, G.G., Singh, A.K., et al.: High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays. J. Phys. Chem. C 117, 15523–15531 (2013). https://doi.org/10.1021/jp4039573
Sherrill, S.A., Duay, J., Gui, Z., et al.: MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. Phys. Chem. Chem. Phys. 13, 15221 (2011). https://doi.org/10.1039/c1cp21815h
Zhang, J.F., Hou, S.P.: The generalization of the Poisson sum formula associated with the linear canonical transform. J. Appl. Math. 9, 102039 (2012). https://doi.org/10.1155/2012/102039
Sharma, R.K., Rastogi, A.C., Desu, S.B.: Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 53, 7690–7695 (2008). https://doi.org/10.1016/j.electacta.2008.04.028
Nam, K.W., Lee, C.W., Yang, X.Q., et al.: Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: supercapacitive behaviour in aqueous and organic electrolytes. J. Power Sources 188, 323–331 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.133
Prasad, K.R., Miura, N.: Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochem. Solid-State Lett. 7, A425 (2004). https://doi.org/10.1149/1.1805504
Lv, P., Feng, Y.Y., Li, Y., et al.: Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J. Power Sources 220, 160–168 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.073
Li, Q., Lu, X.F., Xu, H., et al.: Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 2726–2733 (2014). https://doi.org/10.1021/am405271q
Kang, Y.J., Kim, B., Chung, H., et al.: Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synth. Met. 160, 2510–2514 (2010). https://doi.org/10.1016/j.synthmet.2010.09.036
Liu, R., Sang, B.L.: MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942–2943 (2008). https://doi.org/10.1021/ja7112382
Cakici, M., Reddy, K.R., Alonso-Marroquin, F.: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017). https://doi.org/10.1016/j.cej.2016.10.012
Wang, J., Dong, L., Xu, C., et al.: Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 10, 10851–10859 (2018). https://doi.org/10.1021/acsami.7b19195
Fan, Z., Chen, J., Zhang, B., et al.: High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diam. Relat. Mater. 17, 1943–1948 (2008). https://doi.org/10.1016/j.diamond.2008.04.015
Ghosh, D., Giri, S., Mandal, M., et al.: High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Adv. 4, 26094–26101 (2014). https://doi.org/10.1039/C4RA02653E
Ci, S., Wen, Z., Qian, Y., et al.: NiO-microflower formed by nanowire-weaving nanosheets with interconnected Ni-network decoration as supercapacitor electrode. Sci. Rep. 5, 11919 (2015). https://doi.org/10.1038/srep11919
Zhang, Y.Q., Xia, X.H., Tu, J.P., et al.: Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sources 199, 413–417 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.065
Xia, X., Tu, J., Wang, X., et al.: Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 21, 671–679 (2011). https://doi.org/10.1039/C0JM02784G
Srinivasan, V., Weidner, J.W.: Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration. J. Electrochem. Soc. 147, 880 (2000). https://doi.org/10.1149/1.1393286
Gund, G.S., Lokhande, C.D., Park, H.S.: Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. J. Alloys Compd. 741, 549–556 (2018). https://doi.org/10.1016/j.jallcom.2018.01.166
Patil, U.M., Salunkhe, R.R., Gurav, K.V., et al.: Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 255, 2603–2607 (2008). https://doi.org/10.1016/j.apsusc.2008.07.192
Miao, F., Tao, B., Ci, P., et al.: 3D ordered NiO/silicon MCP array electrode materials for electrochemical supercapacitors. Mater. Res. Bull. 44, 1920–1925 (2009). https://doi.org/10.1016/j.materresbull.2009.05.004
Ren, Y., Gao, L.: From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J. Am. Ceram. Soc. 93, 3560–3564 (2010). https://doi.org/10.1111/j.1551-2916.2010.04090.x
Al-Osta, A., Samer, B.S., Jadhav, V.V., et al.: NiO@CuO@Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties. J. Solid State Electrochem. 21, 2609–2614 (2017). https://doi.org/10.1007/s10008-016-3489-8
Hu, Q., Gu, Z., Zheng, X., et al.: Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem. Eng. J. 304, 223–231 (2016). https://doi.org/10.1016/j.cej.2016.06.097
Yang, H., Xu, H., Li, M., et al.: Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8, 1774–1779 (2016). https://doi.org/10.1021/acsami.5b09526
Qiu, K., Lu, M., Luo, Y., et al.: Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. J. Mater. Chem. A 5, 5820–5828 (2017). https://doi.org/10.1039/C7TA00506G
Ouyang, Y., Xia, X., Ye, H., et al.: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 10, 3549–3561 (2018). https://doi.org/10.1021/acsami.7b16021
Zhang, X., Shi, W., Zhu, J., et al.: Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 3, 643–652 (2010). https://doi.org/10.1007/s12274-010-0024-6
Lu, Z., Chang, Z., Liu, J., et al.: Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 4, 658–665 (2011). https://doi.org/10.1007/s12274-011-0121-1
Jagadale, A.D., Kumbhar, V.S., Dhawale, D.S., et al.: Potentiodynamically deposited nickel oxide (NiO) nanoflakes for pseudocapacitors. J. Electroanal. Chem. 704, 90–95 (2013). https://doi.org/10.1016/j.jelechem.2013.06.020
Kim, S., Lee, J., Ahn, H., et al.: Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Inter. 5, 1596–1603 (2013). https://doi.org/10.1021/am3021894
Zhu, S., Dai, Y., Huang, W., et al.: In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors. Mater. Lett. 161, 731–734 (2015). https://doi.org/10.1016/j.matlet.2015.09.086
Cai, G., Wang, X., Cui, M., et al.: Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015). https://doi.org/10.1016/j.nanoen.2014.12.031
Huang, M., Li, F., Zhang, Y.X., et al.: Hierarchical NiO nanoflake coated CuO flower core-shell nanostructures for supercapacitor. Ceram. Int. 40, 5533–5538 (2014). https://doi.org/10.1016/j.ceramint.2013.10.143
Jiao, Y., Liu, Y., Yin, B., et al.: Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90–98 (2014). https://doi.org/10.1016/j.nanoen.2014.09.002
Gund, G.S., Dubal, D.P., Shinde, S.S., et al.: Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl. Mater. Interfaces. 6, 3176–3188 (2014). https://doi.org/10.1021/am404422g
Ede, S.R., Anantharaj, S., Kumaran, K.T., et al.: One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv. 7, 5898–5911 (2017). https://doi.org/10.1039/C6RA26584G
Zhang, X., Li, C., Miao, W., et al.: Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Sci. China Technol. Sci. 58, 1871–1876 (2015). https://doi.org/10.1007/s11431-015-5934-9
Wang, H., Gao, J., Li, Z., et al.: One-step synthesis of hierarchical α-Ni(OH)2 flowerlike architectures and their gas sensing properties for NOx at room temperature. CrystEngComm 14, 6843 (2012). https://doi.org/10.1039/c2ce25553g
Visscher, W., Barendrecht, E.: Investigation of thin-film α- and β-Ni(OH)2 electrodes in alkaline solutions. J. Electroanal. Chem. Interfacial Electrochem. 154, 69–80 (1983). https://doi.org/10.1016/S0022-0728(83)80532-4
Bode, H., Dehmelt, K., Witte, J.: Zur Kenntnis der Nickelhydroxidelektrode—I. Über das nickel(II)-hydroxidhydrat. Electrochim. Acta 11, 1079–1087 (1966). https://doi.org/10.1016/0013-4686(66)80045-2
Bernard, M.C., Cortes, R., Keddam, M., et al.: Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sources 63, 247–254 (1996). https://doi.org/10.1016/S0378-7753(96)02482-2
Quimica, D.D.F.: A simple and novel method for preparing Ni(OH)2 part I: structural studies and voltammetric response. J. Appl. Electrochem. 24, 256–260 (1994)
Oesten, R., Kasper, M., Huggins, R.A., et al.: Structural aspects of undoped and doped nickel hydroxides. Ionics (Kiel) 2, 293–301 (1996)
Zhao, D., Bao, S., Zhou, W., et al.: Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869–874 (2007). https://doi.org/10.1016/j.elecom.2006.11.030
Кovalenko, V., Kotok, V., Bolotin, O.: Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. East. Eur. J. Enterp. Technol. 5, 17–22 (2016). https://doi.org/10.15587/1729-4061.2016.79406
Lang, J., Kong, L., Wu, W., et al.: A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13, 333–340 (2009). https://doi.org/10.1007/s10008-008-0560-0
Lokhande, P.E., Chavan, U.S.: Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 218C, 225–228 (2018). https://doi.org/10.1016/j.matlet.2018.02.012
Chai, H., Peng, X., Liu, T., et al.: High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes. RSC Adv. 7, 36617–36622 (2017). https://doi.org/10.1039/C7RA04986B
Lu, Z., Chang, Z., Zhu, W., et al.: Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651 (2011). https://doi.org/10.1039/c1cc13796d
Cui, H., Xue, J., Wang, M.: Synthesis of high electrochemical performance Ni(OH)2 nanosheets through a solvent-free reaction for application in supercapacitor. Adv. Powder Technol. 26, 434–438 (2015). https://doi.org/10.1016/j.apt.2014.11.016
Aguilera, L., Leyet, Y., Peña-Garcia, R., et al.: Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem. Phys. Lett. 677, 75–79 (2017). https://doi.org/10.1016/j.cplett.2017.03.084
Kore, R.M., Lokhande, B.J.: Hierarchical mesoporous network of amorphous α-Ni(OH)2 for high performance supercapacitor electrode material synthesized from a novel solvent deficient approach. Electrochim. Acta 245, 780–790 (2017). https://doi.org/10.1016/j.electacta.2017.06.001
Li, X.J., Song, Z.W., Guo, W., et al.: Vertically porous Ni(OH)2/Ni thin film on carbon cloth for high performance flexible supercapacitors. Mater. Lett. 190, 20–23 (2017). https://doi.org/10.1016/j.matlet.2016.12.094
Lokhande, P.E., Panda, H.S.: Synthesis and characterization of Ni.Co(OH)2 material for supercapacitor application. IARJSET 2, 10–13 (2015). https://doi.org/10.17148/iarjset.2015.2903
Xi, Y., Wei, G., Li, J., et al.: Facile synthesis of MnO2–Ni(OH)2 3D ridge-like porous electrode materials by seed-induce method for high-performance asymmetric supercapacitor. Electrochim. Acta 233, 26–35 (2017). https://doi.org/10.1016/j.electacta.2017.02.038
Bai, X., Liu, Q., Liu, J., et al.: Hierarchical Co3O4@Ni(OH)2 core–shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem. Eng. J. 315, 35–45 (2017). https://doi.org/10.1016/j.cej.2017.01.010
Ye, L., Zhao, L., Zhang, H., et al.: Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J. Mater. Chem. A 5, 1603–1613 (2017). https://doi.org/10.1039/C6TA09547J
Zeng, Z., Sun, P., Zhu, J., et al.: Porous petal-like Ni(OH)2–MnOx nanosheet electrodes grown on carbon fiber paper for supercapacitors. Surf. Interf. 8, 73–82 (2017). https://doi.org/10.1016/j.surfin.2017.04.011
Hao, J., Wang, X., Liu, F., et al.: Facile synthesis ZnS/ZnO/Ni(OH)2 composites grown on Ni foam: a bifunctional materials for photocatalysts and supercapacitors. Sci. Rep. 7, 3021 (2017). https://doi.org/10.1038/s41598-017-03200-2
Ke, Q., Guan, C., Zhang, X., et al.: Surface-charge-mediated formation of H-TiO2 @Ni(OH)2 heterostructures for high-performance supercapacitors. Adv. Mater. 29, 1604164 (2017). https://doi.org/10.1002/adma.201604164
Nguyen, T., Boudard, M., João Carmezim, M., et al.: NixCo1−x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy 126, 208–216 (2017). https://doi.org/10.1016/j.energy.2017.03.024
Pan, Y., Gao, H., Zhang, M., et al.: Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)2 for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 497, 50–56 (2017). https://doi.org/10.1016/j.jcis.2017.02.053
Wang, M., Li, Z., Wang, C., et al.: Novel core–shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv. Funct. Mater. 27, 1701014 (2017). https://doi.org/10.1002/adfm.201701014
Dong, B., Li, M., Chen, S., et al.: Formation of g-C3N4 @Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl. Mater. Interfaces. 9, 17890–17896 (2017). https://doi.org/10.1021/acsami.7b02693
Li, L., Qin, J., Bi, H., et al.: Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode. Sci. Rep. 7, 43413 (2017). https://doi.org/10.1038/srep43413
Lu, K., Zhang, J., Wang, Y., et al.: Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors. ACS Sustain. Chem. Eng. 5, 821–827 (2017). https://doi.org/10.1021/acssuschemeng.6b02144
Wang, H., Shi, X., Zhang, W., et al.: One-pot hydrothermal synthesis of flower-like β-Ni(OH)2 encapsulated by reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 711, 643–651 (2017). https://doi.org/10.1016/j.jallcom.2017.04.035
Kazemi, S.H., Malae, K.: Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors. J. Iran. Chem. Soc. 14, 419–425 (2017). https://doi.org/10.1007/s13738-016-0990-z
Wei, G., Xu, X., Liu, J., et al.: Carbon quantum dots decorated hierarchical Ni(OH)2 with lamellar structure for outstanding supercapacitor. Mater. Lett. 186, 131–134 (2017). https://doi.org/10.1016/j.matlet.2016.09.126
Kalaji, M., Murphy, P.J., Williams, G.O.: Study of conducting polymers for use as redox supercapacitors. Synth. Met. 102, 1360–1361 (1999). https://doi.org/10.1016/S0379-6779(98)01334-4
Gupta, V., Miura, N.: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 60, 1466–1469 (2006). https://doi.org/10.1016/j.matlet.2005.11.047
Ryu, K.S., Wu, X., Lee, Y.G., et al.: Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane. J. Appl. Polym. Sci. 89, 1300–1304 (2003). https://doi.org/10.1002/app.12242
Meng, Q., Cai, K., Chen, Y., et al.: Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
Rudge, A., Davey, J., Raistrick, I., et al.: Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994). https://doi.org/10.1016/0378-7753(94)80053-7
Giannelis, E.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996). https://doi.org/10.1002/adma.19960080104
Conway, B.E.: Electrochemical capacitors. Electrochem.Cwru. Edu. 17, 34–37 (2003). https://doi.org/10.1007/978-3-662-46657-5_17
Ryu, K.S., Kim, K.M., Park, Y.J., et al.: Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics 152–153, 861–866 (2002). https://doi.org/10.1016/S0167-2738(02)00386-7
Hashmi, S.A., Upadhyaya, H.M.: Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 152–153, 883–889 (2002). https://doi.org/10.1016/S0167-2738(02)00390-9
Naoi, K., Suematsu, S., Manago, A.: Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000). https://doi.org/10.1149/1.1393212
Sivaraman, P., Thakur, A., Kushwaha, R.K., et al.: Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem. Solid-State Lett. 9, A435 (2006). https://doi.org/10.1149/1.2213357
Wang, K., Huang, J., Wei, Z.: Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255
Shi, Y., Pan, L., Liu, B., et al.: Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2, 6086–6091 (2014). https://doi.org/10.1039/C4TA00484A
Gnanakan, S.R.P., Rajasekhar, M., Subramania, A.: Synthesis of polythiophene nanoparticles by surfactant—assisted dilute polymerization method for high performance redox supercapacitors. Int. J. Electrochem. Sci. 4, 1289–1301 (2009)
Frackowiak, E., Khomenko, V., Jurewicz, K., et al.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413–418 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.030
Zhou, Y., Qin, Z.Y., Li, L., et al.: Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim. Acta 55, 3904–3908 (2010). https://doi.org/10.1016/j.electacta.2010.02.022
Ates, M., Eren, N., Osken, I., et al.: Poly(2,6-di(thiophene-2-yl)-3,5bis(4-(thiophene-2-yl)phenyl)dithieno [3,2-b;2′,3′-d]thiophene)/carbon nanotube composite for capacitor applications. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40061
Park, J.H., Ko, J.M., Park, O.O., et al.: Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)
Park, J.H., Park, O.O., Shin, K.H., et al.: An electrochemical capacitor based on a Ni(OH)(2)/activated carbon composite electrode. Electrochem. Solid-State Lett. 5, H7–H10 (2002). https://doi.org/10.1149/1.1432245
Zhou, Y.K., He, B.L., Zhou, W.J., et al.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 49, 257–262 (2004). https://doi.org/10.1016/j.electacta.2003.08.007
Zhang, H., Hu, Z., Li, M., et al.: A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J. Mater. Chem. A 2, 17024–17030 (2014). https://doi.org/10.1039/C4TA03369H
Li, J., Zhao, W., Huang, F., et al.: Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103 (2011). https://doi.org/10.1039/c1nr10802f
Fu, G.R., Hu, Z.A., Xie, L.J., et al.: Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 4, 1052–1062 (2009)
Yang, G.W., Xu, C.L., Li, H.L.: Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2, 6537 (2008). https://doi.org/10.1039/b815647f
Fu, X.M.: The Influence of the hydrothermal temperature on the morphologies of β-Ni(OH)2 nanospheres and nanoflakes. Appl. Mech. Mater. 159, 376–379 (2012). https://doi.org/10.4028/www.scientific.net/AMM.159.376
Zhu, S., Zhang, H., Chen, P., et al.: Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors. J. Mater. Chem. A 3, 1540–1548 (2015). https://doi.org/10.1039/C4TA04921G
Gould, R.D.: Structure and electrical conduction properties of phthalocyanine thin films. Coord. Chem. Rev. 156, 237–274 (1996)
Khallaf, H., Chai, G., Lupan, O., et al.: Investigation of chemical bath deposition of ZnO thin films using six different complexing agents. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/13/135304
Nagayama, H., Honda, H., Kawahara, H.: A new process for silica coating. J. Electrochem. Soc. 135, 2013–2015 (1988). https://doi.org/10.1149/1.2096198
Mane, R.S., Lokhande, C.D.: Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000). https://doi.org/10.1016/S0254-0584(00)00217-0
Patil, U.M., Gurav, K.V., Kim, J.H., et al.: Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour. Bull. Mater. Sci. 37, 27–33 (2014). https://doi.org/10.1007/s12034-014-0617-x
Gurav, K.V., Patil, U.M., Shin, S.W., et al.: Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloys Compd. 573, 27–31 (2013). https://doi.org/10.1016/j.jallcom.2013.03.193
Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90, 33–72 (1990). https://doi.org/10.1021/cr00099a003
Brinker, C.J., Frye, G.C., Hurd, A.J., et al.: Fundamentals of sol–gel dip coating. Thin Solid Films 201, 97–108 (1991). https://doi.org/10.1016/0040-6090(91)90158-T
Brinker, C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press (ed) San Diego, pp. 787–837 (1990)
Lin, C.K., Chuang, K.H., Lin, C.Y., et al.: Manganese oxide films prepared by sol–gel process for supercapacitor application. Surf. Coat. Technol. 202, 1272–1276 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.049
Jeyalakshmi, K., Purushothaman, K.K., Muralidharan, G.: Thickness dependent supercapacitor behaviour of sol–gel spin coated nanostructured vanadium pentoxide thin films. Philos. Mag. 93, 1490–1499 (2013). https://doi.org/10.1080/14786435.2012.745654
Zhang, H., Feng, J., Zhang, M.: Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Mater. Res. Bull. 43, 3221–3226 (2008). https://doi.org/10.1016/j.materresbull.2008.03.003
Lang, J.W., Kong, L.B., Wu, W.J., et al.: Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 35, 4213–4215 (2008). https://doi.org/10.1039/b800264a
Wieczorek-Ciurowa, K., Gamrat, K.: Some aspects of mechanochemical reactions. Paper Presented at the 1st Workshop on Synthesis and Analysis of Nanomaterials and Nanostructures/3rd Czech-Silesian Saxony Mechanics Colloquium. Wroclaw, Poland, 21–22 November 2005
Marx, W.: Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 39, 5143–5146 (2004). https://doi.org/10.1023/B:JMSC.0000039199.56155.f9
Liu, X., Yu, L.: Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater. Lett. 58, 1327–1330 (2004). https://doi.org/10.1016/j.matlet.2003.09.054
Sun, Z., Lu, X.: A solid-state reaction route to anchoring Ni (OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res. 51, 9973–9979 (2012). https://doi.org/10.1021/ie202706h
Zhong, C., Deng, Y., Hu, W., et al.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B
Al-Ghamdi, A.F., Messali, M., Ahmed, S.A.: Electrochemical studies of new pyridazinium-based ionic liquid and its determination in different detergents. J. Mater. Environ. Sci. 2, 215–224 (2011). https://doi.org/10.4161/onci.22244
Zhao, D., Wu, M., Kou, Y., et al.: Ionic liquids: applications in catalysis. Catal. Today 74, 157–189 (2002). https://doi.org/10.1016/S0920-5861(01)00541-7
Kowsari, E.: High-performance supercapacitors based on ionic liquids and a graphene nanostructure. In: Pesek, K. (ed.) Ionic Liquids—Current State of the Art, pp. 75–100. Rijeka, InTech (2015)
Galiński, M., Lewandowski, A., Stepniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
Brandt, A., Pohlmann, S., Varzi, A., et al.: Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013). https://doi.org/10.1557/mrs.2013.151
Armand, M., Endres, F., MacFarlane, D.R., et al.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009). https://doi.org/10.1038/nmat2448
Hall, P.J., Mirzaeian, M., Fletcher, S.I., et al.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238 (2010). https://doi.org/10.1039/c0ee00004c
Choudhury, N.A., Sampath, S., Shukla, A.K.: Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ. Sci. 2, 55–67 (2009). https://doi.org/10.1039/B811217G
Łatoszyńska, A.A., Zukowska, G.Z., Rutkowska, I.A., et al.: Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. J. Power Sources 274, 1147–1154 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.094
Fan, L.Q., Zhong, J., Wu, J.H., et al.: Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes. J. Mater. Chem. A 2, 9011 (2014). https://doi.org/10.1039/c4ta01408a
Ulihin, A.S., Mateyshina, Y.G., Uvarov, N.F.: All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ionics 251, 62–65 (2013). https://doi.org/10.1016/j.ssi.2013.03.014
Francisco, B.E., Jones, C.M., Lee, S.H., et al.: Nanostructured all-solid-state supercapacitor based on Li2SP2S5 glass-ceramic electrolyte. Appl. Phys. Lett. 100, 103902 (2012). https://doi.org/10.1063/1.3693521
Frackowiak, E., Fic, K., Meller, M., et al.: Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes. Chemsuschem 5, 1181–1185 (2012). https://doi.org/10.1002/cssc.201200227
Fic, K., Frackowiak, E., Béguin, F.: Unusual energy enhancement in carbon-based electrochemical capacitors. J. Mater. Chem. 22, 24213 (2012). https://doi.org/10.1039/c2jm35711a
Lota, G., Frackowiak, E.: Striking capacitance of carbon/iodide interface. Electrochem. Commun. 11, 87–90 (2009). https://doi.org/10.1016/j.elecom.2008.10.026
Roldán, S., Blanco, C., Granda, M., et al.: Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011). https://doi.org/10.1002/anie.201006811
Liu, C., Yu, Z., Neff, D., et al.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q
Oliva, P., Leonardi, J., Laurent, J.F., et al.: Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources 8, 229–255 (1982). https://doi.org/10.1016/0378-7753(82)80057-8
Dubal, D.P., Gund, G.S., Lokhande, C.D., et al.: CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater. Res. Bull. 48, 923–928 (2013). https://doi.org/10.1016/j.materresbull.2012.11.081
Acknowledgements
We would like to thank Dr. C. D. Lokhande and Dr. Ram Dayal for their valuable guidance during the preparation of this review.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lokhande, P.E., Chavan, U.S. & Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energ. Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41918-019-00057-z