Skip to main content

Advertisement

Log in

In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Rechargeable batteries dominate the energy storage market of portable electronics, electric vehicles and stationary grids, and corresponding performance advancements are closely related to the fundamental understanding of electrochemical reaction mechanisms and their correlation with structural and chemical evolutions of battery components. Through advancements in aberration-corrected transmission electron microscopy (TEM) techniques for significantly enhanced spatial resolution, in situ TEM techniques in which a nanobattery assembly is integrated into the system can allow for the direct real-time probing of structural and chemical evolutions of battery components under dynamic operating conditions. Here, open-cell in situ TEM configurations can provide the atomic resolution imaging of the intrinsic response of materials to ion insertion or extraction, whereas the development of sealed liquid cells can provide new avenues for the observation of electrochemical processes and electrode-electrolyte interface reactions that are relevant to real battery systems. And because of these recent developments in in situ TEM techniques, this review will present recent key progress in the utilization of in situ TEM to reveal new sciences in rechargeable batteries, including complex reaction mechanisms, structural and chemical evolutions of battery materials and their correlation with battery performances. In addition, scientific insights revealed by in situ TEM studies will be discussed to provide guiding principles for the design of better electrode materials for rechargeable batteries. And challenges and new opportunities will also be discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  CAS  Google Scholar 

  2. Scrosati, B.: Challenge of portable power. Nature 373, 557–558 (1995)

    Article  CAS  Google Scholar 

  3. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Manthiram, A., Fu, Y., Su, Y.S.: Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Yin, Y.X., Xin, S., Guo, Y.G., et al.: Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013)

    Article  CAS  Google Scholar 

  7. Manthiram, A., Fu, Y., Chung, S.H., et al.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Kim, S.W., Seo, D.H., Ma, X., et al.: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012)

    Article  CAS  Google Scholar 

  9. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Slater, M.D., Kim, D., Lee, E., et al.: Sodium-ion batteries. Adv. Func. Mater. 23, 947–958 (2013)

    Article  CAS  Google Scholar 

  11. Jian, Z., Luo, W., Ji, X.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Komaba, S., Hasegawa, T., Dahbi, M., et al.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015)

    Article  CAS  Google Scholar 

  13. Luo, W., Wan, J., Ozdemir, B., et al.: Potassium ion batteries with graphitic materials. Nano Lett. 15, 7671–7677 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. McCloskey, B.D., Garcia, J.M., Luntz, A.C.: Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J. Phys. Chem. Lett. 5, 1230–1235 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Li, X., Su, L., Wang, Y., et al.: Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front. Environ. Sci. Eng. 6, 295–303 (2012)

    Article  CAS  Google Scholar 

  16. Kang, S., Mo, Y., Ong, S.P., et al.: Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. Nano Lett. 14, 1016–1020 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Peng, Z., Freunberger, S.A., Chen, Y., et al.: A reversible and higher-rate Li-O2 battery. Science 337, 563 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. Arico, A.S., Bruce, P., Scrosati, B., et al.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Kang, B., Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Retoux, R., Brousse, T., Schleich, D.M.: High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472–2476 (1999)

    Article  CAS  Google Scholar 

  23. Delmas, C., Maccario, M., Croguennec, L., et al.: Lithium deintercalation in LiFePO4 nanoparticles via a domoni-cascade model. Nat. Mater. 7, 665–671 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Gibot, P., Casas-Cabanas, M., Laffont, L., et al.: Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 77, 741–747 (2008)

    Article  CAS  Google Scholar 

  25. Chen, G.Y., Song, X.Y., Richardson, T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006)

    Article  CAS  Google Scholar 

  26. Laffont, L., Delacourt, C., Gibot, P., et al.: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006)

    Article  CAS  Google Scholar 

  27. Gabrisch, H., Yazami, R., Fultz, B.: A transmission electron microscopy study of cycled LiCoO2. J. Power Sources 119, 675–679 (2003)

    Google Scholar 

  28. Graetz, J., Ahn, C.C., Yazami, R., et al.: An electron energy-loss spectroscoy study of charge compensation in LiNi0.8Co0.2O2. J. Phys. Chem. B 107, 2887–2891 (2003)

    Article  CAS  Google Scholar 

  29. Meng, Y.S., Ceder, G., Grey, C.P., et al.: Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 \(\leqslant\) x \(\leqslant\) 1/2) compounds. Chem. Mater. 17, 2386 (2005)

    Article  CAS  Google Scholar 

  30. Harks, P.P.R.M.L., Mulder, F.M., Notten, P.H.L.: In situ methods for Li-ion battery research: a review of recent developments. J. Power Sources 288, 92–105 (2015)

    Article  CAS  Google Scholar 

  31. Tripathi, A.M., Su, W.N., Hwang, B.J.: In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. Haider, M., Uhlemann, S., Schwan, E., et al.: Electron microscopy image enhanced. Nature 392, 768–769 (1998)

    Article  CAS  Google Scholar 

  33. Krivanek, O.L., Dellby, N., Lupini, A.R.: Towards sub-angstrom electron beams. Ultramicroscopy 78, 1–11 (1999)

    Article  CAS  Google Scholar 

  34. Krivanek, O.L., Nellist, P.D., Dellby, N., et al.: Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229–237 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Mueller, H., Uhlemann, S., Hartel, P., et al.: Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006)

    Article  CAS  Google Scholar 

  36. Batson, P.E., Dellby, N., Krivanek, O.L.: Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Kisielowskia, C., Freitaga, B., Bischoffa, M., et al.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14, 469–477 (2008)

    Article  CAS  Google Scholar 

  38. Sawada, H., Hosokawa, F., Kaneyama, T., et al.: Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl. Phys. 46, L568–L570 (2007)

    Article  CAS  Google Scholar 

  39. Urban, K.W.: Is science prepared for atomicresolution electron microscopy? Nat. Mater. 8, 260–262 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Eswaramoorthy, S.K., Howe, J.M., Muralidharan, G.: In-situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437–1440 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Wang, C.M.: In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res. 30, 326–339 (2014)

    Article  CAS  Google Scholar 

  42. Wang, C.M., Xu, W., Liu, J., et al.: In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010)

    Article  CAS  Google Scholar 

  43. Huang, J.Y., Zhong, L., Wang, C.M., et al.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. McDowell, M.T., Cui, Y.: Single Nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv. Energy Mater. 7, 894–900 (2011)

    Article  CAS  Google Scholar 

  45. Liu, X.H., Zhang, L.Q., Zhong, L., et al.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Islam, M.M., Bredow, T.: Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672–676 (2009)

    Article  CAS  Google Scholar 

  47. Liu, X.H., Zheng, H., Zhong, L., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Wang, F., Yu, H.C., Chen, M.H., et al.: Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commu. 3, 1201 (2012)

    Article  CAS  Google Scholar 

  49. He, Y., Gu, M., Xiao, H., et al.: Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca. Angew. Chem. 128, 6352–6355 (2016)

    Article  Google Scholar 

  50. Chon, M.J., Sethuraman, V.A., McCormick, A., et al.: Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. Ghassemi, H., Au, M., Chen, N., et al.: In situ electrochemical lithiation-delithiation observation of individual amorphous Si nanorods. ACS Nano 5, 7805–7811 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Goldman, J.L., Long, B.R., Gewirth, A.A., et al.: Strain anisotropies and self-limiting capacities in single-crystalline 3d silicon microstructures: models for high energy density lithium-ion battery anodes. Adv. Func. Mater. 21, 2412–2422 (2011)

    Article  CAS  Google Scholar 

  53. Gu, M., Li, Y., Li, X., et al.: In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439–8447 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. Gu, M., Xiao, X.C., Liu, G., et al.: Mesoscale origin of the enhanced cycling-stability of the Si-conductive polymer anode for Li-ion batteries. Sci. Rep. 4, 3684 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, S.W., McDowell, M.T., Choi, J.W., et al.: Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011)

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Gu, M., Hu, S., et al.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Liu, N., Lu, Z., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. Liu, X.H., Fan, F., Yang, H., et al.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495–1503 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. Liu, X.H., Wang, J.W., Huang, S., et al.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. Liu, X.H., Zhang, L.Q., Zhong, L., et al.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Liu, X.H., Zheng, H., Zhong, L., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. Lu, X., Bogart, T.D., Gu, M., et al.: In situ TEM observations of sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics. J. Phys. Chem. C 119, 21889–21895 (2015)

    Article  CAS  Google Scholar 

  64. Luo, L., Wu, J., Luo, J., et al.: Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in situ TEM. Sci. Rep. 4, 3863 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McDowell, M.T., Cui, Y.: Single Nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv. Energy Mater. 1, 894–900 (2011)

    Article  CAS  Google Scholar 

  66. McDowell, M.T., Lee, S.W., Harris, J.T., et al.: In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. McDowell, M.T., Ryu, I., Lee, S.W., et al.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034–6041 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. McDowell, M.T., Woo Lee, S., Wang, C., et al.: The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1, 401–410 (2012)

    Article  CAS  Google Scholar 

  69. Pharr, M., Zhao, K., Wang, X., et al.: Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 12, 5039–5047 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. Son, I.H., Hwan Park, J., Kwon, S., et al.: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Wang, C.M., Li, X., Wang, Z., et al.: In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 1624–1632 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Yang, H., Huang, S., Huang, X., et al.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953–1958 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. Zhao, K., Pharr, M., Wan, Q., et al.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in Lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012)

    Article  CAS  Google Scholar 

  74. Zhu, B., Liu, N., McDowell, M., et al.: Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. Nano Energy 13, 620–625 (2015)

    Article  CAS  Google Scholar 

  75. Liu, X.H., Huang, S., Picraux, S.T., et al.: Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. Lu, X., Adkins, E.R., He, Y., et al.: Germanium as a sodium ion battery material: in situ tem reveals fast sodiation kinetics with high capacity. Chem. Mater. 28, 1236–1242 (2016)

    Article  CAS  Google Scholar 

  77. Cao, K., Li, P., Zhang, Y., et al.: In situ tem investigation on ultrafast reversible lithiation and delithiation cycling of Sn@C yolk-shell nanoparticles as anodes for lithium ion batteries. Nano Energy 40, 187–194 (2017)

    Article  CAS  Google Scholar 

  78. Liang, W., Hong, L., Yang, H., et al.: Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. Nano Lett. 13, 5212–5217 (2013)

    Article  CAS  PubMed  Google Scholar 

  79. Huang, J.Y., Zhong, L., Wang, C.M., et al.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)

    Article  CAS  PubMed  Google Scholar 

  80. Nie, A., Gan, L.Y., Cheng, Y., et al.: Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 7, 6203–6211 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Wang, C.M., Xu, W., Liu, J., et al.: In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett. 11, 1874–1880 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, L.Q., Liu, X.H., Perng, Y.C., et al.: Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires. Micron 43, 1127–1133 (2012)

    Article  CAS  PubMed  Google Scholar 

  83. Zhong, L., Liu, X.H., Wang, G.F., et al.: Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. Phys. Rev. Lett. 106, 248302 (2011)

    Article  CAS  PubMed  Google Scholar 

  84. Su, Q., Xie, D., Zhang, J., et al.: In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3-graphene anode during lithiation-delithiation processes. ACS Nano 7, 9115–9121 (2013)

    Article  CAS  PubMed  Google Scholar 

  85. Xu, Z.L., Zhang, B., Gang, Y., et al.: In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Mater. 1, 25–34 (2015)

    Article  Google Scholar 

  86. Li, Y., Sun, H., Cheng, X., et al.: In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries. Nano Energy 27, 95–102 (2016)

    Article  CAS  Google Scholar 

  87. Luo, L., Wu, J., Junming, Xu, et al.: Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. ACS Nano 8, 11560–11566 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Liu, S., Xie, J., Su, Q., et al.: Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 8, 84–94 (2014)

    Article  CAS  Google Scholar 

  89. Gregorczyk, K.E., Liu, Y., Sullivan, J.P., et al.: In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. ACS Nano 7, 6354–6360 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. Su, Q., Chang, L., Zhang, J., et al.: In situ TEM observation of the electrochemical process of individual CeO2/graphene anode for lithium ion battery. J. Phys. Chem. C 117, 4292–4298 (2013)

    Article  CAS  Google Scholar 

  91. Gao, Q., Gu, M., Nie, A., et al.: Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater. 26, 1660–1669 (2014)

    Article  CAS  Google Scholar 

  92. Kim, S.J., Noh, S.Y., Kargar, A., et al.: In situ TEM observation of the structural transformation of rutile TiO2 nanowire during electrochemical lithiation. Chem. Commun. (Camb.) 50, 9932–9935 (2014)

    Article  CAS  Google Scholar 

  93. Su, Q., Xie, J., Zhang, J., et al.: In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces. 6, 3016–3022 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. Su, Q., Du, G., Zhang, J., et al.: In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 8, 3620–3627 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Wang, L., Xu, Z., Wang, W., et al.: Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. Wang, X., Tang, D.M., Li, H., et al.: Revealing the conversion mechanism of CuO nanowires during lithiation–delithiation by in situ transmission electron microscopy. Chem. Commun. (Camb.) 48, 4812 (2012)

    Article  CAS  Google Scholar 

  97. Liu, Y., Hudak, N.S., Huber, D.L., et al.: In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett. 11, 4188–4194 (2011)

    Article  CAS  PubMed  Google Scholar 

  98. Liu, Y., Hudak, N.S., Huber, D.L., et al.: In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett. 11, 4188–4194 (2011)

    Article  CAS  PubMed  Google Scholar 

  99. Asayesh-Ardakani, H., Nie, A., Mashayek, F., et al.: In situ TEM observation of lithiation and sodiation process of ZnO nanowire. Microsc. Microanal. 21, 1371–1372 (2015)

    Article  Google Scholar 

  100. Kushima, A., Liu, X.H., Zhu, G., et al.: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535–4541 (2011)

    Article  CAS  PubMed  Google Scholar 

  101. Su, Q., Dong, Z., Zhang, J., et al.: Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed. Nanotechnology 24, 255705 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. Kushima, A., Liu, X.H., Zhu, G., et al.: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535–4541 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. Lin, D., Liu, Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)

    Article  CAS  PubMed  Google Scholar 

  104. Liu, X.H., Wang, J.W., Liu, Y., et al.: In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon 50, 3836–3844 (2012)

    Article  CAS  Google Scholar 

  105. Shan, X.Y., Zhou, G., Yin, L.C., et al.: Visualizing the roles of graphene for excellent lithium storage. J. Mater. Chem. A 2, 17808–17814 (2014)

    Article  CAS  Google Scholar 

  106. Wang, X., Weng, Q., Liu, X., et al.: Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 14, 1164–1171 (2014)

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Y., Zheng, H., Liu, X.H., et al.: Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5, 7245–7253 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. Lee, S., Oshima, Y., Hosono, E., et al.: In situ TEM observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J. Phys. Chem. C 117, 24236–24241 (2013)

    Article  CAS  Google Scholar 

  109. Lee, S., Oshima, Y., Hosono, E., et al.: Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. ACS Nano 9, 626–632 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. Zhu, Y., Wang, J.W., Liu, Y., et al.: In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation. Adv. Mater. 25, 5461–5466 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. Wu, F., Yao, N.: Advances in sealed liquid cells for in situ TEM electrochemial investigation of lithium-ion battery. Nano Energy 11, 196–210 (2015)

    Article  CAS  Google Scholar 

  112. Williamson, M.J., Tromp, R.M., Vereecken, P.M., et al.: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532–536 (2003)

    Article  CAS  PubMed  Google Scholar 

  113. Zheng, H.M., Smith, R.K., Jun, Y.W., et al.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. Evans, J.E., Jungjohann, K.L., Browning, N.D., et al.: Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liao, H.G., Cui, L.K., Whitelam, S., et al.: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012)

    Article  CAS  PubMed  Google Scholar 

  116. Parent, L.R., Robinson, D.B., Woehl, T.J., et al.: Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6, 3589–3596 (2012)

    Article  CAS  PubMed  Google Scholar 

  117. Jungjohann, K.L., Bliznakov, S., Sutter, P.W., et al.: In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 13, 2964–2970 (2013)

    Article  CAS  PubMed  Google Scholar 

  118. Woehl, T.J., Evans, J.E., Arslan, I., et al.: Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat Nano 6, 695–704 (2011)

    Article  CAS  Google Scholar 

  120. Woehl, T.J., Park, C., Evans, J.E., et al.: Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett. 14, 373–378 (2013)

    Article  CAS  PubMed  Google Scholar 

  121. Gu, M., Parent, L.R., Mehdi, B.L., et al.: Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. White, E.R., Singer, S.B., Augustyn, V., et al.: In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Radisic, A., Vereecken, P.M., Hannon, J.B., et al.: Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006)

    Article  CAS  PubMed  Google Scholar 

  124. Chen, X., Noh, K.W., Wen, J.G., et al.: In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl2. Acta Mater. 60, 192–198 (2012)

    Article  CAS  Google Scholar 

  125. Chee, S.W., Pratt, S.H., Hattar, K., et al.: Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. (Camb.) 51, 168–171 (2015)

    Article  CAS  Google Scholar 

  126. Zhu, G.-Z., Prabhudev, S., Yang, J., et al.: In situ liquid cell TEM study of morphological evolution and degradation of pt-fe nanocatalysts during potential cycling. J. Phys. Chem. C 118, 22111–22119 (2014)

    Article  CAS  Google Scholar 

  127. Holtz, M.E., Yu, Y., Gunceler, D., et al.: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453–1459 (2014)

    Article  CAS  PubMed  Google Scholar 

  128. Mehdi, B.L., Qian, J., Nasybulin, E., et al.: Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015)

    Article  CAS  PubMed  Google Scholar 

  129. Noh, K.W., Dillon, S.J.: Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM. Scr. Mater. 69, 658–661 (2013)

    Article  CAS  Google Scholar 

  130. Cheong, J.Y., Chang, J.H., Seo, H.K., et al.: Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25, 154–160 (2016)

    Article  CAS  Google Scholar 

  131. Yuk, J.M., Seo, H.K., Choi, J., et al.: Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 8, 7478–7485 (2014)

    Article  CAS  PubMed  Google Scholar 

  132. Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., et al.: Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy. ACS Nano 10, 5670–5678 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Yang, C., Han, J., Liu, P., et al.: Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy. Adv. Mater. 29, 1702752 (2017)

    Article  CAS  Google Scholar 

  134. Yuk, J.M., Park, J., Ercius, P., et al.: High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012)

    Article  CAS  PubMed  Google Scholar 

  135. Yuk, J.M., Seo, H.K., Choi, J., et al.: Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 8, 7478–7485 (2014)

    Article  CAS  PubMed  Google Scholar 

  136. Zeng, Z., Liang, W.I., Chu, Y.H., et al.: In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. Faraday Discuss. 176, 95–107 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Zeng, Z., Zhang, X., Bustillo, K., et al.: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214–5220 (2015)

    Article  CAS  PubMed  Google Scholar 

  138. Kushima, A., So, K.P., Su, C., et al.: Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017)

    Article  CAS  Google Scholar 

  139. Sun, M., Liao, H.G., Niu, K., et al.: Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep. 3, 3227 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu, Y.A., Yin, Z., Farmand, M., et al.: In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 7, 42527 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zeng, Z., Liang, W.I., Liao, H.G., et al.: Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014)

    Article  CAS  PubMed  Google Scholar 

  142. Sacci, R.L., Dudney, N.J., More, K.L., et al.: Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. (Camb.) 50, 2104–2107 (2014)

    Article  CAS  Google Scholar 

  143. Abellan, P., Mehdi, B.L., Parent, L.R., et al.: Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293–1299 (2014)

    Article  CAS  PubMed  Google Scholar 

  144. Yi, X., He, W., Zhang, X., et al.: Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochim. Acta 232, 550–560 (2017)

    Article  CAS  Google Scholar 

  145. Niu, J., Kushima, A., Qian, X., et al.: In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett. 14, 4005–4010 (2014)

    Article  CAS  PubMed  Google Scholar 

  146. Holtz, M.E., Yu, Y., Gunceler, D., et al.: Nanoscale imaging of lithium ion distribution during in situ operation of blectrode and electrolyte. Nano Lett. 14, 1453–1459 (2014)

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Z., Gu, M., Zhou, Y., et al.: Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys. Nano Lett. 13, 4511–4516 (2013)

    Article  CAS  PubMed  Google Scholar 

  148. Liang, W., Yang, H., Fan, F., et al.: Tough germanium nanoparticles under electrochemical cycling. ACS Nano 7, 3427–3433 (2013)

    Article  CAS  PubMed  Google Scholar 

  149. Janish, M.T., Mackay, D.T., Liu, Y., et al.: TEM in situ lithiation of tin nanoneedles for battery applications. J. Mater. Sci. 51, 589–602 (2016)

    Article  CAS  Google Scholar 

  150. Liang, W., Hong, L., Yang, H., et al.: nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. Nano Lett. 13, 5212–5217 (2013)

    Article  CAS  PubMed  Google Scholar 

  151. Li, Q., Liu, H., Yao, Z., et al.: Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788–8795 (2016)

    Article  CAS  PubMed  Google Scholar 

  152. Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., et al.: Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy. ACS Nano 10, 5670–5678 (2016)

    Article  CAS  PubMed  Google Scholar 

  153. Wu, H.B., Chen, J.S., Hng, H.H., et al.: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. Wang, F., Yu, H.C., Chen, M.H., et al.: Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012)

    Article  CAS  PubMed  Google Scholar 

  155. He, K., Zhang, S., Li, J., et al.: Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7, 11441 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gu, M., Parent, L.R., Mehdi, B.L., et al.: Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013)

    Article  CAS  PubMed  Google Scholar 

  157. Sullivan, J.P., Huang, J., Shaw, M.J., et al: Understanding Li-ion battery processes at the atomic- to nano-scale. Proc. SPIE 7683, 76830B (2010). https://doi.org/10.1117/12.849530

    Article  CAS  Google Scholar 

  158. Wen, Y., He, K., Zhu, Y., et al.: Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)

    Article  CAS  PubMed  Google Scholar 

  159. Nie, A., Cheng, Y., Zhu, Y., et al.: Lithiation-induced shuffling of atomic stacks. Nano Lett. 14, 5301–5307 (2014)

    Article  CAS  PubMed  Google Scholar 

  160. Wang, X., Fan, F., Wang, J., et al.: High damage tolerance of electrochemically lithiated silicon. Nat. Commun. 6, 8417 (2015)

    Article  CAS  PubMed  Google Scholar 

  161. Kushima, A., Huang, J.Y., Li, J.: Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6, 9425–9432 (2012)

    Article  CAS  PubMed  Google Scholar 

  162. Xie, J., Tu, F., Su, Q., et al.: In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Energy 5, 122–131 (2014)

    Article  CAS  Google Scholar 

  163. Tavassol, H., Buthker, J.W., Ferguson, G.A., et al.: Solvent oligomerization during SEI formation on model systems for Li-ion battery anodes. J. Electrochem. Soc. 159, A730–A738 (2012)

    Article  CAS  Google Scholar 

  164. Verma, P., Maire, P., Novák, P.: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010)

    Article  CAS  Google Scholar 

  165. Zeng, Z., Zhang, X., Bustillo, K., et al.: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214–5220 (2015)

    Article  CAS  PubMed  Google Scholar 

  166. Zeng, Z., Liang, W.I., Chu, Y.H., et al.: In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. Faraday Discuss. 176, 95–107 (2014)

    Article  CAS  PubMed  Google Scholar 

  167. Zeng, Z., Liang, W.I., Liao, H.G., et al.: Visualization of electrode-electrolyte interfaces in LiPF6-EC-DEC electrolyte for Lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014)

    Article  CAS  PubMed  Google Scholar 

  168. Sacci, R.L., Dudney, N.J., More, K.L., et al.: Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014)

    Article  CAS  Google Scholar 

  169. Sacci, R.L., Black, J.M., Balke, N., et al.: Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011–2018 (2015)

    Article  CAS  PubMed  Google Scholar 

  170. Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)

    Article  CAS  PubMed  Google Scholar 

  171. Santhanagopalan, D., Qian, D., McGilvray, T., et al.: Interface limited lithium transport in solid-state batteries. J. Phys. Chem. Lett. 5, 298–303 (2014)

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Z., Santhanagopalan, D., Zhang, W., et al.: In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016)

    Article  CAS  PubMed  Google Scholar 

  173. Aurbach, D., Zinigrad, E., Cohen, Y., et al.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002)

    Article  CAS  Google Scholar 

  174. Gachot, G., Grugeon, S., Armand, M., et al.: Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 178, 409–421 (2008)

    Article  CAS  Google Scholar 

  175. Gireaud, L., Grugeon, S., Pilard, S., et al.: Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries. Anal. Chem. 78, 3688–3698 (2006)

    Article  CAS  PubMed  Google Scholar 

  176. Kushima, A., So, K.P., Su, C., et al.: Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017)

    Article  CAS  Google Scholar 

  177. Liu, X.H., Zhong, L., Zhang, L.Q., et al.: Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011)

    Article  CAS  Google Scholar 

  178. Sun, M., Liao, H.G., Niu, K., et al.: Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep. 3, 3227 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wu, Y.A., Yin, Z., Farmand, M., et al.: In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 7, 42527 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Abellan, P., Mehdi, B.L., Parent, L.R., et al.: Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293–1299 (2014)

    Article  CAS  PubMed  Google Scholar 

  181. Kim, H., Lee, J.T., Magasinski, A., et al.: In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015)

    Article  CAS  Google Scholar 

  182. Gu, M., Kushima, A., Shao, Y., et al.: Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 13, 5203–5211 (2013)

    Article  CAS  PubMed  Google Scholar 

  183. Wu, Y., Hu, S., Xu, R., et al.: Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 19, 1351–1358 (2019)

    Article  CAS  PubMed  Google Scholar 

  184. Kushima, A., Koido, T., Fujiwara, Y., et al.: Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery. Nano Lett. 15, 8260–8265 (2015)

    Article  CAS  PubMed  Google Scholar 

  185. Yang, Z., Zhu, Z., Ma, J., et al.: Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM. Adv. Energy Mater. 6, 1600806 (2016)

    Article  CAS  Google Scholar 

  186. Tang, W., Chen, Z., Tian, B., et al.: In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 Flakes. J. Am. Chem. Soc. 139, 10133–10141 (2017)

    Article  CAS  PubMed  Google Scholar 

  187. Zhu, Y., Xu, G., Zhang, X., et al.: Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries. J. Alloy. Compd. 695, 2246–2252 (2017)

    Article  CAS  Google Scholar 

  188. Zhou, W., Wang, C., Zhang, Q., et al.: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 5, 1401752 (2015)

    Article  CAS  Google Scholar 

  189. Song, J., Yan, P., Luo, L., et al.: Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy 40, 504–511 (2017)

    Article  CAS  Google Scholar 

  190. Yuan, Y., Ma, L., He, K., et al.: Dynamic study of (de)sodiation in alpha-MnO2 nanowires. Nano Energy 19, 382–390 (2016)

    Article  CAS  Google Scholar 

  191. Gao, P., Wang, L., Zhang, Y., et al.: Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296–11301 (2015)

    Article  CAS  PubMed  Google Scholar 

  192. Zhang, L., Tang, Y., Wang, Y., et al.: In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction. RSC Adv. 6, 96035–96038 (2016)

    Article  CAS  Google Scholar 

  193. Li, Q., Yao, Z., Wu, J., et al.: Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. Nano Energy 38, 342–349 (2017)

    Article  CAS  Google Scholar 

  194. Zhang, L., Wang, Y., Xie, D., et al.: In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode. RSC Adv. 6, 11441–11445 (2016)

    Article  CAS  Google Scholar 

  195. Boebinger, M.G., Xu, M., Ma, X., et al.: Distinct nanoscale reaction pathways in a sulfide material for sodium and lithium batteries. J. Mater. Chem. A 5, 11701–11709 (2017)

    Article  CAS  Google Scholar 

  196. Gao, P., Zhang, Y.Y., Wang, L., et al.: In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy 32, 302–309 (2017)

    Article  CAS  Google Scholar 

  197. He, K., Zhou, Y., Gao, P., et al.: Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. ACS Nano 8, 7251–7259 (2014)

    Article  CAS  PubMed  Google Scholar 

  198. Yao, S., Cui, J., Lu, Z., et al.: Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 7, 1602149 (2017)

    Article  CAS  Google Scholar 

  199. Liu, H., Zheng, H., Li, L., et al.: Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv. Mater. Interfaces 5, 1701255 (2018)

    Article  CAS  Google Scholar 

  200. Cui, J., Yao, S., Lu, Z., et al.: Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488 (2018)

    Article  CAS  Google Scholar 

  201. Goktas, M., Bolli, C., Berg, E.J., et al.: Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI). Adv. Energy Mater. 8, 1702724 (2018)

    Article  CAS  Google Scholar 

  202. Wan, J., Shen, F., Luo, W., et al.: In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chem. Mater. 28, 6528–6535 (2016)

    Article  CAS  Google Scholar 

  203. Li, X., Zhao, L., Li, P., et al.: In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy 42, 122–128 (2017)

    Article  CAS  Google Scholar 

  204. Jian, Z., Bommier, C., Luo, L., et al.: Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29, 2314–2320 (2017)

    Article  CAS  Google Scholar 

  205. Pan, Q., Zhang, Q., Zheng, F., et al.: Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018)

    Article  CAS  PubMed  Google Scholar 

  206. Li, Q., Wu, J., Xu, J., et al.: Synergistic sodiation of cobalt oxide nanoparticles and conductive carbon nanotubes (CNTs) for sodium-ion batteries. J. Mater. Chem. A 4, 8669–8675 (2016)

    Article  CAS  Google Scholar 

  207. Chen, D., Peng, L., Yuan, Y., et al.: Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: from rational synthesis to in situ probing. Nano Lett. 17, 3907–3913 (2017)

    Article  CAS  PubMed  Google Scholar 

  208. Nie, A., Gan, L., Cheng, Y., et al.: Ultrafast and highly reversible sodium storage in zinc-antimony intermetallic nanomaterials. Adv. Func. Mater. 26, 543–552 (2016)

    Article  CAS  Google Scholar 

  209. Byeon, Y.W., Choi, Y.S., Ahn, J.P., et al.: Isotropic sodiation behaviors of ultrafast-chargeable tin crystals. ACS Appl. Mater. Interfaces. 10, 41389–41397 (2018)

    Article  CAS  PubMed  Google Scholar 

  210. Liu, Y., Fan, F., Wang, J., et al.: In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 14, 3445–3452 (2014)

    Article  CAS  PubMed  Google Scholar 

  211. Zhang, L., Tang, Y., Liu, Q., et al.: Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy 53, 544–549 (2018)

    Article  CAS  Google Scholar 

  212. Zhong, L., Mitchell, R.R., Liu, Y., et al.: In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett. 13, 2209–2214 (2013)

    Article  CAS  PubMed  Google Scholar 

  213. Luo, L., Liu, B., Song, S., et al.: Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535–539 (2017)

    Article  CAS  PubMed  Google Scholar 

  214. Sun, K., Xue, J., Tai, K., et al.: The oxygen reduction reaction rate of metallic nanoparticles during catalyzed oxidation. Sci. Rep. 7, 7017 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shi, C., Feng, J., Huang, L., et al.: Reaction mechanism characterization of La0.5Sr0.5CoO2.91 electrocatalyst for rechargeable Li-air battery. Int. J. Electrochem. Sci. 8, 8924–8930 (2013)

    CAS  Google Scholar 

  216. Yang, C., Han, J., Liu, P., et al.: Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy. Adv. Mater. 29, 1702752 (2017)

    Article  CAS  Google Scholar 

  217. He, K., Bi, X., Yuan, Y., et al.: Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy 49, 338–345 (2018)

    Article  CAS  Google Scholar 

  218. Egerton, R.F.: Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013)

    Article  CAS  PubMed  Google Scholar 

  219. Egerton, R.F., Li, P., Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004)

    Article  CAS  PubMed  Google Scholar 

  220. Liu, X.H., Liu, Y., Kushima, A., et al.: In Situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012)

    Article  CAS  Google Scholar 

  221. Basak, S., Jansen, J., Kabiri, Y., et al.: Towards optimization of experimental parameters for studying Li-O2 battery discharge products in TEM using in situ EELS. Ultramicroscopy 188, 52–58 (2018)

    Article  CAS  PubMed  Google Scholar 

  222. Ross, F.M.: Opportunities and challenges in liquid cell electron microscopy-science. Science 350, aaa9886 (2015)

    Article  CAS  PubMed  Google Scholar 

  223. Abellan, P., Woehl, T.J., Parent, L.R., et al.: Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun. (Camb.) 50, 4873–4880 (2014)

    Article  CAS  Google Scholar 

  224. de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011)

    Article  CAS  PubMed  Google Scholar 

  225. Grogan, J.M., Schneider, N.M., Ross, F.M., et al.: Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359–364 (2014)

    Article  CAS  PubMed  Google Scholar 

  226. Li, D., Nielsen, M.H., Lee, J.R.I., et al.: Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012)

    Article  CAS  PubMed  Google Scholar 

  227. Liao, H.G., Zherebetskyy, D., Xin, H., et al.: Facet development during platinum nanocube growth. Science 345, 916–919 (2014)

    Article  CAS  PubMed  Google Scholar 

  228. Ngo, T., Yang, H.: Toward ending the guessing game: study of the formation of nanostructures using in situ liquid transmission electron microscopy. J. Phys. Chem. Lett. 6, 5051–5061 (2015)

    Article  CAS  PubMed  Google Scholar 

  229. Schneider, N.M., Norton, M.M., Mendel, B.J., et al.: Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014)

    Article  CAS  Google Scholar 

  230. Verch, A., Pfaff, M., de Jonge, N.: Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31, 6956–6964 (2015)

    Article  CAS  PubMed  Google Scholar 

  231. Gale, B., Hale, K.F.: Heating of metallic foils in an electron microscope. Br. J. Appl. Phys. 12, 115–117 (1961)

    Article  Google Scholar 

  232. Nakashima, K., Kao, K.C.: Study of heat treated and electron beam bombarded amorphous semiconductor surfaces by scanning electron microscopy. Thin Solid Films 41, L29–L34 (1977)

    Article  CAS  Google Scholar 

  233. Ghatak, J., Guan, W., Mobus, G.: In situ TEM observation of lithium nanoparticle growth and morphological cycling. Nanoscale 4, 1754–1759 (2012)

    Article  CAS  PubMed  Google Scholar 

  234. Sloop, S.E., Pugh, J.K., Wang, S., et al.: Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4, A42 (2001)

    Article  CAS  Google Scholar 

  235. Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., et al.: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–4389 (2015)

    Article  CAS  PubMed  Google Scholar 

  236. Hodnik, N., Dehm, G., Mayrhofer, K.J.: Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016)

    Article  CAS  PubMed  Google Scholar 

  237. Sutter, E.A., Sutter, P.W.: Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth. J. Am. Chem. Soc. 136, 16865–16870 (2014)

    Article  CAS  PubMed  Google Scholar 

  238. Woehl, T.J., Abellan, P.: Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 265, 135–147 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769 and No. 6951379 under the Advanced Battery Materials Research (BMR) program. This work was supported by U.S. DOE (Department of Energy) EERE (Energy Efficiency and Renewable Energy) BETO (Bioenergy Technology Office) (grant No. DE-EE0008250) to BY with the Bioproducts, Science and Engineering Laboratory, Department of Biological Systems Engineering at Washington State University. This work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. Ms. X. Wu was supported by China Scholarship Council for Overseas Studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songmei Li or Chongmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, S., Yang, B. et al. In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries. Electrochem. Energ. Rev. 2, 467–491 (2019). https://doi.org/10.1007/s41918-019-00046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00046-2

Keywords

Navigation