Skip to main content

Advertisement

Log in

Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Electrochemical energy conversion between electricity and chemicals through electrocatalysis is a promising strategy for the development of clean and sustainable energy sources. This is because efficient electrocatalysts can greatly reduce energy loss during the conversion process. However, poor catalytic performances and a shortage in catalyst material resources have greatly restricted the widespread applications of electrocatalysts in these energy conversion processes. To address this issue, earth-abundant two-dimensional (2D) materials with large specific surface areas and easily tunable electronic structures have emerged in recent years as promising high-performance electrocatalysts in various reactions, and because of this, this review will comprehensively discuss the engineering of these novel 2D material-based electrocatalysts and their associated heterostructures. In this review, the fundamental principles of electrocatalysis and important electrocatalytic reactions are introduced. Following this, the unique advantages of 2D material-based electrocatalysts are discussed and catalytic performance enhancement strategies are presented, including the tuning of electronic structures through various methods such as heteroatom doping, defect engineering, strain engineering, phase conversion and ion intercalation, as well as the construction of heterostructures based on 2D materials to capitalize on individual advantages. Finally, key challenges and opportunities for the future development of these electrocatalysts in practical energy conversion applications are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh, S., Jain, S., Venkateswaran, P.S., et al.: Hydrogen: a sustainable fuel for future of the transport sector. Renew. Sust. Energy Rev. 51, 623–633 (2015)

    Article  CAS  Google Scholar 

  2. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Lu, Q.P., Yu, Y.F., Ma, Q.L., et al.: 2D transition-metal-dichalcogenide nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414, 332–337 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Khan, M.A., Zhao, H., Zou, W., et al.: Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1, 483–530 (2018)

    Article  CAS  Google Scholar 

  6. Wang, Y.J., Fang, B., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochem. Energy Rev. 1, 1–34 (2018)

    Article  Google Scholar 

  7. Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Electrocatalysis for the generation and consumption of fuels. Nat. Rev. Chem. 2, 0125 (2018). https://doi.org/10.1038/s41570-018-0125

  9. Stamenkovic, V.R., Strmcnik, D., Lopes, P.P., et al.: Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017)

    Article  CAS  Google Scholar 

  10. Birss, V.I.: Oxygen evolution at platinum electrodes in alkaline solutions. J. Electrochem. Soc. 134, 113–117 (1987)

    Article  CAS  Google Scholar 

  11. Anson, A.C.: Double-layer and electrode kinetics (Delahay, Paul). J. Chem. Educ. 43, 54–55 (1966)

    Article  Google Scholar 

  12. Schultze, J.W., Vetter, K.J.: The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes. Electrochim. Acta 18, 889–896 (1974)

    Article  Google Scholar 

  13. Cai, Z.Y., Liu, B.L., Zou, X.L., et al.: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Cai, X., Luo, Y., Liu, B., et al.: Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Benck, J.D., Hellstern, T.R., Kibsgaard, J., et al.: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)

    Article  CAS  Google Scholar 

  16. Laursen, A.B., Kegnaes, S., Dahl, S., et al.: Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012)

    Article  CAS  Google Scholar 

  17. Norskov, J.K., Bligaard, T., Logadottir, A., et al.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005)

    Article  CAS  Google Scholar 

  18. Zheng, Y., Jiao, Y., Jaroniec, M., et al.: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 5, 52–65 (2015)

    CAS  Google Scholar 

  19. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017)

    Article  PubMed  Google Scholar 

  20. Parsons, R.: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958)

    Article  CAS  Google Scholar 

  21. Wang, J., Xu, F., Jin, H.Y., et al.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017)

    Article  CAS  Google Scholar 

  22. Norskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)

    Article  CAS  Google Scholar 

  23. Zinola, C.F., Arvia, A.J., Estiu, G.L., et al.: A quantum-chemical approach to the influence of platinum surface-structure on the oxygen electroreduction reaction. J. Phys. Chem. 98, 7566–7576 (1994)

    Article  CAS  Google Scholar 

  24. Zhou, X.J., Qiao, J.L., Yang, L., et al.: A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 4, 1301523 (2014)

    Article  CAS  Google Scholar 

  25. Ge, X.M., Sumboja, A., Wuu, D., et al.: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5, 4643–4667 (2015)

    Article  CAS  Google Scholar 

  26. Man, I.C., Su, H.Y., Calle-Vallejo, F., et al.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011)

    Article  CAS  Google Scholar 

  27. Yu, W.T., Porosoff, M.D., Chen, J.G.G.: Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Nie, Y., Li, L., Wei, Z.: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Suen, N.T., Hung, S.F., Quan, Q., et al.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Gong, M., Dai, H.J.: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015)

    Article  CAS  Google Scholar 

  32. Han, L., Dong, S.J., Wang, E.K.: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Suntivich, J., May, K.J., Gasteiger, H.A., et al.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. Lee, Y., Suntivich, J., May, K.J., et al.: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Smith, R.D.L., Prevot, M.S., Fagan, R.D., et al.: Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Z.H., Liu, J., Gu, J.J., et al.: An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 7, 2535–2558 (2014)

    Article  CAS  Google Scholar 

  37. Song, F., Hu, X.L.: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M.T.M., et al.: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 5, 5380–5387 (2015)

    Article  CAS  Google Scholar 

  39. Zhang, Z., Hao, J.H., Yang, W.S., et al.: Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale 7, 4400–4405 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Wang, C.D., Jiang, J., Zhou, X.L., et al.: Alternative synthesis of cobalt monophosphide@C core-shell nanocables for electrochemical hydrogen production. J. Power Sources 286, 464–469 (2015)

    Article  CAS  Google Scholar 

  41. Liu, Q., Pu, Z.H., Asiri, A.M., et al.: Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochim. Acta 149, 324–329 (2014)

    Article  CAS  Google Scholar 

  42. Jin, H., Liu, X., Vasileff, A., et al.: Single-crystal nitrogen-rich 2D Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12, 12761–12769 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Dai, L., Xue, Y., Qu, L., et al.: Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. Hu, C.G., Dai, L.M.: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55, 11736–11758 (2016)

    Article  CAS  Google Scholar 

  45. Liu, B.L., Ren, W.C., Gao, L.B., et al.: Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 2082–2083 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Novoselov, K.S., Jiang, D., Schedin, F., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Novoselov, K.S., Mishchenko, A., Carvalho, A., et al.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Jin, H., Guo, C., Liu, X., et al.: Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. Chen, S., Xu, R., Liu, J., et al.: Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 31, 1804810 (2019)

    Article  CAS  Google Scholar 

  51. Roldan, R., Chirolli, L., Prada, E., et al.: Theory of 2D crystals: graphene and beyond. Chem. Soc. Rev. 46, 4387–4399 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. Wang, H., Yu, L.L., Lee, Y.H., et al.: Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. Gupta, A., Sakthivel, T., Seal, S.: Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015)

    Article  CAS  Google Scholar 

  55. Wang, H., Feng, H.B., Li, J.H.: Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10, 2165–2181 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Yan, D.F., Li, Y.X., Huo, J., et al.: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017)

    Article  CAS  Google Scholar 

  57. Tang, C., Wang, H.F., Chen, X., et al.: Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Y., Kraft, M., Xu, R.: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem. Soc. Rev. 45, 3039–3052 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. Jia, Y., Zhang, L.Z., Du, A.J., et al.: Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016)

    Article  CAS  PubMed  Google Scholar 

  60. Tao, L., Wang, Q., Dou, S., et al.: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016)

    Article  CAS  Google Scholar 

  61. Liu, Z.J., Zhao, Z.H., Wang, Y.Y., et al.: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29, 1606207 (2017)

    Article  CAS  Google Scholar 

  62. Lim, D.H., Wilcox, J.: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 116, 3653–3660 (2012)

    Article  CAS  Google Scholar 

  63. Jia, Y., Zhang, L.Z., Gao, G.P., et al.: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017)

    Article  CAS  Google Scholar 

  64. Gong, K.P., Du, F., Xia, Z.H., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  CAS  PubMed  Google Scholar 

  65. Qu, L.T., Liu, Y., Baek, J.B., et al.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. Sheng, Z.H., Gao, H.L., Bao, W.J., et al.: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012)

    Article  CAS  Google Scholar 

  67. Yang, Z., Yao, Z., Li, G.F., et al.: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Z.W., Peng, F., Wang, H.J., et al.: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50, 3257–3261 (2011)

    Article  CAS  Google Scholar 

  69. Agnoli, S., Favaro, M.: Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 4, 5002–5025 (2016)

    Article  CAS  Google Scholar 

  70. Liang, J., Jiao, Y., Jaroniec, M., et al.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496–11500 (2012)

    Article  CAS  Google Scholar 

  71. Zhang, J.T., Dai, L.M.: Nitrogen, Phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55, 13296–13300 (2016)

    Article  CAS  Google Scholar 

  72. Lai, L., Potts, J.R., Zhan, D., et al.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012)

    Article  CAS  Google Scholar 

  73. Guo, D.H., Shibuya, R., Akiba, C., et al.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016)

    Article  CAS  PubMed  Google Scholar 

  74. Jia, Z., Li, Y., Zuo, Z., et al.: Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 50, 2470–2478 (2017)

    Article  CAS  PubMed  Google Scholar 

  75. Liang, J., Zheng, Y., Chen, J., et al.: Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012)

    Article  CAS  Google Scholar 

  76. Li, Y., Xu, L., Liu, H., et al.: Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. Liu, R., Liu, H., Li, Y., et al.: Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6, 11336–11343 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. Xue, Y., Guo, Y., Yi, Y., et al.: Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30, 858–866 (2016)

    Article  CAS  Google Scholar 

  79. Zhao, Y., Wan, J., Yao, H., et al.: Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem 10, 924–931 (2018)

    Article  CAS  PubMed  Google Scholar 

  80. Zheng, Y., Jiao, Y., Chen, J., et al.: Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116–20119 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Zheng, Y., Jiao, Y., Zhu, Y., et al.: Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014)

    Article  CAS  Google Scholar 

  83. Jin, H., Liu, X., Jiao, Y., et al.: Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy 53, 690–697 (2018)

    Article  CAS  Google Scholar 

  84. Li, H.N., Shi, Y.M., Chiu, M.H., et al.: Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18, 293–305 (2015)

    Article  CAS  Google Scholar 

  85. Zhang, G., Liu, H.J., Qu, J.H., et al.: Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 9, 1190–1209 (2016)

    Article  CAS  Google Scholar 

  86. Li, H.Y., Jia, X.F., Zhang, Q., et al.: Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 4, 1510–1537 (2018)

    Article  CAS  Google Scholar 

  87. Tributsch, H., Bennett, J.C.: Electrochemistry and photochemistry of MoS2 layer crystals. J. Electroanal. Chem. 81, 97–111 (1977)

    Article  CAS  Google Scholar 

  88. Jaramillo, T.F., Jorgensen, K.P., Bonde, J., et al.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)

    Article  CAS  PubMed  Google Scholar 

  89. Kibsgaard, J., Chen, Z.B., Reinecke, B.N., et al.: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  90. Yin, Y., Han, J., Zhang, Y., et al.: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016)

    Article  CAS  PubMed  Google Scholar 

  91. Hong, J.H., Hu, Z.X., Probert, M., et al.: Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015)

    Article  CAS  PubMed  Google Scholar 

  92. Xie, J.F., Zhang, H., Li, S., et al.: Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013)

    Article  CAS  PubMed  Google Scholar 

  93. Deng, J., Li, H.B., Xiao, J.P., et al.: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015)

    Article  CAS  Google Scholar 

  94. Voiry, D., Yamaguchi, H., Li, J., et al.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. Tan, Y.W., Liu, P., Chen, L.Y., et al.: Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 26, 8023–8028 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. Putungan, D.B., Lin, S.H., Kuo, J.L.: A first-principles examination of conducting monolayer 1T’-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys. Chem. Chem. Phys. 17, 21702–21708 (2015)

    Article  CAS  PubMed  Google Scholar 

  97. Li, H., Tsai, C., Koh, A.L., et al.: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. Eda, G., Yamaguchi, H., Voiry, D., et al.: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)

    Article  CAS  PubMed  Google Scholar 

  99. Zeng, Z.Y., Yin, Z.Y., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011)

    Article  CAS  Google Scholar 

  100. Acerce, M., Voiry, D., Chhowalla, M.: Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H., Lu, Z., Xu, S., et al.: Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110, 19701–19706 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lukowski, M.A., Daniel, A.S., English, C.R., et al.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014)

    Article  CAS  Google Scholar 

  103. Luo, Y., Li, X., Cai, X., et al.: Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018)

    Article  CAS  PubMed  Google Scholar 

  104. Subbaraman, R., Tripkovic, D., Chang, K.C., et al.: Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012)

    Article  CAS  PubMed  Google Scholar 

  105. Yin, Y., Zhang, Y., Gao, T., et al.: Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 29, 1700311 (2017)

    Article  CAS  Google Scholar 

  106. Liu, Y., Wu, J., Hackenberg, K.P., et al.: Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017)

    Article  CAS  Google Scholar 

  107. Shi, J., Wang, X., Zhang, S., et al.: Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8, 958 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fan, G., Li, F., Evans, D.G., et al.: Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43, 7040–7066 (2014)

    Article  CAS  PubMed  Google Scholar 

  109. Gong, M., Li, Y.G., Wang, H.L., et al.: An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013)

    Article  CAS  PubMed  Google Scholar 

  110. Liu, R., Wang, Y.Y., Liu, D.D., et al.: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017)

    Article  CAS  Google Scholar 

  111. Liu, P.F., Yang, S., Zhang, B., et al.: Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces. 8, 34474–34481 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)

    Article  CAS  PubMed  Google Scholar 

  113. Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    Article  CAS  PubMed  Google Scholar 

  114. Seh, Z.W., Fredrickson, K.D., Anasori, B., et al.: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016)

    Article  CAS  Google Scholar 

  115. Zhu, J., Ha, E.N., Zhao, G.L., et al.: Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017)

    Article  CAS  Google Scholar 

  116. Chaudhari, N.K., Jin, H., Kim, B., et al.: MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5, 24564–24579 (2017)

    Article  CAS  Google Scholar 

  117. Pang, J., Mendes, R.G., Bachmatiuk, A., et al.: Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2018)

    Article  Google Scholar 

  118. Gao, G., O’Mullane, A.P., Du, A.: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2016)

    Article  CAS  Google Scholar 

  119. Zhang, Z.W., Li, H.N., Zou, G.D., et al.: Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain Chem. Eng. 4, 6763–6771 (2016)

    Article  CAS  Google Scholar 

  120. Xie, X.H., Chen, S.G., Ding, W., et al.: An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 49, 10112–10114 (2013)

    Article  CAS  Google Scholar 

  121. Lei, W., Liu, G., Zhang, J., et al.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. Ling, X., Wang, H., Huang, S., et al.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 112, 4523–4530 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sofer, Z., Sedmidubsky, D., Huber, S., et al.: Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem. Int. Ed. 55, 3382–3386 (2016)

    Article  CAS  Google Scholar 

  124. Liu, B.L., Kopf, M., Abbas, A.N., et al.: Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, Q., Xu, L., Chen, N., et al.: Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55, 13849–13853 (2016)

    Article  CAS  Google Scholar 

  126. Ren, X., Zhou, J., Qi, X., et al.: Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1700396 (2017)

    Article  CAS  Google Scholar 

  127. Wang, J., Liu, D., Huang, H., et al.: In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew. Chem. 130, 2630–2634 (2018)

    Article  Google Scholar 

  128. Zhao, Y.F., Jia, X.D., Chen, G.B., et al.: Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138, 6517–6524 (2016)

    Article  CAS  PubMed  Google Scholar 

  129. Mahata, A., Garg, P., Rawat, K.S., et al.: A free-standing platinum monolayer as an efficient and selective catalyst for the oxygen reduction reaction. J. Mater. Chem. A 5, 5303–5313 (2017)

    Article  CAS  Google Scholar 

  130. Lai, J., Chao, Y., Zhou, P., et al.: One-pot seedless aqueous design of metal nanostructures for energy electrocatalytic applications. Electrochem. Energy Rev. 1, 531–547 (2018)

    Article  Google Scholar 

  131. Mahmood, A., Lin, H., Xie, N., et al.: Surface confinement etching and polarization matter: a new approach to prepare ultrathin PtAgCo nanosheets for hydrogen-evolution reactions. Chem. Mater. 29, 6329–6335 (2017)

    Article  CAS  Google Scholar 

  132. Luo, M., Yang, Y., Sun, Y., et al.: Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Mater. Today 23, 45–56 (2019)

    Article  CAS  Google Scholar 

  133. Kong, X., Xu, K., Zhang, C., et al.: Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 6, 1487–1492 (2016)

    Article  CAS  Google Scholar 

  134. Pi, Y.C., Zhang, N., Guo, S.J., et al.: Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 16, 4424–4430 (2016)

    Article  CAS  PubMed  Google Scholar 

  135. Fei, H., Dong, J., Arellano-Jimenez, M.J., et al.: Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015)

    Article  CAS  PubMed  Google Scholar 

  136. Cheng, N.C., Stambula, S., Wang, D., et al.: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13628 (2016)

    Article  CAS  Google Scholar 

  137. Cheng, Y.F., Lu, S.K., Liao, F., et al.: Rh-MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 27, 1700359 (2017)

    Article  CAS  Google Scholar 

  138. Wang, X.P., Wang, L.X., Zhao, F., et al.: Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale 7, 3035–3042 (2015)

    Article  CAS  PubMed  Google Scholar 

  139. Liang, Y.Y., Li, Y.G., Wang, H.L., et al.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  CAS  PubMed  Google Scholar 

  140. Dou, S., Tao, L., Huo, J., et al.: Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 9, 1320–1326 (2016)

    Article  CAS  Google Scholar 

  141. Cui, X., Ren, P., Deng, D., et al.: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123–129 (2016)

    Article  CAS  Google Scholar 

  142. Li, Y.G., Wang, H.L., Xie, L.M., et al.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  CAS  PubMed  Google Scholar 

  143. Luo, Y.T., Tang, L., Khan, U., et al.: Morphology and surface chemistry engineering for pH-universal catalysts toward hydrogen evolution at large current density. Nat. Commun. 10, 269 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014)

    Article  CAS  Google Scholar 

  145. Ma, T.Y., Dai, S., Qiao, S.Z.: Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19, 265–273 (2016)

    Article  CAS  Google Scholar 

  146. Li, Y., Zhou, W., Wang, H., et al.: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012)

    Article  CAS  PubMed  Google Scholar 

  147. Li, D.J., Maiti, U.N., Lim, J., et al.: Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 14, 1228–1233 (2014)

    Article  CAS  PubMed  Google Scholar 

  148. Chen, P., Xiao, T.Y., Qian, Y.H., et al.: A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 25, 3192–3196 (2013)

    Article  CAS  PubMed  Google Scholar 

  149. Chen, S., Duan, J.J., Jaroniec, M., et al.: Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925–2930 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. Cherevko, S., Geiger, S., Kasian, O., et al.: Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016)

    Article  CAS  Google Scholar 

  151. Tian, J.Q., Liu, Q., Asiri, A.M., et al.: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7, 2125–2130 (2014)

    Article  CAS  PubMed  Google Scholar 

  152. Lei, H.T., Liu, C.Y., Wang, Z.J., et al.: Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions. ACS Catal 6, 6429–6437 (2016)

    Article  CAS  Google Scholar 

  153. Wurster, B., Grumelli, D., Hotger, D., et al.: Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 138, 3623–3626 (2016)

    Article  CAS  PubMed  Google Scholar 

  154. Lei, Y., Pakhira, S., Fujisawa, K., et al.: Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1−xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112 (2017)

    Article  CAS  PubMed  Google Scholar 

  155. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)

    Article  CAS  PubMed  Google Scholar 

  156. Jia, Y., Zhang, L., Gao, G., et al.: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017)

    Article  CAS  Google Scholar 

  157. Li, H., Yu, K., Li, C., et al.: Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci. Rep. 5, 18730 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ma, T.Y., Cao, J.L., Jaroniec, M., et al.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016)

    Article  CAS  Google Scholar 

  159. Yang, J., Voiry, D., Ahn, S.J., et al.: Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013)

    Article  CAS  Google Scholar 

  160. Tang, C., Zhong, L., Zhang, B., et al.: 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 30, 1705110 (2018)

    Article  CAS  Google Scholar 

  161. Zhang, H.Y., Tian, Y., Zhao, J.X., et al.: Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping. Electrochim. Acta 225, 543–550 (2017)

    Article  CAS  Google Scholar 

  162. Xiao, W., Liu, P.T., Zhang, J.Y., et al.: Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7, 1602086 (2017)

    Article  CAS  Google Scholar 

  163. Duan, J.J., Chen, S., Jaroniec, M., et al.: Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015)

    Article  CAS  PubMed  Google Scholar 

  164. Voiry, D., Fullon, R., Yang, J.E., et al.: The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016)

    Article  CAS  PubMed  Google Scholar 

  165. Conway, B.E., Tilak, B.V.: Interfacial processes involving electrocatalytic evolution and oxidation of H2 and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51521091 and 51722206), the Youth 1000-Talent Program of China, the Shenzhen Basic Research Project (No. JCYJ20170307140956657), the China Postdoctoral Science Foundation (No. 2018M641346), the Economic, Trade and Information Commission of Shenzhen Municipality for the “2017 Graphene Manufacturing Innovation Center Project” (No. 201901171523), and the Development and Reform Commission of Shenzhen Municipality for the development of “Low-Dimensional Materials and Devices” disciplines.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bilu Liu or Hui-Ming Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Luo, Y., Mahmood, A. et al. Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochem. Energ. Rev. 2, 373–394 (2019). https://doi.org/10.1007/s41918-019-00045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00045-3

Keywords

Navigation