Skip to main content

Advertisement

Log in

Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

As modern society develops, the need for clean energy becomes increasingly important on a global scale. Because of this, the exploration of novel materials for energy storage and utilization is urgently needed to achieve low-carbon economy and sustainable development. Among these novel materials, metal–organic frameworks (MOFs), a class of porous materials, have gained increasing attention for utilization in energy storage and conversion systems because of ultra-high surface areas, controllable structures, large pore volumes and tunable porosities. In addition to pristine MOFs, MOF derivatives such as porous carbons and nanostructured metal oxides can also exhibit promising performances in energy storage and conversion applications. In this review, the latest progress and breakthrough in the application of MOF and MOF-derived materials for energy storage and conversion devices are summarized, including Li-based batteries (Li-ion, Li–S and Li–O2 batteries), Na-ion batteries, supercapacitors, solar cells and fuel cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Reprinted with permission from Ref. [191]

Fig. 20

Reprinted with permission from Refs. [199, 200]

Fig. 21

Reprinted with permission from Refs. [225, 227]

Fig. 22
Fig. 23

Reprinted with permission from Refs. [240, 241]

Fig. 24

Reprinted with permission from Refs. [259, 260]

Fig. 25

Reprinted with permission from Ref. [272]

Fig. 26

Reprinted with permission from Refs. [287, 289, 290]

Fig. 27

Reprinted with permission from Ref. [296]

Fig. 28

Reprinted with permission from Ref. [302]

Fig. 29

Reprinted with permission from Refs. [312, 314]

Fig. 30

Reprinted with permission from Ref. [332]

Fig. 31

Reprinted with permission from Ref. [346]

Fig. 32

Reprinted with permission from Refs. [360, 362]

Fig. 33

Reprinted with permission from Ref. [371]

Fig. 34

Reprinted with permission from Refs. [377, 381]

Fig. 35

Reprinted with permission from Ref. [389]

Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Li, Y., Fu, Z.Y., Su, B.L.: Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634–4667 (2012)

    Article  CAS  Google Scholar 

  2. Yaghi, O., Li, H.: Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)

    Article  CAS  Google Scholar 

  3. Furukawa, H., Cordova, K.E., O’Keeffe, M., et al.: The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, H., Liu, X., Wu, Y., et al.: MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54, 5268–5288 (2018)

    Article  CAS  Google Scholar 

  5. Hou, C.C., Xu, Q.: Metal–organic frameworks for energy. Adv. Energy Mater. 7, 1801307 (2018). https://doi.org/10.1002/aenm.201801307

    Article  CAS  Google Scholar 

  6. He, Y., Zhou, W., Qian, G., et al.: Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. Nandasiri, M.I., Jambovane, S.R., McGrail, B.P., et al.: Adsorption, separation, and catalytic properties of densified metal–organic frameworks. Coordin. Chem. Rev. 311, 38–52 (2016)

    Article  CAS  Google Scholar 

  8. Chang, Z., Yang, D.H., Xu, J., et al.: Flexible metal–organic frameworks: recent advances and potential applications. Adv. Mater. 27, 5432–5441 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Gao, Q., Xu, J., Cao, D., et al.: A rigid nested metal–organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem. Int. Ed. 55, 15027–15030 (2016)

    Article  CAS  Google Scholar 

  10. Kurmoo, M.: Magnetic metal–organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Han, S.D., Zhao, J.P., Liu, S.J., et al.: Hydro(solvo)thermal synthetic strategy towards azido/formato-mediated molecular magnetic materials. Coordin. Chem. Rev. 289–290, 32–48 (2015)

    Article  CAS  Google Scholar 

  12. Zeng, Y.F., Hu, X., Liu, F.C., et al.: Azido-mediated systems showing different magnetic behaviors. Chem. Soc. Rev. 38, 469–480 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, J.P., Xu, J., Han, S.D., et al.: A niccolite structural multiferroic metal-organic framework possessing four different types of bistability in response to dielectric and magnetic modulation. Adv. Mater. 29, 1606966 (2017)

    Article  CAS  Google Scholar 

  14. Lee, J., Farha, O.K., Roberts, J., et al.: Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  Google Scholar 

  15. Chughtai, A.H., Ahmad, N., Younus, H.A., et al.: Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804–6849 (2015)

    Article  CAS  Google Scholar 

  16. Chen, Y.N., Guo, Y., Cui, H., et al.: Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. J. Mater. Chem. A 6, 9716–9722 (2018)

    Article  CAS  Google Scholar 

  17. Zhang, M., Dai, Q., Zheng, H., et al.: Novel MOF-derived Co@N–C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30, 1705431 (2018)

    Article  CAS  Google Scholar 

  18. Li, S., Dong, Y., Zhou, J., et al.: Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 11, 1318–1325 (2018)

    Article  CAS  Google Scholar 

  19. Chen, W., Pei, J., He, C.T., et al.: Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30, 1800396 (2018)

    Article  CAS  Google Scholar 

  20. Kreno, L.E., Leong, K., Farha, O.K., et al.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  Google Scholar 

  21. Li, Y.W., Li, J.R., Wang, L.F., et al.: Microporous metal–organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J. Mater. Chem. A 1, 495–499 (2013)

    Article  CAS  Google Scholar 

  22. Yamada, T., Otsubo, K., Makiura, R., et al.: Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655–6669 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Li, A.L., Gao, Q., Xu, J., et al.: Proton-conductive metal-organic frameworks: recent advances and perspectives. Coordin. Chem. Rev. 344, 54–82 (2017)

    Article  CAS  Google Scholar 

  24. Férey, G.: Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  PubMed  Google Scholar 

  25. Faust, T.: Nanomedicine: MOFs deliver. Nat. Chem. 7, 270–271 (2015)

    Article  CAS  Google Scholar 

  26. Talin, A.A., Centrone, A., Ford, A.C., et al.: Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343, 66–69 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Liu, B., Shioyama, H., Akita, T., et al.: Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, S., Zhu, G.: Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordin. Chem. Rev. 253, 2891–2911 (2009)

    Article  CAS  Google Scholar 

  29. Morozan, A., Jaouen, F.: Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 5, 9269–9290 (2012)

    Article  CAS  Google Scholar 

  30. Li, S.L., Xu, Q.: Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 6, 1656–1656 (2013)

    Article  CAS  Google Scholar 

  31. Sun, J.K., Xu, Q.: Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014)

    Article  CAS  Google Scholar 

  32. Xia, W., Mahmood, A., Zou, R., et al.: Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015)

    Article  CAS  Google Scholar 

  33. Wang, L., Han, Y., Feng, X., et al.: Metal–organic frameworks for energy storage: batteries and supercapacitors. Coordin. Chem. Rev. 307, 361–381 (2016)

    Article  CAS  Google Scholar 

  34. Zhao, Y., Song, Z., Li, X., et al.: Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016)

    Article  Google Scholar 

  35. Ke, F.S., Wu, Y.S., Deng, H.: Metal–organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 223, 109–121 (2015)

    Article  CAS  Google Scholar 

  36. Cao, X., Tan, C., Sindoro, M., et al.: Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Yap, M.H., Fow, K.L., Chen, G.Z.: Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218–245 (2017)

    Article  Google Scholar 

  38. Wang, H., Zhu, Q.L., Zou, R., et al.: Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)

    Article  CAS  Google Scholar 

  39. Zhang, Y., Riduan, S.N., Wang, J.: Redox active metal/covalent organic frameworks for energy storage: balancing porosity and electrical conductivity. Chem-Eur. J. 23, 16419–16431 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Wöll, C.: Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. Salunkhe, R.R., Kaneti, Y.V., Kim, J., et al.: Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49, 2796–2806 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. Salunkhe, R.R., Kaneti, Y.V., Yamauchi, Y.: Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, W.J., Huang, K.J.: A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. Inorg. Chem. Front. 4, 1602–1620 (2017)

    Article  CAS  Google Scholar 

  45. Tran-Van, P., Barthelet, K., Morcrette, M., et al.: Reactivity of lithium with a microporous phosphate. J. New Mat. Electr. Syst. 6, 29–32 (2003)

    CAS  Google Scholar 

  46. Li, X., Cheng, F., Zhang, S., et al.: Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 160, 542–547 (2006)

    Article  CAS  Google Scholar 

  47. Ferey, G., Millange, F., Morcrette, M., et al.: Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46, 3259–3263 (2007)

    Article  CAS  Google Scholar 

  48. de Combarieu, G., Hamelet, S., Millange, F., et al.: In situ Fe XAFS of reversible lithium insertion in a flexible metal organic framework material. Electrochem. Commun. 11, 1881–1884 (2009)

    Article  CAS  Google Scholar 

  49. Combelles, C., Doublet, M.L.: Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework. Ionics 14, 279–283 (2008)

    Article  CAS  Google Scholar 

  50. Combelles, C., Yahia, M.B., Pedesseau, L., et al.: Design of electrode materials for lithium-ion batteries: the example of metal–organic frameworks. J. Phys. Chem. C 114, 9518–9527 (2010)

    Article  CAS  Google Scholar 

  51. Combelles, C., Ben Yahia, M., Pedesseau, L., et al.: FeII/FeIII mixed-valence state induced by Li-insertion into the metal–organic-framework MIL53(Fe): a DFT + U study. J. Power Sources 196, 3426–3432 (2011)

    Article  CAS  Google Scholar 

  52. de Combarieu, G., Morcrette, M., Millange, F., et al.: Influence of the benzoquinone sorption on the structure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a lithium-ion battery. Chem. Mater. 21, 1602–1611 (2009)

    Article  CAS  Google Scholar 

  53. Shin, J., Kim, M., Cirera, J., et al.: MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 3, 4738–4744 (2015)

    Article  CAS  Google Scholar 

  54. Yamada, T., Shiraishi, K., Kitagawa, H., et al.: Applicability of MIL-101(Fe) as a cathode of lithium ion batteries. Chem. Commun. 53, 8215–8218 (2017)

    Article  CAS  Google Scholar 

  55. Kaveevivitchai, W., Jacobson, A.J.: Exploration of vanadium benzenedicarboxylate as a cathode for rechargeable lithium batteries. J. Power Sources 278, 265–273 (2015)

    Article  CAS  Google Scholar 

  56. Zhang, Z., Yoshikawa, H., Awaga, K.: Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal–organic framework. J. Am. Chem. Soc. 136, 16112–16115 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Z., Yoshikawa, H., Awaga, K.: Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal–organic framework. Chem. Mater. 28, 1298–1303 (2016)

    Article  CAS  Google Scholar 

  58. Schmidt, S., Sheptyakov, D., Jumas, J.C., et al.: Lithium iron methylenediphosphonate: a model material for new organic–inorganic hybrid positive electrode materials for Li ion batteries. Chem. Mater. 27, 7889–7895 (2015)

    Article  CAS  Google Scholar 

  59. Ogihara, N., Yasuda, T., Kishida, Y., et al.: Organic dicarboxylate negative electrode materials with remarkably small strain for high-voltage bipolar batteries. Angew. Chem. Int. Ed. 53, 11467–11472 (2014)

    Article  CAS  Google Scholar 

  60. Maiti, S., Pramanik, A., Manju, U., et al.: Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance. ACS Appl. Mater. Interface 7, 16357–16363 (2015)

    Article  CAS  Google Scholar 

  61. Lin, Y., Zhang, Q., Zhao, C., et al.: An exceptionally stable functionalized metal–organic framework for lithium storage. Chem. Commun. 51, 697–699 (2015)

    Article  CAS  Google Scholar 

  62. Wang, L., Mou, C., Sun, Y., et al.: Structure-property of metal organic frameworks calcium terephthalates anodes for lithium-ion batteries. Electrochim. Acta 173, 235–241 (2015)

    Article  CAS  Google Scholar 

  63. Wang, L., Mou, C., Wu, B., et al.: Alkaline earth metal terephthalates MC8H4O4 (M = Ca, Sr, Ba) as anodes for lithium ion batteries. Electrochim. Acta 196, 118–124 (2016)

    Article  CAS  Google Scholar 

  64. Tian, D., Xu, J., Xie, Z.J., et al.: The first example of hetero-triple-walled metal–organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks. Adv. Sci. 3, 1500283 (2015)

    Article  CAS  Google Scholar 

  65. Huang, Q., Wei, T., Zhang, M., et al.: A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 5, 8477–8483 (2017)

    Article  CAS  Google Scholar 

  66. Han, Y., Qi, P., Zhou, J., et al.: Metal–organic frameworks (MOFs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS Appl. Mater. Interface 7, 26608–26613 (2015)

    Article  CAS  Google Scholar 

  67. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)

    Article  CAS  Google Scholar 

  68. Yu, Y., Yue, C., Lin, X., et al.: ZIF-8 cooperating in TiN/Ti/Si nanorods as efficient anodes in micro-lithium-ion-batteries. ACS Appl. Mater. Interfaces 8, 3992–3999 (2016)

    Article  CAS  PubMed  Google Scholar 

  69. Qiao, Q.Q., Li, G.R., Wang, Y.L., et al.: To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J. Mater. Chem. A 4, 4440–4447 (2016)

    Article  CAS  Google Scholar 

  70. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Liu, W., Mi, Y., Weng, Z., et al.: Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 8, 4285–4291 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen, L., Wu, H.B., Liu, F., et al.: Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks. Adv. Mater. 30, 1707476 (2018)

    Article  CAS  Google Scholar 

  73. Wiers, B.M., Foo, M.L., Balsara, N.P., et al.: A solid lithium electrolyte via addition of lithium isopropoxide to a metal–organic framework with open metal sites. J. Am. Chem. Soc. 133, 14522–14525 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. Ameloot, R., Aubrey, M., Wiers, B.M., et al.: Ionic conductivity in the metal–organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chem-Eur. J. 19, 5533–5536 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Yuan, C., Li, J., Han, P., et al.: Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal–organic framework. J. Power Sources 240, 653–658 (2013)

    Article  CAS  Google Scholar 

  76. Zhu, K., Liu, Y., Liu, J.: A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv. 4, 42278–42284 (2014)

    Article  CAS  Google Scholar 

  77. Gerbaldi, C., Nair, J.R., Kulandainathan, M.A., et al.: Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2, 9948–9954 (2014)

    Article  CAS  Google Scholar 

  78. Angulakshmi, N., Kumar, R.S., Kulandainathan, M.A., et al.: Composite polymer electrolytes encompassing metal organic frame works: a new strategy for all-solid-state lithium batteries. J. Phys. Chem. C 118, 24240–24247 (2014)

    Article  CAS  Google Scholar 

  79. Senthil Kumar, R., Raja, M., Anbu Kulandainathan, M., et al.: Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv. 4, 26171–26175 (2014)

    Article  CAS  Google Scholar 

  80. Wang, Z., Tan, R., Wang, H., et al.: A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018)

    Article  CAS  Google Scholar 

  81. Bai, S., Sun, Y., Yi, J., et al.: High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2, 2117–2132 (2018)

    Article  CAS  Google Scholar 

  82. Foley, S., Geaney, H., Bree, G., et al.: Copper Sulfide (CuxS) nanowire-in-carbon composites formed from direct sulfurization of the metal-organic framework HKUST-1 and their use as Li-ion battery cathodes. Adv. Funct. Mater. 28, 1800587 (2018)

    Article  CAS  Google Scholar 

  83. Yang, H., Wang, X.: Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 30, 1800743 (2018)

    Google Scholar 

  84. Zheng, F., Yang, Y., Chen, Q.: High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat. Commun. 5, 5261 (2014)

    Article  CAS  PubMed  Google Scholar 

  85. Xie, Z., He, Z., Feng, X., et al.: Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8, 10324–10333 (2016)

    Article  CAS  PubMed  Google Scholar 

  86. Song, Y., Zuo, L., Chen, S., et al.: Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015)

    Article  CAS  Google Scholar 

  87. Zuo, L., Chen, S., Wu, J., et al.: Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal–organic framework for lithium-ion batteries anode materials. RSC Adv. 4, 61604–61610 (2014)

    Article  CAS  Google Scholar 

  88. Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. Wu, R., Qian, X., Rui, X., et al.: Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10, 1932–1938 (2014)

    Article  CAS  PubMed  Google Scholar 

  90. Yu, D., Ge, L., Wu, B., et al.: Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: toward high-performance battery-type electrodes. J. Mater. Chem. A 3, 16688–16694 (2015)

    Article  CAS  Google Scholar 

  91. Zhao, G., Sun, X., Zhang, L., et al.: A self-supported metal-organic framework derived Co3O4 film prepared by an in situ electrochemically assistant process as Li ion battery anodes. J. Power Sources 389, 8–12 (2018)

    Article  CAS  Google Scholar 

  92. Qu, Q., Gao, T., Zheng, H., et al.: Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 92, 119–125 (2015)

    Article  CAS  Google Scholar 

  93. Shao, J., Zhou, H., Zhu, M., et al.: Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. J. Alloy. Compd. 768, 1049–1057 (2018)

    Article  CAS  Google Scholar 

  94. Huang, G., Zhang, F., Du, X., et al.: Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9, 1592–1599 (2015)

    Article  CAS  PubMed  Google Scholar 

  95. Wang, S., Chen, M., Xie, Y., et al.: Nanoparticle cookies derived from metal–organic frameworks: controlled synthesis and application in anode materials for lithium-ion batteries. Small 12, 2365–2375 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. Fang, G., Zhou, J., Liang, C., et al.: MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016)

    Article  CAS  Google Scholar 

  97. Su, P., Liao, S., Rong, F., et al.: Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2, 17408–17414 (2014)

    Article  CAS  Google Scholar 

  98. Wang, Y., Wang, B., Xiao, F., et al.: Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 298, 203–208 (2015)

    Article  CAS  Google Scholar 

  99. Li, C., Chen, T., Xu, W., et al.: Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3, 5585–5591 (2015)

    Article  CAS  Google Scholar 

  100. Han, Y., Zhao, M., Dong, L., et al.: MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J. Mater. Chem. A 3, 22542–22546 (2015)

    Article  CAS  Google Scholar 

  101. Feng, Y., Yu, X.Y., Paik, U.: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 52, 6269–6272 (2016)

    Article  CAS  Google Scholar 

  102. Tian, D., Zhou, X.L., Zhang, Y.H., et al.: MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 54, 8159–8161 (2015)

    Article  CAS  PubMed  Google Scholar 

  103. Tian, D., Chen, Q., Li, Y., et al.: A mixed molecular building block strategy for the design of nested polyhedron metal–organic frameworks. Angew. Chem. Int. Ed. 53, 837–841 (2014)

    Article  CAS  Google Scholar 

  104. Xu, X., Cao, R., Jeong, S., et al.: Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 12, 4988–4991 (2012)

    Article  CAS  PubMed  Google Scholar 

  105. Banerjee, A., Aravindan, V., Bhatnagar, S., et al.: Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2, 890–896 (2013)

    Article  CAS  Google Scholar 

  106. Zheng, F., He, M., Yang, Y., et al.: Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale 7, 3410–3417 (2015)

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, L., Wu, H.B., Xu, R., et al.: Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. CrystEngComm 15, 9332–9335 (2013)

    Article  CAS  Google Scholar 

  108. Wang, L., Wu, J., Chen, Y., et al.: Hollow nitrogen-doped Fe3O4/carbon nanocages with hierarchical porosities as anode materials for lithium-ion batteries. Electrochim. Acta 186, 50–57 (2015)

    Article  CAS  Google Scholar 

  109. Li, M., Wang, W., Yang, M., et al.: Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Adv. 5, 7356–7362 (2015)

    Article  CAS  Google Scholar 

  110. Bai, Z., Zhang, Y., Zhang, Y., et al.: MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J. Mater. Chem. A 3, 5266–5269 (2015)

    Article  CAS  Google Scholar 

  111. Cao, K., Jiao, L., Xu, H., et al.: Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv. Sci. 3, 1500185 (2016)

    Article  CAS  Google Scholar 

  112. Zhang, B., Hao, S., Xiao, D., et al.: Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater. Des. 98, 319–323 (2016)

    Article  CAS  Google Scholar 

  113. Maiti, S., Pramanik, A., Mahanty, S.: Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal–organic framework. CrystEngComm 18, 450–461 (2016)

    Article  CAS  Google Scholar 

  114. Zheng, F., Xia, G., Yang, Y., et al.: MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7, 9637–9645 (2015)

    Article  CAS  PubMed  Google Scholar 

  115. Ren, Y., Liu, Z., Pourpoint, F., et al.: Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 2164–2167 (2012)

    Article  CAS  Google Scholar 

  116. Wang, Z., Li, X., Xu, H., et al.: Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A 2, 12571–12575 (2014)

    Article  CAS  Google Scholar 

  117. Wang, P., Lang, J., Liu, D., et al.: TiO2 embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. Chem. Commun. 51, 11370–11373 (2015)

    Article  CAS  Google Scholar 

  118. Xiu, Z., Alfaruqi, M.H., Gim, J., et al.: MOF-derived mesoporous anatase TiO2 as anode material for lithium–ion batteries with high rate capability and long cycle stability. J. Alloy. Compd. 674, 174–178 (2016)

    Article  CAS  Google Scholar 

  119. Xiu, Z., Alfaruqi, M.H., Gim, J., et al.: Hierarchical porous anatase TiO2 derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chem. Commun. 51, 12274–12277 (2015)

    Article  CAS  Google Scholar 

  120. Wang, C., Higgins, D., Wang, F., et al.: Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy 9, 334–344 (2014)

    Article  CAS  Google Scholar 

  121. Banerjee, A., Singh, U., Aravindan, V., et al.: Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2, 1158–1163 (2013)

    Article  CAS  Google Scholar 

  122. Wu, R., Qian, X., Yu, F., et al.: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 1, 11126–11129 (2013)

    Article  CAS  Google Scholar 

  123. Chen, T., Hu, Y., Cheng, B., et al.: Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20, 305–314 (2016)

    Article  CAS  Google Scholar 

  124. Hu, L., Huang, Y., Zhang, F., et al.: CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5, 4186–4190 (2013)

    Article  CAS  PubMed  Google Scholar 

  125. Sun, Z., Cao, C., Han, W.Q.: A scalable formation of nano-SnO2 anode derived from tin metal–organic frameworks for lithium-ion battery. RSC Adv. 5, 72825–72829 (2015)

    Article  CAS  Google Scholar 

  126. Wang, M., Yang, H., Zhou, X., et al.: Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs. Chem. Commun. 52, 717–720 (2016)

    Article  CAS  Google Scholar 

  127. Li, G., Yang, H., Li, F., et al.: Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode by using adsorption property of metal–organic framework. J. Mater. Chem. A 4, 9593–9599 (2016)

    Article  CAS  Google Scholar 

  128. Zhang, G., Hou, S., Zhang, H., et al.: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015)

    Article  CAS  PubMed  Google Scholar 

  129. Han, Y., Qi, P., Li, S., et al.: A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50, 8057–8060 (2014)

    Article  CAS  Google Scholar 

  130. Jung, S., Oh, M.: Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles. Angew. Chem. Int. Ed. 47, 2049–2051 (2008)

    Article  CAS  Google Scholar 

  131. Shen, L., Wang, C.: ZnO/C microboxes derived from coordination polymer particles for superior lithium ion battery anodes. RSC Adv. 5, 88989–88995 (2015)

    Article  CAS  Google Scholar 

  132. Zhang, F., Jiang, D., Zhang, X.: Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode. Nano-Struct. Nano-Objects 5, 1–6 (2016)

    Article  CAS  Google Scholar 

  133. Zhang, Y., Pan, A., Wang, Y., et al.: Dodecahedron-shaped porous vanadium oxide and carbon composite for high-rate lithium ion batteries. ACS Appl. Mater. Interface 8, 17303–17311 (2016)

    Article  CAS  Google Scholar 

  134. Wu, R., Qian, X., Zhou, K., et al.: Porous spinel ZnxCo3–xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8, 6297–6303 (2014)

    Article  CAS  PubMed  Google Scholar 

  135. Yuan, C., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    Article  CAS  Google Scholar 

  136. Zhang, G., Yu, L., Wu, H.B., et al.: Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 24, 4609–4613 (2012)

    Article  CAS  PubMed  Google Scholar 

  137. Bai, J., Li, X., Liu, G., et al.: Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 24, 3012–3020 (2014)

    Article  CAS  Google Scholar 

  138. Yu, J., Chen, S., Hao, W., et al.: Fibrous-root-inspired design and lithium storage applications of a Co–Zn binary synergistic nanoarray system. ACS Nano 10, 2500–2508 (2016)

    Article  CAS  PubMed  Google Scholar 

  139. Liu, D., Wang, X., Wang, X., et al.: Co3O4 nanocages with highly exposed 110 facets for high-performance lithium storage. Sci. Rep. 3, 2543 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu, J., Song, Y., Zhou, R., et al.: Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries. J. Mater. Chem. A 3, 7793–7798 (2015)

    Article  CAS  Google Scholar 

  141. Li, H., Liang, M., Sun, W., et al.: Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26, 1098–1103 (2016)

    Article  CAS  Google Scholar 

  142. Ma, J., Wang, H., Yang, X., et al.: Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3, 12038–12043 (2015)

    Article  CAS  Google Scholar 

  143. Liu, L., Hu, Z., Sun, L., et al.: Controlled synthesis and enhanced electrochemical performance of Prussian blue analogue-derived hollow FeCo2O4 nanospheres as lithium-ion battery anodes. RSC Adv. 5, 36575–36581 (2015)

    Article  CAS  Google Scholar 

  144. Zhao, F., Tian, J., Wang, B.: Binary metal organic framework derived CoxFe3−xO4/C for lithium ion batteries. Mater. Lett. 161, 104–107 (2015)

    Article  CAS  Google Scholar 

  145. Soundharrajan, V., Sambandam, B., Song, J., et al.: Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 8, 8546–8553 (2016)

    Article  CAS  PubMed  Google Scholar 

  146. Guo, W., Sun, W., Wang, Y.: Multilayer CuO@NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9, 11462–11471 (2015)

    Article  CAS  PubMed  Google Scholar 

  147. Xu, X., Cao, K., Wang, Y., et al.: 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 4, 6042–6047 (2016)

    Article  CAS  Google Scholar 

  148. Ge, X., Li, Z., Wang, C., et al.: Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl. Mater. Interface 7, 26633–26642 (2015)

    Article  CAS  Google Scholar 

  149. Li, Z., Yin, L.: Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 3, 21569–21577 (2015)

    Article  CAS  Google Scholar 

  150. Zhao, Y., Li, X., Liu, J., et al.: MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8, 6472–6480 (2016)

    Article  CAS  PubMed  Google Scholar 

  151. Zhu, D., Zheng, F., Xu, S., et al.: MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans. 44, 16946–16952 (2015)

    Article  CAS  PubMed  Google Scholar 

  152. Zou, F., Hu, X., Li, Z., et al.: MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014)

    Article  CAS  PubMed  Google Scholar 

  153. Sun, C., Yang, J., Rui, X., et al.: MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J. Mater. Chem. A 3, 8483–8488 (2015)

    Article  CAS  Google Scholar 

  154. Huang, G., Zhang, L., Zhang, F., et al.: Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6, 5509–5515 (2014)

    Article  CAS  PubMed  Google Scholar 

  155. Zhong, M., Yang, D., Xie, C., et al.: Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12, 5564–5571 (2016)

    Article  CAS  PubMed  Google Scholar 

  156. Huang, G., Zhang, F., Zhang, L., et al.: Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J. Mater. Chem. A 2, 8048–8053 (2014)

    Article  CAS  Google Scholar 

  157. Huang, G., Zhang, F., Du, X., et al.: Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries. Chem-Eur. J. 20, 11214–11219 (2014)

    Article  CAS  PubMed  Google Scholar 

  158. Wang, B., Wang, Z., Cui, Y., et al.: Cr2O3@TiO2 yolk/shell octahedrons derived from a metal–organic framework for high-performance lithium-ion batteries. Micropor. Mesopor. Mat 203, 86–90 (2015)

    Article  CAS  Google Scholar 

  159. Xiu, Z., Kim, D., Alfaruqi, M.H., et al.: Porous TiN nanoparticles embedded in a N-doped carbon composite derived from metal–organic frameworks as a superior anode in lithium-ion batteries. J. Mater. Chem. A 4, 4706–4710 (2016)

    Article  CAS  Google Scholar 

  160. Tan, Y., Zhu, K., Li, D., et al.: N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem. Eng. J. 258, 93–100 (2014)

    Article  CAS  Google Scholar 

  161. Wang, Q., Zou, R., Xia, W., et al.: Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11, 2511–2517 (2015)

    Article  CAS  PubMed  Google Scholar 

  162. Liu, J., Wu, C., Xiao, D., et al.: MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 12, 2354–2364 (2016)

    Article  CAS  PubMed  Google Scholar 

  163. Yin, D., Huang, G., Zhang, F., et al.: Coated/sandwiched rGO/CoSx composites derived from metal-organic frameworks/GO as advanced anode materials for lithium-ion batteries. Chem-Eur. J. 22, 1467–1474 (2016)

    Article  CAS  PubMed  Google Scholar 

  164. Wang, Z., Li, X., Yang, Y., et al.: Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J. Mater. Chem. A 2, 7912–7916 (2014)

    Article  CAS  Google Scholar 

  165. Fu, Y., Zhang, Z., Yang, X., et al.: ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv. 5, 86941–86944 (2015)

    Article  CAS  Google Scholar 

  166. Hu, H., Zhang, J., Guan, B., et al.: Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016)

    Article  CAS  Google Scholar 

  167. Han, Y., Qi, P., Feng, X., et al.: In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interface 7, 2178–2182 (2015)

    Article  CAS  Google Scholar 

  168. Qi, P., Han, Y., Zhou, J., et al.: MOF derived composites for cathode protection: coatings of LiCoO2 from UiO-66 and MIL-53 as ultra-stable cathodes. Chem. Commun. 51, 12391–12394 (2015)

    Article  CAS  Google Scholar 

  169. Li, S., Fu, X., Zhou, J., et al.: An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J. Mater. Chem. A 4, 5823–5827 (2016)

    Article  CAS  Google Scholar 

  170. Zhong, M., He, W.W., Shuang, W., et al.: Metal-organic framework derived core–shell Co/Co3O4@N–C nanocomposites as high performance anode materials for lithium ion batteries. Inorg. Chem. 57, 4620–4628 (2018)

    Article  CAS  PubMed  Google Scholar 

  171. Li, J., Yan, D., Hou, S., et al.: Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018)

    Article  CAS  Google Scholar 

  172. Maiti, S., Pramanik, A., Dhawa, T., et al.: Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode. Mater. Sci. Eng. B 229, 27–36 (2018)

    Article  CAS  Google Scholar 

  173. Chen, K., Sun, Z., Fang, R., et al.: Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707592 (2018)

    Article  CAS  Google Scholar 

  174. Xu, R., Lu, J., Amine, K.: Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5, 1500408 (2015)

    Article  CAS  Google Scholar 

  175. Hong, X.J., Tan, T.X., Guo, Y.K., et al.: Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 10, 2774–2780 (2018)

    Article  CAS  PubMed  Google Scholar 

  176. Pope, M.A., Aksay, I.A.: Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 5, 1500124 (2015)

    Article  CAS  Google Scholar 

  177. Rauh, R., Abraham, K., Pearson, G., et al.: A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979)

    Article  CAS  Google Scholar 

  178. Rauh, R., Shuker, F., Marston, J., et al.: Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977)

    Article  CAS  Google Scholar 

  179. Cheon, S.E., Ko, K.S., Cho, J.H., et al.: Rechargeable lithium sulfur battery I. Structural change of sulfur cathode during discharge and charge. J. Electrochem. Soc. 150, A796–A799 (2003)

    Article  CAS  Google Scholar 

  180. Demir-Cakan, R., Morcrette, M., Nouar, F., et al.: Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011)

    Article  CAS  PubMed  Google Scholar 

  181. Zheng, J., Tian, J., Wu, D., et al.: Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014)

    Article  CAS  PubMed  Google Scholar 

  182. Jiang, H., Liu, X.C., Wu, Y., et al.: Metal-organic frameworks for high charge–discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018)

    Article  CAS  Google Scholar 

  183. Wang, Z., Dou, Z., Cui, Y., et al.: Sulfur encapsulated ZIF-8 as cathode material for lithium–sulfur battery with improved cyclability. Micropor. Mesopor. Mat 185, 92–96 (2014)

    Article  CAS  Google Scholar 

  184. Zhou, J., Li, R., Fan, X., et al.: Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy Environ. Sci. 7, 2715–2724 (2014)

    Article  CAS  Google Scholar 

  185. Zhou, J., Yu, X., Fan, X., et al.: The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries. J. Mater. Chem. A 3, 8272–8275 (2015)

    Article  CAS  Google Scholar 

  186. Yue, Y., Guo, B., Qiao, Z.A., et al.: Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Micropor. Mesopor. Mat 198, 139–143 (2014)

    Article  CAS  Google Scholar 

  187. Zhao, Z., Wang, S., Liang, R., et al.: Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J. Mater. Chem. A 2, 13509–13512 (2014)

    Article  CAS  Google Scholar 

  188. Bao, W., Zhang, Z., Qu, Y., et al.: Confine sulfur in mesoporous metal–organic framework@reduced graphene oxide for lithium sulfur battery. J. Alloy. Compd. 582, 334–340 (2014)

    Article  CAS  Google Scholar 

  189. Wang, Z., Wang, B., Yang, Y., et al.: Mixed-metal–organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl. Mater. Interface 7, 20999–21004 (2015)

    Article  CAS  Google Scholar 

  190. Wang, Z., Li, X., Cui, Y., et al.: A metal–organic framework with open metal sites for enhanced confinement of sulfur and lithium–sulfur battery of long cycling life. Cryst. Growth Des. 13, 5116–5120 (2013)

    Article  CAS  Google Scholar 

  191. Bai, S., Liu, X., Zhu, K., et al.: Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016)

    Article  CAS  Google Scholar 

  192. Xi, K., Cao, S., Peng, X., et al.: Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chem. Commun. 49, 2192–2194 (2013)

    Article  CAS  Google Scholar 

  193. Xu, G., Ding, B., Shen, L., et al.: Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. J. Mater. Chem. A 1, 4490–4496 (2013)

    Article  CAS  Google Scholar 

  194. Bao, W., Zhang, Z., Zhou, C., et al.: Multi-walled carbon nanotubes@mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@metal–organic framework for lithium sulfur battery. J. Power Sources 248, 570–576 (2014)

    Article  CAS  Google Scholar 

  195. Bao, W., Zhang, Z., Chen, W., et al.: Facile synthesis of graphene oxide@mesoporous carbon hybrid nanocomposites for lithium sulfur battery. Electrochim. Acta 127, 342–348 (2014)

    Article  CAS  Google Scholar 

  196. Li, Z., Yin, L.: Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl. Mater. Interface 7, 4029–4038 (2015)

    Article  CAS  Google Scholar 

  197. Li, X., Sun, Q., Liu, J., et al.: Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J. Power Sources 302, 174–179 (2016)

    Article  CAS  Google Scholar 

  198. Chen, R., Zhao, T., Tian, T., et al.: Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Mat. 2, 124109 (2014)

    Article  CAS  Google Scholar 

  199. Li, Z., Li, C., Ge, X., et al.: Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23, 15–26 (2016)

    Article  CAS  Google Scholar 

  200. Li, Y.J., Fan, J.M., Zheng, M.S., et al.: A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998–2004 (2016)

    Article  CAS  Google Scholar 

  201. Klose, M., Pinkert, K., Zier, M., et al.: Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon 79, 302–309 (2014)

    Article  CAS  Google Scholar 

  202. Xia, W., Qiu, B., Xia, D., et al.: Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep. 3, 1935 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  203. Abouimrane, A., Dambournet, D., Chapman, K.W., et al.: A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012)

    Article  CAS  PubMed  Google Scholar 

  204. Cui, Y., Abouimrane, A., Lu, J., et al.: (De)lithiation mechanism of Li/SeSx (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 135, 8047–8056 (2013)

    Article  CAS  PubMed  Google Scholar 

  205. Lai, Y., Gan, Y., Zhang, Z., et al.: Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium battery. Electrochim. Acta 146, 134–141 (2014)

    Article  CAS  Google Scholar 

  206. Li, Z., Yin, L.: MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li–Se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7, 9597–9606 (2015)

    Article  CAS  PubMed  Google Scholar 

  207. He, J., Lv, W., Chen, Y., et al.: Direct impregnation of SeS2 into a MOF-derived 3D nanoporous Co–N–C architecture towards superior rechargeable lithium batteries. J. Mater. Chem. A 6, 10466–10473 (2018)

    Article  CAS  Google Scholar 

  208. Luntz, A.C., McCloskey, B.D.: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014)

    Article  CAS  PubMed  Google Scholar 

  209. Zhang, X., Wang, X.G., Xie, Z., et al.: Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1, 4–17 (2016)

    Article  Google Scholar 

  210. Wu, D., Guo, Z., Yin, X., et al.: Metal-organic frameworks as cathode materials for Li–O2 Batteries. Adv. Mater. 26, 3258–3262 (2014)

    Article  CAS  PubMed  Google Scholar 

  211. Hu, X., Zhu, Z., Cheng, F., et al.: Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 7, 11833–11840 (2015)

    Article  CAS  PubMed  Google Scholar 

  212. Cao, L., Lv, F., Liu, Y., et al.: A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. Chem. Commun. 51, 4364–4367 (2015)

    Article  CAS  Google Scholar 

  213. Li, Q., Xu, P., Gao, W., et al.: Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 26, 1378–1386 (2014)

    Article  CAS  PubMed  Google Scholar 

  214. Chen, W., Zhang, Z., Bao, W., et al.: Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li–O2 batteries. Electrochim. Acta 134, 293–301 (2014)

    Article  CAS  Google Scholar 

  215. Yin, W., Shen, Y., Zou, F., et al.: Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interface 7, 4947–4954 (2015)

    Article  CAS  Google Scholar 

  216. Zhang, J., Wang, L., Xu, L., et al.: Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale 7, 720–726 (2015)

    Article  CAS  PubMed  Google Scholar 

  217. Tang, J., Wu, S., Wang, T., et al.: Cage-type highly graphitic porous carbon–Co3O4 polyhedron as the cathode of lithium–oxygen batteries. ACS Appl. Mater. Interfaces. 8, 2796–2804 (2016)

    Article  CAS  PubMed  Google Scholar 

  218. Gan, Y., Lai, Y., Zhang, Z., et al.: Hierarchical Cr2O3@OPC composites with octahedral shape for rechargeable nonaqueous lithium–oxygen batteries. J. Alloys Compd. 665, 365–372 (2016)

    Article  CAS  Google Scholar 

  219. Lai, Y., Chen, W., Zhang, Z., et al.: Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries. Electrochim. Acta 191, 733–742 (2016)

    Article  CAS  Google Scholar 

  220. Zhong, M., Zhang, X., Yang, D.H., et al.: Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li–O2 batteries. Inorg. Chem. Front. 4, 1533–1538 (2017)

    Article  CAS  Google Scholar 

  221. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  PubMed  Google Scholar 

  222. Tarascon, J.M.: Is lithium the new gold? Nat. Chem. 2, 510 (2010)

    Article  CAS  PubMed  Google Scholar 

  223. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  PubMed  Google Scholar 

  224. Gao, X., Zhang, X., Jiang, J., et al.: Rod-like carbon-coated MnS derived from metal–organic frameworks as high-performance anode material for sodium-ion batteries. Mater. Lett. 228, 42–45 (2018)

    Article  CAS  Google Scholar 

  225. Lu, Y., Wang, L., Cheng, J., et al.: Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012)

    Article  CAS  Google Scholar 

  226. Lee, H., Kim, Y.I., Park, J.K., et al.: Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 48, 8416–8418 (2012)

    Article  CAS  Google Scholar 

  227. You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014)

    Article  CAS  Google Scholar 

  228. Wang, L., Lu, Y., Liu, J., et al.: A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)

    Article  CAS  Google Scholar 

  229. Yue, Y., Binder, A.J., Guo, B., et al.: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53, 3134–3137 (2014)

    Article  CAS  Google Scholar 

  230. Nie, P., Shen, L., Pang, G., et al.: Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. J. Mater. Chem. A 3, 16590–16597 (2015)

    Article  CAS  Google Scholar 

  231. Meng, Q., Zhang, W., Hu, M., et al.: Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries. Chem. Commun. 52, 1957–1960 (2016)

    Article  CAS  Google Scholar 

  232. Xie, M., Huang, Y., Xu, M., et al.: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries. J. Power Sources 302, 7–12 (2016)

    Article  CAS  Google Scholar 

  233. Aubrey, M.L., Long, J.R.: A dual-ion battery cathode via oxidative insertion of anions in a metal–organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015)

    Article  CAS  PubMed  Google Scholar 

  234. Qu, Q., Yun, J., Wan, Z., et al.: MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Adv. 4, 64692–64697 (2014)

    Article  CAS  Google Scholar 

  235. Shi, X., Zhang, Z., Fu, Y., et al.: Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 161, 332–335 (2015)

    Article  CAS  Google Scholar 

  236. Li, W., Hu, S., Luo, X., et al.: Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29, 1605820 (2017)

    Article  CAS  Google Scholar 

  237. Zou, G., Jia, X., Huang, Z., et al.: Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 196, 413–421 (2016)

    Article  CAS  Google Scholar 

  238. Kong, L., Zhu, J., Shuang, W., et al.: Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater. 8, 1801515 (2018)

    Article  CAS  Google Scholar 

  239. Chen, Y., Li, X., Park, K., et al.: Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3, 152–163 (2017)

    Article  CAS  Google Scholar 

  240. Zou, F., Chen, Y.M., Liu, K., et al.: Metal organic frameworks derived hierarchical hollow NiO/Ni/Graphene composites for lithium and sodium storage. ACS Nano 10, 377–386 (2016)

    Article  CAS  PubMed  Google Scholar 

  241. Wang, Y., Wang, C., Wang, Y., et al.: Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal–organic framework. J. Mater. Chem. A 4, 5428–5435 (2016)

    Article  CAS  Google Scholar 

  242. Zhang, X., Qin, W., Li, D., et al.: Metal–organic framework derived porous CuO/Cu2O composite hollow octahedrons as high performance anode materials for sodium ion batteries. Chem. Commun. 51, 16413–16416 (2015)

    Article  CAS  Google Scholar 

  243. Ramaraju, B., Li, C.H., Prakash, S., et al.: Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. Chem. Commun. 52, 946–949 (2016)

    Article  CAS  Google Scholar 

  244. Qi, L.Y., Zhang, Y.W., Zuo, Z.C., et al.: In situ quantization of ferroferric oxide embedded in 3D microcarbon for ultrahigh performance sodium-ion batteries. J. Mater. Chem. A 4, 8822–8829 (2016)

    Article  CAS  Google Scholar 

  245. Yu, L., Liu, J., Xu, X., et al.: Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 11, 5120–5129 (2017)

    Article  CAS  PubMed  Google Scholar 

  246. Ge, X., Li, Z., Yin, L.: Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017)

    Article  CAS  Google Scholar 

  247. Dong, S., Li, C., Ge, X., et al.: ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017)

    Article  CAS  PubMed  Google Scholar 

  248. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  PubMed  Google Scholar 

  249. Xing, L.L., Huang, K.J., Cao, S.X., et al.: Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chem. Eng. J. 332, 253–259 (2018)

    Article  CAS  Google Scholar 

  250. Zhai, Z.B., Huang, K.J., Wu, X.: Superior mixed Co–Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47, 89–95 (2018)

    Article  CAS  Google Scholar 

  251. Yan, J., Wang, Q., Wei, T., et al.: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014)

    Article  CAS  Google Scholar 

  252. Liao, C., Zuo, Y., Zhang, W., et al.: Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. Russ. J. Electrochem. 49, 983–986 (2012)

    Article  CAS  Google Scholar 

  253. Díaz, R., Orcajo, M.G., Botas, J.A., et al.: Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012)

    Article  CAS  Google Scholar 

  254. Lee, D.Y., Yoon, S.J., Shrestha, N.K., et al.: Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Micropor. Mesopor. Mat 153, 163–165 (2012)

    Article  CAS  Google Scholar 

  255. Lee, D.Y., Shinde, D.V., Kim, E.K., et al.: Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Micropor. Mesopor. Mat 171, 53–57 (2013)

    Article  CAS  Google Scholar 

  256. Gong, Y., Li, J., Jiang, P.G., et al.: Novel metal(II) coordination polymers based on N, N’-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte. Dalton Trans. 42, 1603–1611 (2013)

    Article  CAS  PubMed  Google Scholar 

  257. Du, M., Chen, M., Yang, X.G., et al.: A channel-type mesoporous In(iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J. Mater. Chem. A 2, 9828–9834 (2014)

    Article  CAS  Google Scholar 

  258. Yang, J., Xiong, P., Zheng, C., et al.: Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2, 16640–16644 (2014)

    Article  CAS  Google Scholar 

  259. Yang, J., Zheng, C., Xiong, P., et al.: Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010 (2014)

    Article  CAS  Google Scholar 

  260. Choi, K.M., Jeong, H.M., Park, J.H., et al.: Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014)

    Article  CAS  PubMed  Google Scholar 

  261. Tan, Y., Zhang, W., Gao, Y., et al.: Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv. 5, 17601–17605 (2015)

    Article  CAS  Google Scholar 

  262. Fu, D., Zhou, H., Zhang, X.M., et al.: Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically-codeposited PEDOT-GO. ChemistrySelect 1, 285–289 (2016)

    Article  CAS  Google Scholar 

  263. Srimuk, P., Luanwuthi, S., Krittayavathananon, A., et al.: Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 157, 69–77 (2015)

    Article  CAS  Google Scholar 

  264. Wen, P., Gong, P., Sun, J., et al.: Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883 (2015)

    Article  CAS  Google Scholar 

  265. Sheberla, D., Bachman, J.C., Elias, J.S., et al.: Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017)

    Article  CAS  PubMed  Google Scholar 

  266. Sheberla, D., Sun, L., Blood-Forsythe, M.A., et al.: High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014)

    Article  CAS  PubMed  Google Scholar 

  267. Li, W.H., Ding, K., Tian, H.R., et al.: Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 27, 1702067 (2017)

    Article  CAS  Google Scholar 

  268. Liu, X., Shi, C., Zhai, C., et al.: Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interface 8, 4585–4591 (2016)

    Article  CAS  Google Scholar 

  269. Yang, J., Ma, Z., Gao, W., et al.: Layered structural co-based MOF with conductive network frames as a new supercapacitor electrode. Chem-Eur. J. 23, 631–636 (2017)

    Article  CAS  PubMed  Google Scholar 

  270. Qu, C., Jiao, Y., Zhao, B., et al.: Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016)

    Article  CAS  Google Scholar 

  271. Worrall, S.D., Mann, H., Rogers, A., et al.: Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochim. Acta 197, 228–240 (2016)

    Article  CAS  Google Scholar 

  272. Wang, L., Feng, X., Ren, L., et al.: Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)

    Article  CAS  PubMed  Google Scholar 

  273. Zhang, D., Shi, H., Zhang, R., et al.: Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 5, 58772–58776 (2015)

    Article  CAS  Google Scholar 

  274. Gao, Y., Wu, J., Zhang, W., et al.: Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications. J. Appl. Electrochem. 45, 541–547 (2015)

    Article  CAS  Google Scholar 

  275. Zhang, W., Tan, Y., Gao, Y., et al.: Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J. Appl. Electrochem. 46, 441–450 (2016)

    Article  CAS  Google Scholar 

  276. Wang, Y., Chen, Q.: Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. ACS Appl. Mater. Interfaces 6, 6196–6201 (2014)

    Article  CAS  PubMed  Google Scholar 

  277. Zhang, Y.Z., Cheng, T., Wang, Y., et al.: A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016)

    Article  CAS  PubMed  Google Scholar 

  278. Yan, Y., Gu, P., Zheng, S., et al.: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016)

    Article  CAS  Google Scholar 

  279. Yu, D., Ge, L., Wei, X., et al.: A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes. J. Mater. Chem. A 5, 16865–16872 (2017)

    Article  CAS  Google Scholar 

  280. Yan, Y., Luo, Y., Ma, J., et al.: Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors. Small, 14, 1801815 (2018)

    Article  CAS  Google Scholar 

  281. Deng, T., Lu, Y., Zhang, W., et al.: Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018)

    Article  CAS  Google Scholar 

  282. Kazemi, S.H., Hosseinzadeh, B., Kazemi, H., et al.: Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl. Mater. Interface 10, 23063–23073 (2018)

    Article  CAS  Google Scholar 

  283. Liu, B., Shioyama, H., Jiang, H., et al.: Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)

    Article  CAS  Google Scholar 

  284. Wen, P., Li, Z., Gong, P., et al.: Design and fabrication of carbonized rGO/CMOF-5 hybrids for supercapacitor applications. RSC Adv. 6, 13264–13271 (2016)

    Article  CAS  Google Scholar 

  285. Yu, M., Zhang, L., He, X., et al.: 3D interconnected porous carbons from MOF-5 for supercapacitors. Mater. Lett. 172, 81–84 (2016)

    Article  CAS  Google Scholar 

  286. Yan, X., Li, X., Yan, Z., et al.: Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 308, 306–310 (2014)

    Article  CAS  Google Scholar 

  287. Jiang, H.L., Liu, B., Lan, Y.Q., et al.: From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857 (2011)

    Article  CAS  PubMed  Google Scholar 

  288. Chaikittisilp, W., Hu, M., Wang, H., et al.: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259–7261 (2012)

    Article  CAS  Google Scholar 

  289. Amali, A.J., Sun, J.K., Xu, Q.: From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem. Commun. 50, 1519–1522 (2014)

    Article  CAS  Google Scholar 

  290. Yu, G., Zou, X., Wang, A., et al.: Generation of bimodal porosity via self-extra porogenes in nanoporous carbons for supercapacitor application. J. Mater. Chem. A 2, 15420–15427 (2014)

    Article  CAS  Google Scholar 

  291. Gao, Y., Wu, J., Zhang, W., et al.: The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J. Solid State Electr. 18, 3203–3207 (2014)

    Article  CAS  Google Scholar 

  292. Salunkhe, R.R., Kamachi, Y., Torad, N.L., et al.: Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2, 19848–19854 (2014)

    Article  CAS  Google Scholar 

  293. Salunkhe, R.R., Zakaria, M.B., Kamachi, Y., et al.: Fabrication of asymmetric supercapacitors based on coordination polymer derived nanoporous materials. Electrochim. Acta 183, 94–99 (2015)

    Article  CAS  Google Scholar 

  294. Salunkhe, R.R., Young, C., Tang, J., et al.: A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 52, 4764–4767 (2016)

    Article  CAS  Google Scholar 

  295. Zhong, S., Zhan, C., Cao, D.: Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015)

    Article  CAS  Google Scholar 

  296. Salunkhe, R.R., Tang, J., Kamachi, Y., et al.: Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9, 6288–6296 (2015)

    Article  CAS  PubMed  Google Scholar 

  297. Wei, F., Jiang, J., Yu, G., et al.: A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20–22 (2015)

    Article  CAS  Google Scholar 

  298. Zhang, P., Sun, F., Shen, Z., et al.: ZIF-derived porous carbon: a promising supercapacitor electrode material. J. Mater. Chem. A 2, 12873–12880 (2014)

    Article  CAS  Google Scholar 

  299. Jeon, J.W., Sharma, R., Meduri, P., et al.: In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interface 6, 7214–7222 (2014)

    Article  CAS  Google Scholar 

  300. Jayaramulu, K., Datta, K.K.R., Shiva, K., et al.: Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Micropor. Mesopor. Mat 206, 127–135 (2015)

    Article  CAS  Google Scholar 

  301. Guo, S., Zhu, Y., Yan, Y., et al.: (Metal-organic framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J. Power Sources 316, 176–182 (2016)

    Article  CAS  Google Scholar 

  302. Pachfule, P., Shinde, D., Majumder, M., et al.: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016)

    Article  CAS  PubMed  Google Scholar 

  303. Liu, Y., Li, G., Guo, Y., et al.: Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT. ACS Appl. Mater. Interface 9, 14043–14050 (2017)

    Article  CAS  Google Scholar 

  304. Jayaramulu, K., Dubal, D.P., Nagar, B., et al.: Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018)

    Article  CAS  Google Scholar 

  305. Meng, F., Fang, Z., Li, Z., et al.: Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J. Mater. Chem. A 1, 7235–7241 (2013)

    Article  CAS  Google Scholar 

  306. Zhang, Y.Z., Wang, Y., Xie, Y.L., et al.: Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6, 14354–14359 (2014)

    Article  CAS  PubMed  Google Scholar 

  307. Wang, S., Wang, T., Shi, Y., et al.: Mesoporous Co3O4@carbon composites derived from microporous cobalt-based porous coordination polymers for enhanced electrochemical properties in supercapacitors. RSC Adv. 6, 18465–18470 (2016)

    Article  CAS  Google Scholar 

  308. Hu, H., Guan, B., Xia, B., et al.: Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 137, 5590–5595 (2015)

    Article  CAS  PubMed  Google Scholar 

  309. Xia, Y., Wang, B., Wang, G., et al.: Easy access to nitrogen-doped mesoporous interlinked carbon/NiO nanosheet for application in lithium-ion batteries and supercapacitors. RSC Adv. 5, 98740–98746 (2015)

    Article  CAS  Google Scholar 

  310. Ji, D., Zhou, H., Zhang, J., et al.: Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 4, 8283–8290 (2016)

    Article  CAS  Google Scholar 

  311. Meng, W., Chen, W., Zhao, L., et al.: Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8, 133–140 (2014)

    Article  CAS  Google Scholar 

  312. Mahmood, A., Zou, R., Wang, Q., et al.: Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 2148–2157 (2016)

    Article  CAS  PubMed  Google Scholar 

  313. Xu, X., Shi, W., Li, P., et al.: Facile fabrication of three-dimensional graphene and metal–organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29, 6058–6065 (2017)

    Article  CAS  Google Scholar 

  314. Cao, X., Zheng, B., Shi, W., et al.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)

    Article  CAS  PubMed  Google Scholar 

  315. Khan, I.A., Badshah, A., Nadeem, M.A., et al.: A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int. J. Hydrogen. Energy. 39, 19609–19620 (2014)

    Article  CAS  Google Scholar 

  316. Zhang, Y., Lin, B., Sun, Y., et al.: MoO2@Cu@C composites prepared by using polyoxometalates@metal-organic frameworks as template for all-solid-state flexible supercapacitor. Electrochim. Acta 188, 490–498 (2016)

    Article  CAS  Google Scholar 

  317. Zhang, Y., Lin, B., Wang, J., et al.: Polyoxometalates@metal-organic frameworks derived porous MoO3@CuO as electrodes for symmetric all-solid-state supercapacitor. Electrochim. Acta 191, 795–804 (2016)

    Article  CAS  Google Scholar 

  318. Cao, F., Zhao, M., Yu, Y., et al.: Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 138, 6924–6927 (2016)

    Article  CAS  PubMed  Google Scholar 

  319. Bendi, R., Kumar, V., Bhavanasi, V., et al.: Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv. Energy Mater. 6, 1501833 (2016)

    Article  CAS  Google Scholar 

  320. Yu, C., Wang, Y., Cui, J., et al.: MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 8396–8404 (2018)

    Article  CAS  Google Scholar 

  321. Zhou, S., Ye, Z., Hu, S., et al.: Designed formation of Co3O4/ZnCo2O4/CuO hollow polyhedral nanocages derived from zeolitic imidazolate framework-67 for high-performance supercapacitors. Nanoscale 10, 15771–15781 (2018)

    Article  CAS  PubMed  Google Scholar 

  322. Ren, Y., Chia, G.H., Gao, Z.: Metal-organic frameworks in fuel cell technologies. Nano Today 8, 577–597 (2013)

    Article  CAS  Google Scholar 

  323. Yang, L., Zeng, X., Wang, W., et al.: Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater. 28, 1704537 (2018)

    Article  CAS  Google Scholar 

  324. Stephens, I.E.L., Bondarenko, A.S., Grønbjerg, U., et al.: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012)

    Article  CAS  Google Scholar 

  325. Guo, S., Zhang, S., Sun, S.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 8526–8544 (2013)

    Article  CAS  Google Scholar 

  326. Sealy, C.: The problem with platinum. Mater. Today 11, 65–68 (2008)

    Article  CAS  Google Scholar 

  327. Jahan, M., Bao, Q., Loh, K.P.: Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012)

    Article  CAS  PubMed  Google Scholar 

  328. Jahan, M., Liu, Z., Loh, K.P.: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)

    Article  CAS  Google Scholar 

  329. Yin, F., Li, G., Wang, H.: Hydrothermal synthesis of α-MnO2/MIL-101(Cr) composite and its bifunctional electrocatalytic activity for oxygen reduction/evolution reactions. Catal. Commun. 54, 17–21 (2014)

    Article  CAS  Google Scholar 

  330. Wang, H., Yin, F., Chen, B., et al.: Synthesis of an ε-MnO2/metal-organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J. Mater. Chem. A 3, 16168–16176 (2015)

    Article  CAS  Google Scholar 

  331. Rafti, M., Marmisollé, W.A., Azzaroni, O.: Metal-organic frameworks help conducting polymers optimize the efficiency of the oxygen reduction reaction in neutral solutions. Adv. Mater. Interface 3, 1600047 (2016)

    Article  Google Scholar 

  332. Miner, E.M., Fukushima, T., Sheberla, D., et al.: Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Wang, H., Yin, F., Li, G., et al.: Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int. J. Hydrogen Energy. 39, 16179–16186 (2014)

    Article  CAS  Google Scholar 

  334. Cao, Y., Ma, Y., Wang, T., et al.: Facile fabricating hierarchically porous metal-organic frameworks via a template-free strategy. Cryst. Growth Des. 16, 504–510 (2016)

    Article  CAS  Google Scholar 

  335. Du, L., Du, C., Chen, G., et al.: Metal-organic coordination networks: Prussian blue and its synergy with Pt nanoparticles to enhance oxygen reduction kinetics. ACS Appl. Mater. Interface 8, 15250–15257 (2016)

    Article  CAS  Google Scholar 

  336. Wei, J., Cheng, N., Liang, Z., et al.: Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed in situ through metal-ion (M = W or Mo) doping. J. Mater. Chem A (2018). https://doi.org/10.1039/C8TA04892D

    Article  Google Scholar 

  337. Proietti, E., Jaouen, F., Lefevre, M., et al.: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011)

    Article  CAS  PubMed  Google Scholar 

  338. Morozan, A., Sougrati, M.T., Goellner, V., et al.: Effect of furfuryl alcohol on metal organic framework-based Fe/N/C electrocatalysts for polymer electrolyte membrane fuel cells. Electrochim. Acta 119, 192–205 (2014)

    Article  CAS  Google Scholar 

  339. Zhang, G., Chenitz, R., Lefevre, M., et al.: Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? Nano Energy 31, 331–350 (2017)

    Article  CAS  Google Scholar 

  340. Yang, L., Larouche, N., Chenitz, R., et al.: Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochim. Acta 159, 184–197 (2015)

    Article  CAS  Google Scholar 

  341. Wang, X., Zhang, H., Lin, H., et al.: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe–N–C catalysts for oxygen reduction in acid. Nano Energy 25, 110–119 (2016)

    Article  CAS  Google Scholar 

  342. Shui, J., Chen, C., Grabstanowicz, L., et al.: Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. USA 112, 10629–10634 (2015)

    Article  CAS  Google Scholar 

  343. Zhao, D., Shui, J.L., Chen, C., et al.: Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 3, 3200–3205 (2012)

    Article  CAS  Google Scholar 

  344. Palaniselvam, T., Biswal, B.P., Banerjee, R., et al.: Zeolitic imidazolate framework (ZIF)-derived, hollow-core, nitrogen-doped carbon nanostructures for oxygen-reduction reactions in PEFCs. Chem-Eur. J. 19, 9335–9342 (2013)

    Article  CAS  PubMed  Google Scholar 

  345. Wu, Y., Zhao, S., Zhao, K., et al.: Porous Fe–Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 311, 137–143 (2016)

    Article  CAS  Google Scholar 

  346. Zhao, D., Shui, J.L., Grabstanowicz, L.R., et al.: Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv. Mater. 26, 1093–1097 (2014)

    Article  CAS  PubMed  Google Scholar 

  347. Li, Q., Pan, H., Higgins, D., et al.: Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small 11, 1443–1452 (2015)

    Article  CAS  PubMed  Google Scholar 

  348. Lin, Q., Bu, X., Kong, A., et al.: New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015)

    Article  CAS  PubMed  Google Scholar 

  349. Hou, Y., Huang, T., Wen, Z., et al.: Metal–organic framework-derived nitrogen-doped core–shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4, 1400337 (2014)

    Article  CAS  Google Scholar 

  350. Zhao, S., Yin, H., Du, L., et al.: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8, 12660–12668 (2014)

    Article  CAS  PubMed  Google Scholar 

  351. Huang, X., Yang, Z., Dong, B., et al.: In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 9, 8102–8106 (2017)

    Article  CAS  PubMed  Google Scholar 

  352. Wang, X., Zhou, J., Fu, H., et al.: MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064–14070 (2014)

    Article  CAS  Google Scholar 

  353. You, S., Gong, X., Wang, W., et al.: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks. Adv. Energy Mater. 6, 1501497 (2016)

    Article  CAS  Google Scholar 

  354. Hou, Y., Wen, Z., Cui, S., et al.: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25, 872–882 (2015)

    Article  CAS  Google Scholar 

  355. Li, Z., Shao, M., Zhou, L., et al.: Directed growth of metal–organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28, 2337–2344 (2016)

    Article  CAS  Google Scholar 

  356. Guan, B.Y., Yu, L., Lou, X.W.D.: Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 4, 1700247 (2017)

    Article  CAS  Google Scholar 

  357. Ni, B., Ouyang, C., Xu, X., et al.: Modifying commercial carbon with trace amounts of ZIF to prepare derivatives with superior ORR activities. Adv. Mater. 29, 1701354 (2017)

    Article  CAS  Google Scholar 

  358. Wang, X., Fan, X., Lin, H., et al.: An efficient Co–N–C oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework. RSC Adv. 6, 37965–37973 (2016)

    Article  CAS  Google Scholar 

  359. You, B., Jiang, N., Sheng, M., et al.: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 5, 7068–7076 (2015)

    Article  CAS  Google Scholar 

  360. Chen, Y.Z., Wang, C., Wu, Z.Y., et al.: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27, 5010–5016 (2015)

    Article  CAS  PubMed  Google Scholar 

  361. Gadipelli, S., Zhao, T., Shevlin, S.A., et al.: Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt–nitrogen–carbon framework system. Energy Environ. Sci. 9, 1661–1667 (2016)

    Article  CAS  Google Scholar 

  362. Shang, L., Yu, H., Huang, X., et al.: Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 28, 1668–1674 (2016)

    Article  CAS  PubMed  Google Scholar 

  363. Wu, Z.S., Chen, L., Liu, J., et al.: High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 26, 1450–1455 (2014)

    Article  CAS  PubMed  Google Scholar 

  364. Xia, W., Zhu, J., Guo, W., et al.: Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2, 11606–11613 (2014)

    Article  CAS  Google Scholar 

  365. Zhou, T., Du, Y., Yin, S., et al.: Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9, 2563–2570 (2016)

    Article  CAS  Google Scholar 

  366. Wei, J., Hu, Y., Liang, Y., et al.: Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25, 5768–5777 (2015)

    Article  CAS  Google Scholar 

  367. Kong, A., Mao, C., Lin, Q., et al.: From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Trans. 44, 6748–6754 (2015)

    Article  CAS  PubMed  Google Scholar 

  368. Zhu, Z., Yang, Y., Guan, Y., et al.: Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J. Mater. Chem. A 4, 15536–15545 (2016)

    Article  CAS  Google Scholar 

  369. Liu, C., Wang, J., Li, J., et al.: Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5, 1211–1220 (2017)

    Article  CAS  Google Scholar 

  370. Xi, J., Xia, Y., Xu, Y., et al.: (Fe, Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal-organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 51, 10479–10482 (2015)

    Article  CAS  Google Scholar 

  371. Lin, Q., Bu, X., Kong, A., et al.: Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 27, 3431–3436 (2015)

    Article  CAS  PubMed  Google Scholar 

  372. Tang, H., Cai, S., Xie, S., et al.: Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv. Sci. 3, 1500265 (2016)

    Article  CAS  Google Scholar 

  373. Guan, B.Y., Lu, Y., Wang, Y., et al.: Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28, 1706738 (2018)

    Article  CAS  Google Scholar 

  374. Liang, Y., Li, Y., Wang, H., et al.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  CAS  PubMed  Google Scholar 

  375. Xu, J., Gao, P., Zhao, T.S.: Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ. Sci. 5, 5333–5339 (2012)

    Article  CAS  Google Scholar 

  376. Hamdani, M., Singh, R., Chartier, P.: Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes. Int. J. Electrochem. Sci. 5, 556–577 (2010)

    CAS  Google Scholar 

  377. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014)

    Article  CAS  PubMed  Google Scholar 

  378. Chaikittisilp, W., Torad, N.L., Li, C., et al.: Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks. Chem-Eur. J. 20, 4217–4221 (2014)

    Article  CAS  PubMed  Google Scholar 

  379. Zhang, G., Li, C., Liu, J., et al.: One-step conversion from metal-organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. J. Mater. Chem. A 2, 8184–8189 (2014)

    Article  CAS  Google Scholar 

  380. Zhang, G., Li, H., Zhao, F., et al.: A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Trans. 42, 9423–9427 (2013)

    Article  CAS  PubMed  Google Scholar 

  381. Xia, W., Zou, R., An, L., et al.: A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 8, 568–576 (2015)

    Article  CAS  Google Scholar 

  382. Wu, Z.S., Yang, S., Sun, Y., et al.: 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012)

    Article  CAS  PubMed  Google Scholar 

  383. Cao, C., Wei, L., Su, M., et al.: “Spontaneous bubble-template” assisted and metal-polymeric framework derived N/Co dual-doped hierarchically porous carbon/Fe3O4 nanohybrids: superior electrocatalyst for oxygen reduction reaction in biofuel cells. J. Mater. Chem. A 4, 9303–9310 (2016)

    Article  CAS  Google Scholar 

  384. Gao, S., Fan, B., Feng, R., et al.: N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy 40, 462–470 (2017)

    Article  CAS  Google Scholar 

  385. Shao, M., Chang, Q., Dodelet, J.P., et al.: Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

  386. Seredych, M., Rodriguez-Castellon, E., Bandosz, T.J.: New CuxSy/nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. J. Mater. Chem. A 2, 20164–20176 (2014)

    Article  CAS  Google Scholar 

  387. Cho, K., Han, S.H., Suh, M.P.: Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 15301–15305 (2016)

    Article  CAS  Google Scholar 

  388. Zhang, C., An, B., Yang, L., et al.: Sulfur-doping achieves efficient oxygen reduction in pyrolyzed zeolitic imidazolate frameworks. J. Mater. Chem. A 4, 4457–4463 (2016)

    Article  CAS  Google Scholar 

  389. Zhu, Q.L., Xia, W., Akita, T., et al.: Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater., 6391-6398 (2016)

  390. Hu, H., Han, L., Yu, M., et al.: Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 9, 107–111 (2016)

    Article  CAS  Google Scholar 

  391. Lu, J., Zhou, W., Wang, L., et al.: Core–shell nanocomposites based on gold nanoparticle@zinc-iron-embedded porous carbons derived from metal-organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal. 6, 1045–1053 (2016)

    Article  CAS  Google Scholar 

  392. Su, J., Xia, G., Li, R., et al.: Co3ZnC/Co nano-heterojunctions encapsulated in nitrogen-doped graphene layers derived from PBAs as highly efficient bi-functional electrocatalysts for both OER and ORR. J. Mater. Chem. A 4, 9204–9212 (2016)

    Article  CAS  Google Scholar 

  393. Strickland, K., Miner, E., Jia, Q., et al.: Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 6, 7343 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Guan, B.Y., Yu, L., Lou, X.W.: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9, 3092–3096 (2016)

    Article  CAS  Google Scholar 

  395. Gong, K., Du, F., Xia, Z., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  CAS  Google Scholar 

  396. Shui, J., Wang, M., Du, F., et al.: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Aijaz, A., Fujiwara, N., Xu, Q.: From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790–6793 (2014)

    Article  CAS  PubMed  Google Scholar 

  398. Zhang, W., Wu, Z.Y., Jiang, H.L., et al.: Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)

    Article  CAS  PubMed  Google Scholar 

  399. Zhang, L., Su, Z., Jiang, F., et al.: Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014)

    Article  CAS  PubMed  Google Scholar 

  400. Shi, P.C., Yi, J.D., Liu, T.T., et al.: Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 5, 12322–12329 (2017)

    Article  CAS  Google Scholar 

  401. Rosi, N.L., Eckert, J., Eddaoudi, M., et al.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  PubMed  Google Scholar 

  402. Pandiaraj, S., Aiyappa, H.B., Banerjee, R., et al.: Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50, 3363–3366 (2014)

    Article  CAS  Google Scholar 

  403. Li, J.S., Li, S.L., Tang, Y.J., et al.: Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci. Rep. 4, 5130 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Zhang, L., Wang, X., Wang, R., et al.: Structural evolution from metal-organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27, 7610–7618 (2015)

    Article  CAS  Google Scholar 

  405. Wang, X., Li, X., Ouyang, C., et al.: Nonporous MOF-derived dopant-free mesoporous carbon as efficient metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 4, 9370–9374 (2016)

    Article  CAS  Google Scholar 

  406. Zhao, X., Zhao, H., Zhang, T., et al.: One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2, 11666–11671 (2014)

    Article  CAS  Google Scholar 

  407. Fu, Y., Huang, Y., Xiang, Z., et al.: Phosphorous–nitrogen-codoped carbon materials derived from metal–organic frameworks as efficient electrocatalysts for oxygen reduction reactions. Eur. J. Inorg. Chem. 2016, 2100–2105 (2016)

    Article  CAS  Google Scholar 

  408. Zhu, D., Li, L., Cai, J., et al.: Nitrogen-doped porous carbons from bipyridine-based metal–organic frameworks: electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation. Carbon 79, 544–553 (2014)

    Article  CAS  Google Scholar 

  409. Ye, L., Chai, G., Wen, Z.: Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 27, 1606190 (2017)

    Article  CAS  Google Scholar 

  410. Xia, B.Y., Yan, Y., Li, N., et al.: A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016)

    Article  CAS  Google Scholar 

  411. Li, L., Dai, P., Gu, X., et al.: High oxygen reduction activity on a metal–organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A 5, 789–795 (2017)

    Article  CAS  Google Scholar 

  412. O’regan, B., Grfitzeli, M.: A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  413. Mathew, S., Yella, A., Gao, P., et al.: Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)

    Article  CAS  PubMed  Google Scholar 

  414. Llabrés i Xamena, F.X., Corma, A., Garcia, H.: Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 111, 80–85 (2007)

    Article  CAS  Google Scholar 

  415. Lopez, H.A., Dhakshinamoorthy, A., Ferrer, B., et al.: Photochemical response of commercial MOFs: Al2(BDC)3 and its use as active material in photovoltaic devices. J. Phys. Chem. C 115, 22200–22206 (2011)

    Article  CAS  Google Scholar 

  416. Li, Y., Chen, C., Sun, X., et al.: Metal-organic frameworks at interfaces in dye-sensitized solar cells. Chemsuschem 7, 2469–2472 (2014)

    Article  CAS  PubMed  Google Scholar 

  417. Li, Y., Pang, A., Wang, C., et al.: Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J. Mater. Chem. 21, 17259–17264 (2011)

    Article  CAS  Google Scholar 

  418. Lee, D.Y., Shinde, D.V., Yoon, S.J., et al.: Cu-based metal–organic frameworks for photovoltaic application. J. Phys. Chem. C 118, 16328–16334 (2014)

    Article  CAS  Google Scholar 

  419. Lee, D.Y., Kim, E.K., Shin, C.Y., et al.: Layer-by-layer deposition and photovoltaic property of Ru-based metal–organic frameworks. RSC Adv. 4, 12037–12042 (2014)

    Article  CAS  Google Scholar 

  420. Lee, D.Y., Kim, E.K., Shrestha, N.K., et al.: Charge transfer-induced molecular hole doping into thin film of metal-organic frameworks. ACS Appl. Mater. Interfaces. 7, 18501–18507 (2015)

    Article  CAS  PubMed  Google Scholar 

  421. Lee, D.Y., Lim, I., Shin, C.Y., et al.: Facile interfacial charge transfer across hole doped cobalt-based MOFs/TiO2 nano-hybrids making MOFs light harvesting active layers in solar cells. J. Mater. Chem. A 3, 22669–22676 (2015)

    Article  CAS  Google Scholar 

  422. Ahn, D.Y., Lee, D.Y., Shin, C.Y., et al.: Novel solid-state solar cell based on hole-conducting MOF-sensitizer demonstrating power conversion efficiency of 2.1%. ACS Appl. Mater. Interfaces 9, 12930–12935 (2017)

    Article  CAS  PubMed  Google Scholar 

  423. Liu, J., Zhou, W., Liu, J., et al.: Photoinduced charge-carrier generation in epitaxial MOF thin films: High efficiency as a result of an indirect electronic band gap? Angew. Chem. Int. Ed. 54, 7441–7445 (2015)

    Article  CAS  Google Scholar 

  424. Liu, J., Zhou, W., Liu, J., et al.: A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. J. Mater. Chem. A 4, 12739–12747 (2016)

    Article  CAS  Google Scholar 

  425. Du, X., Fan, R., Wang, X., et al.: Cooperative crystallization of chiral heterometallic indium(III)-potassium(I) metal–organic frameworks as photosensitizers in luminescence sensors and dye-sensitized solar cells. Cryst. Growth Des. 16, 1737–1745 (2016)

    Article  CAS  Google Scholar 

  426. Maza, W.A., Haring, A.J., Ahrenholtz, S.R., et al.: Ruthenium(II)-polypyridyl zirconium(IV) metal-organic frameworks as a new class of sensitized solar cells. Chem. Sci. 7, 719–727 (2016)

    Article  CAS  PubMed  Google Scholar 

  427. Spoerke, E.D., Small, L.J., Foster, M.E., et al.: MOF-sensitized solar cells enabled by a pillared porphyrin framework. J. Phys. Chem. C 121, 4816–4824 (2017)

    Article  CAS  Google Scholar 

  428. Nevruzoglu, V., Demir, S., Karaca, G., et al.: Improving the stability of solar cells using metal-organic frameworks. J. Mater. Chem. A 4, 7930–7935 (2016)

    Article  CAS  Google Scholar 

  429. Bella, F., Bongiovanni, R., Kumar, R.S., et al.: Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells. J. Mater. Chem. A 1, 9033–9036 (2013)

    Article  CAS  Google Scholar 

  430. Fan, J., Li, L., Rao, H.S., et al.: A novel metal-organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. A 2, 15406–15413 (2014)

    Article  CAS  Google Scholar 

  431. Kojima, A., Teshima, K., Shirai, Y., et al.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  432. Lee, M.M., Teuscher, J., Miyasaka, T., et al.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  CAS  PubMed  Google Scholar 

  433. Habisreutinger, S.N., McMeekin, D.P., Snaith, H.J., et al.: Research update: strategies for improving the stability of perovskite solar cells. APL Mat. 4, 091503 (2016)

    Article  CAS  Google Scholar 

  434. Burschka, J., Pellet, N., Moon, S.J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  CAS  Google Scholar 

  435. Chang, T.H., Kung, C.W., Chen, H.W., et al.: Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals. Adv. Mater. 27, 7229–7235 (2015)

    Article  CAS  PubMed  Google Scholar 

  436. Chen, T.Y., Huang, Y.J., Li, C.T., et al.: Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 32, 19–27 (2017)

    Article  CAS  Google Scholar 

  437. Vinogradov, A.V., Zaake-Hertling, H., Hey-Hawkins, E., et al.: The first depleted heterojunction TiO2-MOF-based solar cell. Chem. Commun. 50, 10210–10213 (2014)

    Article  CAS  Google Scholar 

  438. Kundu, T., Sahoo, S.C., Banerjee, R.: Solid-state thermolysis of anion induced metal-organic frameworks to ZnO microparticles with predefined morphologies: facile synthesis and solar cell studies. Cryst. Growth Des. 12, 2572–2578 (2012)

    Article  CAS  Google Scholar 

  439. Li, Y., Che, Z., Sun, X., et al.: Metal-organic framework derived hierarchical ZnO parallelepipeds as an efficient scattering layer in dye-sensitized solar cells. Chem. Commun. 50, 9769–9772 (2014)

    Article  CAS  Google Scholar 

  440. Chi, W.S., Roh, D.K., Lee, C.S., et al.: A shape- and morphology-controlled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J. Mater. Chem. A 3, 21599–21608 (2015)

    Article  CAS  Google Scholar 

  441. Hsu, S.H., Li, C.T., Chien, H.T., et al.: Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Sci. Rep. 4, 6983 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Cui, X., Xie, Z., Wang, Y.: Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic framework for dye-sensitized solar cells. Nanoscale 8, 11984–11992 (2016)

    Article  CAS  PubMed  Google Scholar 

  443. Liu, Y., Sun, Y., Zhang, J.: Metal–organic-framework derived porous conducting frameworks for highly efficient quantum dot-sensitized solar cells. J. Mater. Chem. C 5, 4286–4292 (2017)

    Article  CAS  Google Scholar 

  444. Li, J.S., Sang, X.J., Chen, W.L., et al.: A strategy for breaking the MOF template to obtain small-sized and highly dispersive polyoxometalate clusters loaded on solid films. J. Mater. Chem. A 3, 14573–14577 (2015)

    Article  CAS  Google Scholar 

  445. Kim, S., Dawson, K.W., Gelfand, B.S., et al.: Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement. J. Am. Chem. Soc. 135, 963–966 (2013)

    Article  CAS  PubMed  Google Scholar 

  446. Shimizu, G.K., Taylor, J.M., Kim, S.: Proton conduction with metal-organic frameworks. Science 341, 354–355 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NSFC (21421001) and Tianjin Municipal Science and Technology Commission (16PTSYJC00010) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhou or Xian-He Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, A., Zhong, M. et al. Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochem. Energ. Rev. 2, 29–104 (2019). https://doi.org/10.1007/s41918-018-0024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0024-x

Keywords

PACS

Navigation