Skip to main content

Automotive Li-Ion Batteries: Current Status and Future Perspectives


Lithium-ion batteries (LIBs) are currently the most suitable energy storage device for powering electric vehicles (EVs) owing to their attractive properties including high energy efficiency, lack of memory effect, long cycle life, high energy density and high power density. These advantages allow them to be smaller and lighter than other conventional rechargeable batteries such as lead–acid batteries, nickel–cadmium batteries (Ni–Cd) and nickel–metal hydride batteries (Ni–MH). Modern EVs, however, still suffer from performance barriers (range, charging rate, lifetime, etc.) and technological barriers (high cost, safety, reliability, etc.), limiting their widespread adoption. Given these facts, this review sets the extensive market penetration of LIB-powered EVs as an ultimate objective and then discusses recent advances and challenges of electric automobiles, mainly focusing on critical element resources, present and future EV markets, and the cost and performance of LIBs. Finally, novel battery chemistries and technologies including high-energy electrode materials and all-solid-state batteries are also evaluated for their potential capabilities in next-generation long-range EVs.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Global EV outlook 2017, International Energy Agency, (2017). Accessed 1 Oct 2018

  2. 2.

    Bellis, M.: A history of electric vehicles. (2017). Accessed 1 Oct 2018

  3. 3.

    Kurzweil, P.: Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Bryan, F.R.: The Birth of Ford Motor Company, Henry Ford Heritage Association. (2012). Accessed 20 Aug 2012

  5. 5.

    Crawford, M.: Back to the energy crisis; waning US oil output, rising imports, and Middle East tensions are reheating energy policy debates of the 1970s. Science 235, 626–628 (1987)

    CAS  Article  Google Scholar 

  6. 6.

    Hondroyiannis, G., Lolos, S., Papapetrou, E.: Energy consumption and economic growth: assessing the evidence from Greece. Energy Econ. 24, 319–336 (2002)

    Article  Google Scholar 

  7. 7.

    Chan, C.: The state of the art of electric and hybrid vehicles. Proc. IEEE 90, 247–275 (2002)

    Article  Google Scholar 

  8. 8.

    Eberle, U., Von Helmolt, R.: Sustainable transportation based on electric vehicle concepts: a brief overview. Energy Environ. Sci. 3, 689–699 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    Gifford, P., Adams, J., Corrigan, D., et al.: Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. J. Power Sources 80, 157–163 (1999)

    CAS  Article  Google Scholar 

  10. 10.

    Knosp, B., Jordy, C., Blanchard, P., et al.: Evaluation of Zr (Ni, Mn)2 laves phase alloys as negative active material for Ni–MH electric vehicle batteries. J. Electrochem. Soc. 145, 1478–1482 (1998)

    CAS  Article  Google Scholar 

  11. 11.

    Nishi, Y.: Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 100, 101–106 (2001)

    CAS  Article  Google Scholar 

  12. 12.

    Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    CAS  Article  Google Scholar 

  13. 13.

    Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    Cano, Z.P., Banham, D., Ye, S., et al.: Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018)

    Article  Google Scholar 

  15. 15.

    Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    Rogelj, J., Den Elzen, M., Höhne, N., et al.: Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    Hulme, M.: 1.5 °C and climate research after the Paris Agreement. Nat. Clim. Change 6, 222–224 (2016)

    Article  Google Scholar 

  19. 19.

    Dimitrov, R.S.: The Paris agreement on climate change: behind closed doors. Glob. Environ. Polit. 16, 1–11 (2016)

    Article  Google Scholar 

  20. 20.

    Franke, T., Krems, J.F.: What drives range preferences in electric vehicle users? Transp. Policy 30, 56–62 (2013)

    Article  Google Scholar 

  21. 21.

    Neubauer, J., Brooker, A., Wood, E.: Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies. J. Power Sources 209, 269–277 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Botsford, C., Szczepanek, A.: Fast charging vs. slow charging: pros and cons for the new age of electric vehicles. In: International Battery Hybrid Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, May 13–16, 2019

  23. 23.

    Lam, L., Louey, R.: Development of ultra-battery for hybrid-electric vehicle applications. J. Power Sources 158, 1140–1148 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015)

    Article  Google Scholar 

  25. 25.

    Schmidt, O., Hawkes, A., Gambhir, A., et al.: The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)

    Article  Google Scholar 

  26. 26.

    Stephan, A., Battke, B., Beuse, M., et al.: Limiting the public cost of stationary battery deployment by combining applications. Nat. Energy 1, 16079 (2016)

    Article  Google Scholar 

  27. 27.

    Rezvanizaniani, S.M., Liu, Z., Chen, Y., et al.: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 256, 110–124 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Quinn, C., Zimmerle, D., Bradley, T.H.: The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. J. Power Sources 195, 1500–1509 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    Yilmaz, M., Krein, P.T.: Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28, 2151–2169 (2013)

    Article  Google Scholar 

  30. 30.

    Morrow, K., Karner, D., Francfort, J.: Plug-in hybrid electric vehicle charging infrastructure review. Idaho National Laboratory, Idaho Falls (2008)

  31. 31.

    San Román, T.G., Momber, I., Abbad, M.R., et al.: Regulatory framework and business models for charging plug-in electric vehicles: infrastructure, agents, and commercial relationships. Energy Policy 39, 6360–6375 (2011)

    Article  Google Scholar 

  32. 32.

    Liu, P., Ross, R., Newman, A.: Long-range, low-cost electric vehicles enabled by robust energy storage. MRS Energy Sustain.-A Rev. J. 2, E12 (2015)

    Article  Google Scholar 

  33. 33.

    Diamond, D.: The impact of government incentives for hybrid-electric vehicles: evidence from US states. Energy Policy 37, 972–983 (2009)

    Article  Google Scholar 

  34. 34.

    Egbue, O., Long, S.: Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy 48, 717–729 (2012)

    Article  Google Scholar 

  35. 35.

    Indiana, E.: President Obama announces $2.4 billion in grants to accelerate the manufacturing and deployment of the next generation of U.S. batteries and electric vehicles. (2009). Accessed 1 Oct 2018

  36. 36.

    European Commission: Press release database. (2017). Accessed 1 Oct 2018

  37. 37.

    Shirouzu, N.: China spooks auto makers. (2010). Accessed 1 Oct 2018

  38. 38.

    Bradsher, K.: China leads the way toward an electric-car future. (2017). Accessed 1 Oct 2018

  39. 39.

    Yue, P.: China’s electric vehicle charger market to reach $29B In 2020. (2017). Accessed 1 Oct 2018

  40. 40.

    Thakkar, K.: ‘Electric is the future’ for German car majors with 50 billion euros investments. (2017). Accessed 1 Oct 2018

  41. 41.

    Block, D., Brooker, P.: 2015 electric vehicle market summary and barriers. In: FSEC-CR-2027-16, Cocoa, FL, Florida Solar Energy Center (2016)

  42. 42.

    Loveday, S.: Elon musk says gigafactory output could Soar To 150 GWh annually. (2016). Accessed 1 Oct 2018

  43. 43.

    Lambert, F.: Tesla is now claiming 35% battery cost reduction at ‘Gigafactory 1’—hinting at breakthrough cost below $125/kWh. (2017). Accessed 1 Oct 2018

  44. 44.

    Zhang, S., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015)

    Article  Google Scholar 

  45. 45.

    Pillot, C.: The rechargeable battery market and main trends 2016–2025. In: BATTERIES 2017, Nice, France (2017)

  46. 46.

    Zubi, G., Dufo-López, R., Carvalho, M., et al.: The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018)

    Article  Google Scholar 

  47. 47.

    Wikipedia: Plug-in electric vehicles in the United Kingdom. (2018). Accessed 1 Oct 2018

  48. 48.

    Shahan, Z.: Electric vehicle market share in 19 countries, (2014). Accessed 1 Oct 2018

  49. 49.

    Navigant Research: Homepage. (2018). Accessed 1 Oct 2018

  50. 50.

    The Guardian: Electric cars to account for all new vehicle sales in Europe by 2035. (2017). Accessed 1 Oct 2018

  51. 51.

    McCrone, A., Moslener, U., D’Estais, F., et al.: Global trends in renewable energy investment 2016. Frankfurt School-UNEP Centre/Bloomberg New Energy Finance (2016)

  52. 52.

    Mills, L., Louw, A.: Global trends in clean energy investment. Bloomberg New Energy Finance (2016)

  53. 53.

    Tesla: Planned 2020 Gigafactory production exceeds 2013 global production. (2016). Accessed 1 Oct 2018

  54. 54.

    Dow, J.: Tesla christens Buffalo solar factory ‘Gigafactory 2’, will finalize locations of Gigafactory 3, 4 and possibly 5. (2017). Accessed Jun 24 2018

  55. 55.

    Jain, S.: Emerging trends in battery technology. Auto Tech Rev. 6, 52–55 (2017).

    Article  Google Scholar 

  56. 56.

    Televisory: Electric vehicles revolution, China leads the global boom. (2017). Accessed 1 Oct 2018

  57. 57.

    Olivetti, E.A., Ceder, G., Gaustad, G.G., et al.: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017)

    Article  Google Scholar 

  58. 58.

    Gruber, P.W., Medina, P.A., Keoleian, G.A., et al.: Global lithium availability. J. Ind. Ecol. 15, 760–775 (2011)

    Article  Google Scholar 

  59. 59.

    Forster, J.: A lithium shortage: are electric vehicles under threat? Swiss Federal Institute of Technology Zurich. (2011). Accessed 1 Oct 2018

  60. 60.

    Ebensperger, A., Maxwell, P., Moscoso, C.: The lithium industry: its recent evolution and future prospects. Resources Policy 30, 218–231 (2005)

    Article  Google Scholar 

  61. 61.

    Desjardins, J.: Lithium: the future of the green revolution. (2017). Accessed 1 Oct 2018

  62. 62.

    Vaalma, C., Buchholz, D., Weil, M., et al.: A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018)

    Article  Google Scholar 

  63. 63.

    Liu, P., Liang, K., Gu, S.: High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air. Corros. Sci. 43, 1217–1226 (2001)

    CAS  Article  Google Scholar 

  64. 64.

    Small, B.L., Brookhart, M., Bennett, A.M.: Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 120, 4049–4050 (1998)

    CAS  Article  Google Scholar 

  65. 65.

    Lu, X.B., Darensbourg, D.J.: Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 41, 1462–1484 (2012)

    CAS  Article  Google Scholar 

  66. 66.

    Murrie, M., Teat, S.J., Stœckli-Evans, H., et al.: Synthesis and characterization of a cobalt (II) single-molecule magnet. Angew. Chem. Int. Ed. 42, 4653–4656 (2003)

    CAS  Article  Google Scholar 

  67. 67.

    Lebedeva, N., Di Persio, F., Boon-Brett, L.: Lithium ion battery value chain and related opportunities for Europe. JRC Science for policy report (2016)

  68. 68.

    Cho, J.: Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates. J. Power Sources 126, 186–189 (2004)

    CAS  Article  Google Scholar 

  69. 69.

    Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  70. 70.

    Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    CAS  Article  Google Scholar 

  71. 71.

    Chung, S.Y., Bloking, J.T., Chiang, Y.M.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123 (2002).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Wagemaker, M., Ellis, B.L., Lützenkirchen-Hecht, D., et al.: Proof of supervalent doping in olivine LiFePO4. Chem. Mater. 20, 6313–6315 (2008).

    CAS  Article  Google Scholar 

  73. 73.

    Sun, C., Rajasekhara, S., Goodenough, J.B., et al.: Monodisperse porous LiFePO4 Microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 133, 2132–2135 (2011).

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Ravnsbæk, D.B., Xiang, K., Xing, W., et al.: Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491 (2014)

    Article  Google Scholar 

  75. 75.

    Shin, H.C., Cho, W.I., Jang, H.: Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim. Acta 52, 1472–1476 (2006)

    CAS  Article  Google Scholar 

  76. 76.

    Andre, D., Kim, S.J., Lamp, P., et al.: Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).

    CAS  Article  Google Scholar 

  77. 77.

    Ma, Z., Zou, S., Liu, X.: A distributed charging coordination for large-scale plug-in electric vehicles considering battery degradation cost. IEEE Trans. Control Syst. Technol. 23, 2044–2052 (2015)

    Article  Google Scholar 

  78. 78.

    Wang, J.G., Yang, J. (eds.): The power of batteries: the story of BYD. In: Who Gets Funds from China’s Capital Market? pp. 7–18. Springer, Berlin (2013)

  79. 79.

    Srinivasan, V., Newman, J.: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517–A1529 (2004)

    CAS  Article  Google Scholar 

  80. 80.

    Wu, J., Dathar, G.K.P., Sun, C., et al.: In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge. Nanotechnology 24, 424009 (2013)

    Article  Google Scholar 

  81. 81.

    Schmuch, R., Wagner, R., Hörpel, G., et al.: Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267 (2018)

    CAS  Article  Google Scholar 

  82. 82.

    Lu, L., Han, X., Li, J., et al.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    CAS  Article  Google Scholar 

  83. 83.

    Blomgren, G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017)

    CAS  Article  Google Scholar 

  84. 84.

    Thackeray, M., David, W., Bruce, P., et al.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983)

    CAS  Article  Google Scholar 

  85. 85.

    Cho, J., Kim, T.J., Kim, Y.J., et al.: Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating. Chem. Commun. (12), 1704–1705 (2001).

  86. 86.

    Ding, Y.L., Xie, J., Cao, G.S., et al.: Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Func. Mater. 21, 348–355 (2011).

    CAS  Article  Google Scholar 

  87. 87.

    Wu, S.H., Lee, P.H.: Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode. J. Power Sources 349, 27–36 (2017)

    CAS  Article  Google Scholar 

  88. 88.

    Arai, H., Okada, S., Sakurai, Y., et al.: Reversibility of LiNiO2 cathode. Solid State Ionics 95, 275–282 (1997).

    CAS  Article  Google Scholar 

  89. 89.

    Ohzuku, T., Ueda, A., Nagayama, M., et al.: Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim. Acta 38, 1159–1167 (1993).

    CAS  Article  Google Scholar 

  90. 90.

    Nohma, T., Kurokawa, H., Uehara, M., et al.: Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. J. Power Sources 54, 522–524 (1995).

    CAS  Article  Google Scholar 

  91. 91.

    Liu, Z., Zhen, H., Kim, Y., et al.: Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level. J. Power Sources 196, 10201–10206 (2011).

    CAS  Article  Google Scholar 

  92. 92.

    Hwang, B.J., Santhanam, R., Chen, C.H.: Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries. J. Power Sources 114, 244–252 (2003).

    CAS  Article  Google Scholar 

  93. 93.

    Liu, Z., Yu, A., Lee, J.Y.: Synthesis and characterization of LiNi1−xy CoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources 81–82, 416–419 (1999).

    Article  Google Scholar 

  94. 94.

    Ohzuku, T., Ueda, A., Kouguchi, M.: Synthesis and Characterization of LiAl1/4Ni3/4O2 (R 3̄m) for lithium-ion (Shuttlecock) batteries. J. Electrochem. Soc. 142, 4033–4039 (1995).

    CAS  Article  Google Scholar 

  95. 95.

    Aydinol, M.K., Kohan, A.F., Ceder, G.: Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. J. Power Sources 68, 664–668 (1997).

    CAS  Article  Google Scholar 

  96. 96.

    Ceder, G., Chiang, Y.M., Sadoway, D.R., et al.: Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    CAS  Article  Google Scholar 

  97. 97.

    Delmas, C., Saadoune, I., Rougier, A.: The cycling properties of the LixNi1−yCoyO2 electrode. J. Power Sources 44, 595–602 (1993).

    CAS  Article  Google Scholar 

  98. 98.

    Ueda, A., Ohzuku, T.: Solid-state redox reactions of LiNi1/2Co1/2O2 (R 3̄m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2010–2014 (1994).

    CAS  Article  Google Scholar 

  99. 99.

    Lee, K.K., Yoon, W.S., Kim, K.B., et al.: Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries. J. Power Sources 97–98, 308–312 (2001).

    Article  Google Scholar 

  100. 100.

    Jo, M., Noh, M., Oh, P., et al.: A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 4, 1301583 (2014).

    CAS  Article  Google Scholar 

  101. 101.

    Myung, S.T., Maglia, F., Park, K.J., et al.: Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017).

    CAS  Article  Google Scholar 

  102. 102.

    Choi, J., Manthiram, A.: Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J. Electrochem. Soc. 152, A1714–A1718 (2005).

    CAS  Article  Google Scholar 

  103. 103.

    An, S.J., Li, J., Mohanty, D., et al.: Correlation of electrolyte volume and electrochemical performance in lithium-ion pouch cells with graphite anodes and NMC532 cathodes. J. Electrochem. Soc. 164, A1195–A1202 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Kim, J.H., Myung, S.T., Yoon, C.S., et al.: Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332. Chem. Mater. 16, 906–914 (2004).

    CAS  Article  Google Scholar 

  105. 105.

    Kunduraci, M., Al-Sharab, J.F., Amatucci, G.G.: High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem. Mater. 18, 3585–3592 (2006).

    CAS  Article  Google Scholar 

  106. 106.

    Lu, D., Xu, M., Zhou, L., et al.: Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J. Electrochem. Soc. 160, A3138–A3143 (2013).

    CAS  Article  Google Scholar 

  107. 107.

    Thackeray, M.M., Kang, S.H., Johnson, C.S., et al.: Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

    CAS  Article  Google Scholar 

  108. 108.

    Lu, Z., MacNeil, D.D., Dahn, J.R.: Layered cathode materials Li [NixLi(1/3–2x/3) Mn(2/3−x/3)] O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191–A194 (2001).

    CAS  Article  Google Scholar 

  109. 109.

    Nayak, P.K., Grinblat, J., Levi, M., et al.: Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2. (1−x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon cycling. J. Electrochem. Soc. 161, A1534–A1547 (2014).

    CAS  Article  Google Scholar 

  110. 110.

    Manthiram, A., Song, B., Li, W.: A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 6, 125–139 (2017).

    Article  Google Scholar 

  111. 111.

    Noh, H.J., Youn, S., Yoon, C.S., et al.: Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013)

    CAS  Article  Google Scholar 

  112. 112.

    Abraham, D., Roth, E., Kostecki, R., et al.: Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sources 161, 648–657 (2006)

    CAS  Article  Google Scholar 

  113. 113.

    Myung, S.T., Maglia, F., Park, K.J., et al.: Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2016)

    Article  Google Scholar 

  114. 114.

    Lim, B.B., Myung, S.T., Yoon, C.S., et al.: Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li[Ni0. 85Co0.11Al0.04] O2 and Li[Ni0.84Co0. 06Mn0.09Al0.01] O2 with two-step full concentration gradients. ACS Energy Lett. 1, 283–289 (2016)

    CAS  Article  Google Scholar 

  115. 115.

    Noh, H.J., Youn, S., Yoon, C.S., et al.: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    CAS  Article  Google Scholar 

  116. 116.

    InvestmentMine: Cobalt investing - cobalt stocks, mining companies, prices and news. (2017). Accessed 1 Oct 2018

  117. 117.

    Ma, L., Nie, M., Xia, J., et al.: A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sources 327, 145–150 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Sun, Y.K., Myung, S.T., Kim, M.H., et al.: Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core − shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 127, 13411–13418 (2005).

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Sun, Y.K., Myung, S.T., Park, B.C., et al.: High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

  120. 120.

    Wang, Y.Q., Gu, L., Guo, Y.G., et al.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012)

    CAS  Article  Google Scholar 

  121. 121.

    Jung, H.G., Jang, M.W., Hassoun, J., et al.: A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45] O4 lithium-ion battery. Nat. Commun. 2, 516 (2011)

    Article  Google Scholar 

  122. 122.

    Zaghib, K., Mauger, A., Julien, C.: Rechargeable lithium batteries for energy storage in smart grids. In: Owen, J.R. (ed.) Rechargeable Lithium Batteries, pp. 319–351. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  123. 123.

    Lu, J., Chen, Z., Ma, Z., et al.: The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016)

    CAS  Article  Google Scholar 

  124. 124.

    Arrebola, J.C., Caballero, A., Cruz, M., et al.: Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv. Func. Mater. 16, 1904–1912 (2006)

    CAS  Article  Google Scholar 

  125. 125.

    Cui, L.F., Yang, Y., Hsu, C.M., et al.: Carbon − silicon core − shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009)

    CAS  Article  Google Scholar 

  126. 126.

    Ko, M., Chae, S., Ma, J., et al.: Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016)

    CAS  Article  Google Scholar 

  127. 127.

    Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

  128. 128.

    Yang, C., Fu, K., Zhang, Y., et al.: Protected lithium-metal anodes in batteries: from liquid to solid. Adv. Mater. 29, 1701169 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Suzuki, N., Inaba, T., Shiga, T.: Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O. Thin Solid Films 520, 1821–1825 (2012)

    CAS  Article  Google Scholar 

  130. 130.

    Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    CAS  Article  Google Scholar 

  131. 131.

    Martinez-Juarez, A., Pecharromán, C., Iglesias, J.E., et al.: Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM ‘(PO4)3; M, M ‘= Ge, Ti, Sn, Hf. J. Phys. Chem. B 102, 372–375 (1998)

    CAS  Article  Google Scholar 

  132. 132.

    Itoh, M., Inaguma, Y., Jung, W.H., et al.: High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ionics 70, 203–207 (1994)

    Article  Google Scholar 

  133. 133.

    Thangadurai, V., Weppner, W.: Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Func. Mater. 15, 107–112 (2005)

    CAS  Article  Google Scholar 

  134. 134.

    Liu, Z., Fu, W., Payzant, E.A., et al.: Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013)

    CAS  Article  Google Scholar 

  135. 135.

    Boulineau, S., Courty, M., Tarascon, J.M., et al.: Mechanochemical synthesis of Li-argyrodite Li6PS5 X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1–5 (2012)

    CAS  Article  Google Scholar 

  136. 136.

    Kong, S.T., Deiseroth, H.J., Maier, J., et al.: Li6PO5Br and Li6PO5Cl: the first lithium-oxide-argyrodites. Zeitschrift für Anorganische und Allgemeine Chemie 636, 1920–1924 (2010)

    CAS  Article  Google Scholar 

  137. 137.

    Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

  138. 138.

    Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194 (2017)

    CAS  Article  Google Scholar 

  139. 139.

    Thangadurai, V., Narayanan, S., Pinzaru, D.: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Zhang, Z., Zhao, Y., Chen, S., et al.: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 5, 16984–16993 (2017).

    CAS  Article  Google Scholar 

Download references


The authors greatly appreciate the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Waterloo and the Waterloo Institute of Nanotechnology. J. Lu gratefully acknowledges support from the U. S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357.

Author information



Corresponding authors

Correspondence to Jun Lu or Zhongwei Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Cano, Z.P., Yu, A. et al. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2, 1–28 (2019).

Download citation


  • Lithium-ion batteries
  • Electric vehicle
  • Cost
  • Market
  • Energy density