In Situ and Surface-Enhanced Raman Spectroscopy Study of Electrode Materials in Solid Oxide Fuel Cells

Abstract

Solid oxide fuel cells (SOFCs) represent next-generation energy sources with high energy conversion efficiencies, low pollutant emissions, good flexibility with a wide variety of fuels, and excellent modularity suitable for distributed power generation. As an electrochemical energy conversion device, the SOFC’s performance and reliability depend sensitively on the catalytic activity and stability of electrode materials. To date, however, the development of electrode materials and microstructures is still based largely on trial-and-error methods because of the inadequate understanding of electrode process mechanisms. Therefore, the identification of key descriptors/properties for electrode materials or functional heterogeneous interfaces, especially under in situ/operando conditions, may provide guidance for the design of optimal electrode materials and microstructures. Here, Raman spectroscopy is ideally suited for the probing and mapping of chemical species present on electrode surfaces under operating conditions. And to boost the sensitivity toward electrode surface species, the surface-enhanced Raman spectroscopy (SERS) technique can be employed, in which thermally robust SERS probes (e.g., Ag@SiO2 core–shell nanoparticles) are designed to make in situ/operando analysis possible. This review summarizes recent progresses in the investigation of SOFC electrode materials through Raman spectroscopic techniques, including topics of early stage carbon deposition (coking), coking-resistant anode modification, sulfur poisoning, and cathode degradation. In addition, future perspectives for utilizing the in situ/operando SERS for investigations of other electrochemical surfaces and interfaces are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Abbreviations

BZCYYb:

BaZr0.1Ce0.7Y0.1Yb0.1O3−δ

BZY:

BaZr1−xYxO3−δ

DFT:

Density functional theory

EDX:

Energy dispersion X-ray spectroscopy

EIS:

Electrochemical impedance spectroscopy

EF:

Enhancement factor (of SERS)

GDC:

Gadolinium doped ceria

IR:

Infrared spectroscopy

LNF:

LaNi1−xFexOδ

LSM:

La1−xSrxMnO3−δ

LSCF:

La1−xSrxCo1−yFeyO3−δ

LSP:

Localized surface plasmon

LSPR:

Localized surface plasmon resonance

OCV:

Open circuit voltage

ORR:

Oxygen reduction reaction

PEMFC:

Proton exchange membrane fuel cells

PLD:

Pulsed laser deposition

PNM:

PrNi1-xMnxOδ

R6G:

Rhodamine-6G (a chemical to evaluate SERS enhancement factor)

SDC:

Scandium doped ceria

SEM:

Scanning electron microscopy

SERS:

Surface enhanced Raman spectroscopy

SOEC:

Solid oxide electrolysis cell

SOFC:

Solid oxide fuel cell

SSC:

Sm1−xSrxCoO3−δ

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

TPB:

Triple phase boundary (of electrolyte, electrode, and gas phase)

UV-Vis:

Ultraviolet-visible spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

YSZ:

Yttrium stabilized zirconia

References

  1. 1.

    Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)

    CAS  Google Scholar 

  2. 2.

    Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ion. 135, 305–313 (2000)

    CAS  Google Scholar 

  3. 3.

    Yang, L., Choi, Y., Qin, W., et al.: Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat. Commun. 2, 357 (2011)

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Murray, E.P., Tsai, T., Barnett, S.A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999)

    CAS  Google Scholar 

  5. 5.

    Zhan, Z.L., Barnett, S.A.: Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells. Solid State Ion. 176, 871–879 (2005)

    CAS  Google Scholar 

  6. 6.

    Zha, S.W., Moore, A., Abernathy, H., et al.: GDC-based low-temperature SOFCs powered by hydrocarbon fuels. J. Electrochem. Soc. 151, A1128–A1133 (2004)

    CAS  Google Scholar 

  7. 7.

    Liu, M., Peng, R., Dong, D., et al.: Direct liquid methanol-fueled solid oxide fuel cell. J. Power Sources 185, 188–192 (2008)

    CAS  Google Scholar 

  8. 8.

    Murray, E.P., Harris, S.J., Liu, J., et al.: Direct solid oxide fuel cell operation using isooctane. Electrochem. Solid State Lett. 9, A292–A294 (2006)

    CAS  Google Scholar 

  9. 9.

    Liu, M.F., Choi, Y.M., Yang, L., et al.: Direct octane fuel cells: a promising power for transportation. Nano Energy 1, 448–455 (2012)

    CAS  Google Scholar 

  10. 10.

    Williams, M.C., Strakey, J.P., Surdoval, W.A.: The U.S. Department of Energy, office of fossil energy stationary fuel cell program. J. Power Sources 143, 191–196 (2005)

    CAS  Google Scholar 

  11. 11.

    Ikeda, K., Hisatome, N., Nagata, K., et al.: Development of 25 kW class SOFC module. ECS Trans. 7, 39–43 (2007)

    Google Scholar 

  12. 12.

    Day, M., Swartz, S.L., Arkenberg, G.: NexTech’s flexcell technology for planar SOFC stacks. ECS Trans. 35, 385–391 (2011)

    CAS  Google Scholar 

  13. 13.

    Badding, M., Bouton, W., Brown, J., et al.: Ultra-low mass planar SOFC design. ECS Trans. 35, 465–471 (2011)

    CAS  Google Scholar 

  14. 14.

    Krumpelt, M., Krause, T.R., Carter, J.D., et al.: Fuel processing for fuel cell systems in transportation and portable power applications. Catal. Today 77, 3–16 (2002)

    CAS  Google Scholar 

  15. 15.

    Zha, S., Moore, A., Abernathy, H., et al.: GDC-based low-temperature SOFCs powered by hydrocarbon fuels. J. Electrochem. Soc. 151, A1128–A1133 (2004)

    CAS  Google Scholar 

  16. 16.

    Atkinson, A., Barnett, S., Gorte, R.J., et al.: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17 (2004)

    CAS  PubMed  Google Scholar 

  17. 17.

    Lin, Y.B., Zhan, Z.L., Liu, J., et al.: Direct operation of solid oxide fuel cells with methane fuel. Solid State Ion. 176, 1827–1835 (2005)

    CAS  Google Scholar 

  18. 18.

    Ray, E.R., Maskalick, N.J.: Contaminant effects in solid oxide fuel cells. In: Joint Contractors Meeting on Advanced Turbine Systems, Fuel Cells and Coal-Fired Heat, Morgantown, WV (1993)

  19. 19.

    Zha, S., Cheng, Z., Liu, M.: Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. J. Electrochem. Soc. 154, B201–B206 (2007)

    CAS  Google Scholar 

  20. 20.

    Wang, J.H., Liu, M.: Computational study of sulfur–nickel interactions: a new S–Ni phase diagram. Electrochem. Commun. 9, 2212–2217 (2007)

    CAS  Google Scholar 

  21. 21.

    Badwal, S.P.S., Deller, R., Foger, K., et al.: Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells. Solid State Ion. 99, 297–310 (1997)

    CAS  Google Scholar 

  22. 22.

    Jiang, S.P., Zhang, J.P., Zheng, X.G.: A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells. J. Eur. Ceram. Soc. 22, 361–373 (2002)

    CAS  Google Scholar 

  23. 23.

    Kurokawa, H., Kawamura, K., Maruyama, T.: Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ion. 168, 13–21 (2004)

    CAS  Google Scholar 

  24. 24.

    Finsterbusch, M., Lussier, A., Schaefer, J.A., et al.: Electrochemically driven cation segregation in the mixed conductor La0.6Sr0.4Co0.2Fe0.8O3–δ. Solid State Ion. 212, 77–80 (2012)

    CAS  Google Scholar 

  25. 25.

    Harrison, W.A.: Origin of Sr segregation at La1–xSrxMnO3 surfaces. Phys. Rev. B 83, 155437 (2011)

    Google Scholar 

  26. 26.

    Nie, L.F., Liu, M.F., Zhang, Y.J., et al.: La0.6Sr0.4Co0.2Fe0.8O3–δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J. Power Sources 195, 4704–4708 (2010)

    CAS  Google Scholar 

  27. 27.

    Lou, X.Y., Wang, S.Z., Liu, Z., et al.: Improving La0.6Sr0.4Co0.2Fe0.8O3–δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3–δ coating. Solid State Ion. 180, 1285–1289 (2009)

    CAS  Google Scholar 

  28. 28.

    Lynch, M.E., Yang, L., Qin, W., et al.: Enhancement of La0.6Sr0.4Co0.2Fe0.8O3–δ durability and surface electrocatalytic activity by La0.85Sr0.15MnOδ investigated using a new test electrode platform. Energy. Environ. Sci. 4, 2249–2258 (2011)

    CAS  Google Scholar 

  29. 29.

    Guo, J.H., Xie, C., Lee, K.T., et al.: Improving the carbon resistance of Ni-based steam reforming catalyst by alloying with Rh: a computational study coupled with reforming experiments and EXAFS characterization. ACS Catal. 1, 574–582 (2011)

    CAS  Google Scholar 

  30. 30.

    Yang, L., Wang, S., Blinn, K., et al.: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126–129 (2009)

    CAS  PubMed  Google Scholar 

  31. 31.

    Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compounds, theory and applications in inorganic chemistry. In: Chalmers, J.M., Griffiths, P.R. (eds.) Handbook of Vibrational Spectroscopy. Wiley, Hoboken (2008)

    Google Scholar 

  32. 32.

    Smith, E., Dent, G.: Modern Raman Spectroscopy: A Practical Approach. Wiley, Hoboken (2013)

    Google Scholar 

  33. 33.

    Weber, W.H., Merlin, R.: Raman Scattering in Materials Science. Springer, Berlin (2000)

    Google Scholar 

  34. 34.

    McBride, J.R., Hass, K.C., Poindexter, B.D., et al.: Raman and X-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 76, 2435 (1994)

    CAS  Google Scholar 

  35. 35.

    Ahn, K., Yoo, D.S., Prasad, D.H., et al.: Role of multivalent Pr in the formation and migration of oxygen vacancy in Pr-doped ceria: experimental and first-principles investigations. Chem. Mater. 24, 4261–4267 (2012)

    CAS  Google Scholar 

  36. 36.

    Peng, C., Wang, Y., Jiang, K., et al.: Study on the structure change and oxygen vacation shift for Ce1–xSmxO2–y solid solution. J. Alloys Compd. 349, 273–278 (2003)

    CAS  Google Scholar 

  37. 37.

    Hernandez, W.Y., Centeno, M.A., Romero-Sarria, F., et al.: Synthesis and characterization of Ce1–xEuxO2–x/2 mixed oxides and their catalytic activities for CO oxidation. J. Phys. Chem. C 113, 5629–5635 (2009)

    CAS  Google Scholar 

  38. 38.

    Mineshige, A., Taji, T., Muroi, Y., et al.: Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy. Solid State Ion. 135, 481–485 (2000)

    CAS  Google Scholar 

  39. 39.

    Choi, Y.M., Abernathy, H., Chen, H.T., et al.: Characterization of O2–CeO2 interactions using in situ Raman spectroscopy and first-principle calculations. ChemPhysChem 7, 1957–1963 (2006)

    CAS  PubMed  Google Scholar 

  40. 40.

    Efthimiopoulos, I., Kunc, K., Vazhenin, G.V., et al.: Structural transformation and vibrational properties of BaC2 at high pressures. Phys. Rev. B 82, 134125 (2010)

    Google Scholar 

  41. 41.

    Blinn, K.S., Abernathy, H., Li, X.X., et al.: Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes. Energy Environ. Sci. 5, 7913–7917 (2012)

    CAS  Google Scholar 

  42. 42.

    Cheng, Z., Wang, J.H., Choi, Y., et al.: From Ni–YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 4, 4380–4409 (2011)

    CAS  Google Scholar 

  43. 43.

    Cheng, Z., Abernathy, H., Liu, M.: Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 111, 17997–18000 (2007)

    CAS  Google Scholar 

  44. 44.

    Pomfret, M.B., Owrutsky, J.C., Walker, R.A.: High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes. J. Phys. Chem. B 110, 17305–17308 (2006)

    CAS  PubMed  Google Scholar 

  45. 45.

    Jeanmaire, D.L., Van Duyne, R.P.: Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)

    CAS  Google Scholar 

  46. 46.

    Albrecht, M.G., Creighton, J.A.: Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    CAS  Google Scholar 

  47. 47.

    Marotta, N.E., Barber, J.R., Dluhy, P.R., et al.: Patterned silver nanorod array substrates for surface-enhanced Raman scattering. Appl. Spectrosc. 63, 1101–1106 (2009)

    CAS  PubMed  Google Scholar 

  48. 48.

    McLellan, J.M., Siekkinen, A., Chen, J.Y., et al.: Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 427, 122–126 (2006)

    CAS  Google Scholar 

  49. 49.

    Baia, L., Baia, M., Popp, J., et al.: Gold Films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J. Phys. Chem. B 110, 23982–23986 (2006)

    CAS  PubMed  Google Scholar 

  50. 50.

    Mortazavi, D., Kouzani, A.Z., Kaynak, A., et al.: Developing LSPR design guidelines. Prog. Electromagn. Res. Pier 126, 203–235 (2012)

    Google Scholar 

  51. 51.

    Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    CAS  PubMed  Google Scholar 

  52. 52.

    Kerker, M., Wang, D.S., Chew, H.: Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19, 4159–4174 (1980)

    CAS  PubMed  Google Scholar 

  53. 53.

    Stiles, P.L., Dieringer, J.A., Shah, N.C., et al.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    CAS  Google Scholar 

  54. 54.

    Qian, X.M., Nie, S.M.: Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008)

    CAS  PubMed  Google Scholar 

  55. 55.

    Hu, M., Chen, J., Li, Z.Y., et al.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)

    CAS  PubMed  Google Scholar 

  56. 56.

    Li, X., Blinn, K., Fang, Y., et al.: Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces. Phys. Chem. Chem. Phys. 14, 5919–5923 (2012)

    CAS  PubMed  Google Scholar 

  57. 57.

    Li, X.X., Blinn, K., Fang, Y.C., et al.: Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces. Phys. Chem. Chem. Phys. 14, 5919–5923 (2012)

    CAS  PubMed  Google Scholar 

  58. 58.

    Kim, H., Lu, C., Worrell, W.L., et al.: Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J. Electrochem. Soc. 149, A247–A250 (2002)

    CAS  Google Scholar 

  59. 59.

    Li, X.X., Lee, J.P., Blinn, K.S., et al.: High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. Energy Environ. Sci. 7, 306–310 (2014)

    CAS  Google Scholar 

  60. 60.

    Li, X., Liu, M., Lee, J.P., et al.: An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes. Phys. Chem. Chem. Phys. 17, 21112–21119 (2015)

    CAS  PubMed  Google Scholar 

  61. 61.

    Yang, M.L., Zhu, Y.A., Fan, C., et al.: DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Phys. Chem. Chem. Phys. 13, 3257–3267 (2011)

    CAS  PubMed  Google Scholar 

  62. 62.

    Liu, H.Y., Yan, R.X., Zhang, R.G., et al.: A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface. J. Nat. Gas Chem. 20, 611–617 (2011)

    CAS  Google Scholar 

  63. 63.

    Trimm, D.L.: Catalysts for the control of coking during steam reforming. Catal. Today 49, 3–10 (1999)

    CAS  Google Scholar 

  64. 64.

    Lee, W.Y., Hanna, J., Ghoniem, A.F.: On the predictions of carbon deposition on the nickel anode of a SOFC and its impact on open-circuit conditions. J. Electrochem. Soc. 160, F94–F105 (2013)

    CAS  Google Scholar 

  65. 65.

    Siahvashi, A., Chesterfield, D., Adesina, A.A.: Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chem. Eng. Sci. 93, 313–325 (2013)

    CAS  Google Scholar 

  66. 66.

    Asamoto, M., Miyake, S., Sugihara, K., et al.: Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane-solid oxide fuel cells. Electrochem. Commun. 11, 1508–1511 (2009)

    CAS  Google Scholar 

  67. 67.

    Gonzalez-Delacruz, V.M., Ternero, F., Pereñíguez, R., et al.: Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane. Appl. Catal. A Gen. 384, 1–9 (2010)

    CAS  Google Scholar 

  68. 68.

    Guo, J.J., Lou, H., Mo, L.Y., et al.: The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J. Mol. Catal. A Chem. 316, 1–7 (2010)

    CAS  Google Scholar 

  69. 69.

    Shishkin, M., Ziegler, T.: Coke-tolerant Ni/BaCe1–xYxO3-δ anodes for solid oxide fuel cells: DFT plus U study. J. Phys. Chem. C 117, 7086–7096 (2013)

    CAS  Google Scholar 

  70. 70.

    Bandura, A.V., Evarestov, R.A., Kuruch, D.D.: Hybrid HF–DFT modeling of monolayer water adsorption on (001) surface of cubic BaHfO3 and BaZrO3 crystals. Surf. Sci. 604, 1591–1597 (2010)

    CAS  Google Scholar 

  71. 71.

    Li, X.X., Liu, M.F., Lai, S.Y., et al.: In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chem. Mater. 27, 822–828 (2015)

    Google Scholar 

  72. 72.

    Li, X., Liu, M., Lai, S.Y., et al.: In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chem. Mater. 27, 822–828 (2015)

    Google Scholar 

  73. 73.

    Brightman, E., Ivey, D.G., Brett, D.J.L., et al.: The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes. J. Power Sources 196, 7182–7187 (2011)

    CAS  Google Scholar 

  74. 74.

    Cheng, Z., Wang, J.H., Choi, Y.M., et al.: From Ni–YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 4, 4380–4409 (2011)

    CAS  Google Scholar 

  75. 75.

    Gong, M.Y., Liu, X.B., Trembly, J., et al.: Sulfur-tolerant anode materials for solid oxide fuel cell application. J. Power Sources 168, 289–298 (2007)

    CAS  Google Scholar 

  76. 76.

    Lohsoontorn, P., Brett, D.J.L., Brandon, N.P.: Thermodynamic predictions of the impact of fuel composition on the propensity of sulphur to interact with Ni and ceria-based anodes for solid oxide fuel cells. J. Power Sources 175, 60–67 (2008)

    CAS  Google Scholar 

  77. 77.

    Lee, K., Song, C.S., Janik, M.J.: Ab initio thermodynamics examination of sulfur species present on Rh, Ni, and binary Rh–Ni surfaces under steam reforming reaction conditions. Langmuir 28, 5660–5668 (2012)

    CAS  PubMed  Google Scholar 

  78. 78.

    Cheng, Z., Wang, J.H., Choi, Y., et al.: From Ni–YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 4, 4380–4409 (2011)

    CAS  Google Scholar 

  79. 79.

    Cheng, Z., Liu, M.: Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ion. 178, 925–935 (2007)

    CAS  Google Scholar 

  80. 80.

    Zha, S.W., Cheng, Z., Liu, M.L.: Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. J. Electrochem. Soc. 154, B201–B206 (2007)

    CAS  Google Scholar 

  81. 81.

    Hansen, J.B.: Correlating sulfur poisoning of SOFC nickel anodes by a Temkin isotherm. Electrochem. Solid State Lett. 11, B178–B180 (2008)

    CAS  Google Scholar 

  82. 82.

    Tietz, F., Haanappel, V.A.C., Mai, A., et al.: Performance of LSCF cathodes in cell tests. J. Power Sources 156, 20–22 (2006)

    CAS  Google Scholar 

  83. 83.

    Jiang, S.P., Zhen, Y.: Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ion. 179, 1459–1464 (2008)

    CAS  Google Scholar 

  84. 84.

    Simner, S.P., Anderson, M.D., Engelhard, M.H., et al.: Degradation mechanisms of La–Sr–Co–Fe–O3 SOFC cathodes. Electrochem. Solid State Lett. 9, A478–A481 (2006)

    CAS  Google Scholar 

  85. 85.

    Benson, S.J., Waller, D., Kilner, J.A.: Degradation of La0.6Sr0.4Co0.2Fe0.8O3–δ in carbon dioxide and water atmospheres. J. Electrochem. Soc. 146, 1305–1309 (1999)

    CAS  Google Scholar 

  86. 86.

    Lee, S.N., Atkinson, A., Kilner, J.A.: Effect of Chromium on La0.6Sr0.4Co0.2Fe0.8O3–δ solid oxide fuel cell cathodes. J. Electrochem. Soc. 160, F629–F635 (2013)

    CAS  Google Scholar 

  87. 87.

    Bucher, E., Sitte, W.: Long-term stability of the oxygen exchange properties of (La, Sr)1–z(Co, Fe)O3–δ in dry and wet atmospheres. Solid State Ion. 192, 480–482 (2011)

    CAS  Google Scholar 

  88. 88.

    Tai, L.W., Nasrallah, M.M., Anderson, H.U., et al.: Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8O3. Solid State Ion 76, 273–283 (1995)

    CAS  Google Scholar 

  89. 89.

    Mitchell, J.F., Argyriou, D.N., Potter, C.D., et al.: Structural phase diagram of La1–xSrxMnO3+δ: relationship to magnetic and transport properties. Phys. Rev. B 54, 6172–6183 (1996)

    CAS  Google Scholar 

  90. 90.

    Ding, D., Liu, M.F., Liu, Z.B., et al.: Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Adv. Energy Mater. 3, 1149–1154 (2013)

    CAS  Google Scholar 

  91. 91.

    Lynch, M.E., Yang, L., Qin, W.T., et al.: Enhancement of La0.6Sr0.4Co0.2Fe0.8O3–δ durability and surface electrocatalytic activity by La0.85Sr0.15MnOδ investigated using a new test electrode platform. Energy Environ. Sci. 4, 2249–2258 (2011)

    CAS  Google Scholar 

  92. 92.

    Martín-Carrón, L., de Andrés, A., Martínez-Lope, M.J., et al.: Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys. Rev. B 66, 174303 (2002)

    Google Scholar 

  93. 93.

    Tai, L.W., Nasrallah, M.M., Anderson, H.U., et al.: Structure and electrical-properties of La1–xSrxCO1–yFeyO3.2. The system La1–xSrxCO0.2Fe0.8O3. Solid State Ionics 76, 273–283 (1995)

    CAS  Google Scholar 

  94. 94.

    Barbero, B.P., Gamboa, J.A., Cadus, L.E.: Synthesis and characterisation of La1–xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl. Catal. B Environ. 65, 21–30 (2006)

    CAS  Google Scholar 

  95. 95.

    Weitz, D.A., Garoff, S., Gersten, J.I., et al.: The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J. Chem. Phys. 78, 5324–5338 (1983)

    CAS  Google Scholar 

  96. 96.

    Everall, N., Hahn, T., Matousek, P., et al.: Picosecond time-resolved raman spectroscopy of solids: capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance. Appl. Spectrosc. 55, 1701–1708 (2001)

    CAS  Google Scholar 

  97. 97.

    Matousek, P., Towrie, M., Ma, C., et al.: Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J. Raman Spectrosc. 32, 983–988 (2001)

    CAS  Google Scholar 

  98. 98.

    McCain, S.T., Willett, R.M., Brady, D.J.: Multi-excitation Raman spectroscopy technique for fluorescence rejection. Opt. Express 16, 10975–10991 (2008)

    CAS  PubMed  Google Scholar 

  99. 99.

    Li, Q., Wang, K.R., Wang, S.X.: A new approach for fluorescence subtraction in Raman spectroscopy. In: CLEO: 2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD), paper CFN7. OSA Publishing, Washington, D.C. (2011)

  100. 100.

    Lieber, C.A., Mahadevan-Jansen, A.: Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57, 1363–1367 (2003)

    CAS  PubMed  Google Scholar 

  101. 101.

    Ruan, H., Dai, L.K.: Automated background subtraction algorithm for raman spectra based on iterative weighted least squares. Asian J. Chem. 23, 5229–5234 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) SECA Core Technology Program under Award No. DE-NT0006557 and DE-FE0031201, ARPA-E REBELS Program under Award No. DE-AR0000501, and by the HetroFoaM Center, an Energy Frontier Research Center funded by the US DOE, Office of Science, Office of Basic Energy Sciences (BES) under Award No. DE-SC0001061.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meilin Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Blinn, K., Chen, D. et al. In Situ and Surface-Enhanced Raman Spectroscopy Study of Electrode Materials in Solid Oxide Fuel Cells. Electrochem. Energ. Rev. 1, 433–459 (2018). https://doi.org/10.1007/s41918-018-0017-9

Download citation

Keywords

  • SOFC
  • Raman spectroscopy
  • Surface enhanced Raman spectroscopy (SERS)
  • In situ
  • Operando

PACS

  • 88.30.pd
  • 88.30.pn
  • 82.80.Gk