Skip to main content

Advertisement

Log in

Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries

Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Compared with conventional lithium ion batteries (LIBs), lithium sulfur (Li–S) batteries possess advantages such as higher theoretical energy densities and better cost efficiencies, making them promising next-generation energy storage systems. However, the commercialization of Li–S batteries is impeded by several drawbacks, including low cycling stabilities, limited sulfur utilizations, existing shuttle effects of polysulfide intermediates, serious safety concerns, as well as inferior cycling performances of lithium metal anodes. To address these issues, researchers have achieved rapid developments for sulfur cathodes and increased their attention to lithium metal anodes to facilitate the widespread application of Li–S batteries. And among the substrate materials for electrodes in Li–S batteries being developed, carbon-based materials have been especially promising because of their multifunctionality, demonstrating great potential for application in advanced energy storage and conversion systems. In this review, recent advancements of carbon-based frameworks applied to Li–S batteries will be summarized and diverse utilization methods of these carbon-based materials for both sulfur cathodes and lithium metal anodes will be provided. Future research directions and the prospects of Li–S batteries with high performance and practicability will also be discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Liu, W., Oh, P., Liu, X., et al.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015)

    CAS  Google Scholar 

  2. Eshetu, G.G., Armand, M., Scrosati, B., et al.: Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. 53, 13342–13359 (2014)

    Google Scholar 

  3. Roberts, A.D., Li, X., Zhang, H.: Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43, 4341–4356 (2014)

    CAS  PubMed  Google Scholar 

  4. Kundu, D., Talaie, E., Duffort, V., et al.: The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015)

    CAS  Google Scholar 

  5. Yan, B., Li, X., Bai, Z., et al.: A review of atomic layer deposition providing high performance lithium sulfur batteries. J. Power Sources 338, 34–48 (2017)

    CAS  Google Scholar 

  6. Fang, R., Zhao, S., Sun, Z., et al.: More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017)

    Google Scholar 

  7. Van Noorden, R.: A better battery. Nature 507, 26–28 (2014)

    PubMed  Google Scholar 

  8. Mahmood, N., Hou, Y.: Electrode nanostructures in lithium-based batteries. Adv. Sci. 1, 1400012 (2014)

    Google Scholar 

  9. McDowell, M.T., Lee, S.W., Nix, W.D., et al.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4984 (2013)

    CAS  PubMed  Google Scholar 

  10. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    CAS  Google Scholar 

  11. Wang, D.W., Zeng, Q., Zhou, G., et al.: Carbon-sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1, 9382–9394 (2013)

    CAS  Google Scholar 

  12. Borchardt, L., Oschatz, M., Kaskel, S.: Carbon materials for lithium sulfur batteries-ten critical questions. Chem. Eur. J. 22, 7324–7351 (2016)

    CAS  PubMed  Google Scholar 

  13. Hagen, M., Hanselmann, D., Ahlbrecht, K., et al.: Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015)

    Google Scholar 

  14. Pope, M.A., Aksay, I.A.: Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5, 1500124 (2015)

    Google Scholar 

  15. Seh, Z.W., Sun, Y., Zhang, Q., et al.: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016)

    CAS  PubMed  Google Scholar 

  16. Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    CAS  PubMed  Google Scholar 

  17. Song, M.K., Cairns, E.J., Zhang, Y.: Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5, 2186–2204 (2013)

    CAS  PubMed  Google Scholar 

  18. Rosenman, A., Markevich, E., Salitra, G., et al.: Review on Li–sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015)

    Google Scholar 

  19. Zhang, S., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015)

    Google Scholar 

  20. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    CAS  PubMed  Google Scholar 

  21. Huang, J.Q., Zhang, Q., Wei, F.: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015)

    Google Scholar 

  22. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  PubMed  Google Scholar 

  23. Choi, N.S., Chen, Z., Freunberger, S.A., et al.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012)

    CAS  Google Scholar 

  24. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    CAS  PubMed  Google Scholar 

  25. Yang, Y., Zheng, G., Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)

    CAS  PubMed  Google Scholar 

  26. Adelhelm, P., Hartmann, P., Bender, C.L., et al.: From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji, X., Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010)

    CAS  Google Scholar 

  28. Xu, W., Wang, J., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014)

    CAS  Google Scholar 

  29. Zhang, R., Li, N.W., Cheng, X.B., et al.: Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 4, 1600445 (2017)

    Google Scholar 

  30. Cheng, X.B., Zhang, Q.: Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 3, 7207–7209 (2015)

    CAS  Google Scholar 

  31. Rehman, S., Khan, K., Zhao, Y., et al.: Nanostructured cathode materials for lithium-sulfur batteries: progress, challenges and perspectives. J. Mater. Chem. A 5, 3014–3038 (2017)

    CAS  Google Scholar 

  32. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)

    CAS  PubMed  Google Scholar 

  33. Wang, D., Zhang, W., Zheng, W., et al.: Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4, 1600168 (2017)

    Google Scholar 

  34. Grande, L., Paillard, E., Hassoun, J., et al.: The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015)

    CAS  PubMed  Google Scholar 

  35. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    CAS  PubMed  Google Scholar 

  36. Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994)

    CAS  Google Scholar 

  37. Zhang, C., Huang, Z., Lv, W., et al.: Carbon enables the practical use of lithium metal in a battery. Carbon 123, 744–755 (2017)

    CAS  Google Scholar 

  38. Bai, P., Li, J., Brushett, F.R., et al.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016)

    CAS  Google Scholar 

  39. Zheng, G., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    CAS  PubMed  Google Scholar 

  40. Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014)

    CAS  PubMed  Google Scholar 

  41. Lv, W., Li, Z., Deng, Y., et al.: Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016)

    Google Scholar 

  42. Zhang, A., Fang, X., Shen, C., et al.: A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 9, 3428–3436 (2016)

    CAS  Google Scholar 

  43. Li, Z., Wu, S., Lv, W., et al.: Graphene emerges as a versatile template for materials preparation. Small 12, 2674–2688 (2016)

    CAS  PubMed  Google Scholar 

  44. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)

    CAS  PubMed  Google Scholar 

  45. Datta, D., Li, J., Koratker, N., et al.: Enhanced lithiation in defective graphene. Carbon 80, 305–310 (2014)

    CAS  Google Scholar 

  46. Lin, D., Liu, Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechol. 11, 626–632 (2016)

    CAS  Google Scholar 

  47. Fang, X., Peng, H.: A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small 11, 1488–1511 (2015)

    CAS  PubMed  Google Scholar 

  48. Liang, J., Sun, Z.H., Li, F., et al.: Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016)

    Google Scholar 

  49. Yin, Y.X., Xin, S., Guo, Y.G., et al.: Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013)

    CAS  Google Scholar 

  50. Ma, Y., Zhang, H., Wu, B., et al.: Lithium sulfur primary battery with super high energy density: based on the cauliflower-like structured C/S cathode. Sci. Rep. 5, 14949 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Manthiram, A., Fu, Y., Su, Y.S.: Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)

    CAS  PubMed  Google Scholar 

  52. Shim, J., Striebel, K.A., Cairns, E.J.: The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321–A1325 (2002)

    CAS  Google Scholar 

  53. Gao, J., Lowe, M.A., Kiya, Y., et al.: Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 115, 25132–25137 (2011)

    CAS  Google Scholar 

  54. Yim, T., Park, M.S., Yu, J.S., et al.: Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013)

    CAS  Google Scholar 

  55. Wei, S., Ma, L., Hendrickson, K.E., et al.: Metal-sulfur battery cathodes based on PAN sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015)

    CAS  PubMed  Google Scholar 

  56. Zeng, L., Zeng, W., Jiang, Y., et al.: A Flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv. Energy Mater. 5, 1401377 (2015)

    Google Scholar 

  57. Hu, L., Lu, Y., Li, X., et al.: Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte. Small 13, 1603533 (2017)

    Google Scholar 

  58. Li, X., Liang, J., Zhang, K., et al.: Amorphous S-rich S1-xSex/C (x <= 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte. Energy Environ. Sci. 8, 3181–3186 (2015)

    CAS  Google Scholar 

  59. Zeng, L., Yao, Y., Shi, J., et al.: A flexible S1-xSex@ porous carbon nanofibers (x ≤ 0.1) thin film with high performance for Li–S batteries and room- temperature Na-S batteries. Energy Storage Mater. 5, 50–57 (2016)

    Google Scholar 

  60. Yang, Y., Zheng, G., Misra, S., et al.: High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387–15394 (2012)

    CAS  PubMed  Google Scholar 

  61. Choi, Y.J., Kim, K.W., Ahn, H.J., et al.: Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J. Alloys Compd. 449, 313–316 (2008)

    CAS  Google Scholar 

  62. Ji, X., Evers, S., Black, R., et al.: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325 (2011)

    PubMed  Google Scholar 

  63. Zhang, S.S.: Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013)

    CAS  Google Scholar 

  64. Wei Seh, Z., Li, W., Cha, J.J., et al.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013)

    PubMed  Google Scholar 

  65. Yamin, H., Gorenshtein, A., Penciner, J., et al.: Lithium sulfur battery—oxidation reduction-mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135(5), 1045–1048 (1988)

    CAS  Google Scholar 

  66. Wu, H., Zhuo, D., Kong, D., et al.: Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014)

    CAS  PubMed  Google Scholar 

  67. Lopez, C.M., Vaughey, J.T., Dees, D.W.: Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 156, A726–A729 (2009)

    CAS  Google Scholar 

  68. Lv, D., Shao, Y., Lozano, T., et al.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015)

    Google Scholar 

  69. Zuo, T.T., Wu, X.W., Yang, C.P., et al.: Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017)

    Google Scholar 

  70. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)

    CAS  Google Scholar 

  71. Huang, X., Yang, Z., Dong, B., et al.: In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 9, 8102–8106 (2017)

    CAS  PubMed  Google Scholar 

  72. Yin, H., Zhang, C., Liu, F., et al.: Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 24, 2930–2937 (2014)

    CAS  Google Scholar 

  73. Mahmood, N., Tang, T., Hou, Y.: Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6, 1600374 (2016)

    Google Scholar 

  74. Hassoun, J., Bonaccorso, F., Agostini, M., et al.: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014)

    CAS  PubMed  Google Scholar 

  75. Kobayashi, T., Bando, M., Kimura, N., et al.: Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013)

    Google Scholar 

  76. Wang, J.T.W., Ball, J.M., Barea, E.M., et al.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2014)

    CAS  PubMed  Google Scholar 

  77. Li, Y., Li, Z., Shen, P.K.: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013)

    CAS  PubMed  Google Scholar 

  78. Sevincli, H., Sevik, C., Cagin, T., et al.: A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci. Rep. 3, 1228 (2013)

    PubMed  PubMed Central  Google Scholar 

  79. Yang, X., Cheng, C., Wang, Y., et al.: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013)

    CAS  PubMed  Google Scholar 

  80. Bonaccorso, F., Colombo, L., Yu, G., et al.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)

    PubMed  Google Scholar 

  81. Jayaprakash, N., Shen, J., Moganty, S.S., et al.: Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011)

    CAS  Google Scholar 

  82. Schuster, J., He, G., Mandlmeier, B., et al.: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012)

    CAS  Google Scholar 

  83. Evers, S., Nazar, L.F.: New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013)

    CAS  PubMed  Google Scholar 

  84. Jung, D.S., Hwang, T.H., Lee, J.H., et al.: Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett. 14, 4418–4425 (2014)

    CAS  PubMed  Google Scholar 

  85. Zhang, B., Qin, X., Li, G.R., et al.: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010)

    CAS  Google Scholar 

  86. Zheng, Z., Guo, H., Pei, F., et al.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 26, 8952–8959 (2016)

    CAS  Google Scholar 

  87. Lyu, Z., Xu, D., Yang, L., et al.: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 12, 657–665 (2015)

    CAS  Google Scholar 

  88. Shearer, C.J., Cherevan, A., Eder, D.: Application and future challenges of functional nanocarbon hybrids. Adv. Mater. 26, 2295–2318 (2014)

    CAS  PubMed  Google Scholar 

  89. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., et al.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    PubMed  Google Scholar 

  90. Jin, F., Xiao, S., Lu, L., et al.: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 16, 440–447 (2016)

    CAS  PubMed  Google Scholar 

  91. Sun, L., Wang, D., Luo, Y., et al.: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. ACS Nano 10, 1300–1308 (2016)

    CAS  PubMed  Google Scholar 

  92. Cheng, X.B., Huang, J.Q., Zhang, Q., et al.: Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 4, 65–72 (2014)

    CAS  Google Scholar 

  93. Zhao, Y., Wu, W., Li, J., et al.: Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 26, 5113–5118 (2014)

    CAS  PubMed  Google Scholar 

  94. Zhang, S.M., Zhang, Q., Huang, J.Q., et al.: Composite cathodes containing SWCNT@S coaxial nanocables: facile synthesis, surface modification, and enhanced performance for Li-ion storage. Part. Part. Syst. Charact. 30(2), 158–165 (2013)

    CAS  Google Scholar 

  95. Wang, C., Wan, W., Chen, J.T., et al.: Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J. Mater. Chem. A 1, 1716–1723 (2013)

    CAS  Google Scholar 

  96. Fang, R., Li, G., Zhao, S., et al.: Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy 42, 205–214 (2017)

    CAS  Google Scholar 

  97. Li, Q., Mahmood, N., Zhu, J., et al.: Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9, 668–683 (2014)

    CAS  Google Scholar 

  98. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    CAS  PubMed  Google Scholar 

  99. Chen, H., Wang, C., Dong, W., et al.: Monodispersed sulfur nanoparticles for lithium sulfur batteries with theoretical performance. Nano Lett. 15, 798–802 (2015)

    CAS  PubMed  Google Scholar 

  100. Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014)

    PubMed  Google Scholar 

  101. Tang, C., Li, B.Q., Zhang, Q., et al.: CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016)

    CAS  Google Scholar 

  102. Sun, L., Li, M., Jiang, Y., et al.: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 14, 4044–4049 (2014)

    CAS  PubMed  Google Scholar 

  103. Ding, Y.L., Kopold, P., Hahn, K., et al.: Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 26, 1112–1119 (2016)

    CAS  Google Scholar 

  104. Yuan, Z., Peng, H.J., Huang, J.Q., et al.: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014)

    CAS  Google Scholar 

  105. Li, M., Carter, R., Douglas, A., et al.: Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes. ACS Nano 11, 4877–4884 (2017)

    CAS  PubMed  Google Scholar 

  106. Peng, H.J., Xu, W.T., Zhu, L., et al.: 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 26, 6351–6358 (2016)

    CAS  Google Scholar 

  107. Chen, Z., Xu, C., Ma, C., et al.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    CAS  PubMed  Google Scholar 

  108. Zhou, G., Li, L., Ma, C., et al.: A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356–365 (2015)

    CAS  Google Scholar 

  109. Seh, Z.W., Zhang, Q., Li, W., et al.: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673–3677 (2013)

    CAS  Google Scholar 

  110. Demir-Cakan, R., Morcrette, M., Nouar, F., et al.: Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011)

    CAS  PubMed  Google Scholar 

  111. Sun, F., Wang, J., Chen, H., et al.: High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl. Mater. Interfaces. 5, 5630–5638 (2013)

    CAS  PubMed  Google Scholar 

  112. Xu, J., Lawson, T., Fan, H.et al.: Updated metal compounds (MOFs, -S, -OH, -N, -C) used as cathode materials for lithium-sulfur batteries. Adv. Energy Mater., 1702607 (2018)

    Google Scholar 

  113. Song, J., Xu, T., Gordin, M.L., et al.: Nitrogen- doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high- areal- capacity sulfur cathode with exceptional cycling stability for lithium- sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014)

    CAS  Google Scholar 

  114. Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 8178–8182 (2017)

    CAS  Google Scholar 

  115. Xia, Y., Fang, R., Xiao, Z., et al.: Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 9, 23782–23791 (2017)

    CAS  PubMed  Google Scholar 

  116. Wang, Z., Dong, Y., Li, H., et al.: Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014)

    CAS  PubMed  Google Scholar 

  117. Zhou, W., Xiao, X., Cai, M., et al.: Polydopamine-coated, nitrogen-doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett. 14, 5250–5256 (2014)

    CAS  PubMed  Google Scholar 

  118. Zheng, G., Zhang, Q., Cha, J.J., et al.: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013)

    CAS  PubMed  Google Scholar 

  119. Chen, S., Sun, B., Xie, X., et al.: Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reservoirs for lithium-sulfur batteries with long cycle life. Nano Energy 16, 268–280 (2015)

    CAS  Google Scholar 

  120. Mao, J., Yang, L., Yu, P., et al.: Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem. Commun. 19, 29–31 (2012)

    CAS  Google Scholar 

  121. Tang, H., Yin, H., Wang, J., et al.: Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 5585–5589 (2013)

    CAS  Google Scholar 

  122. Torad, N.L., Salunkhe, R.R., Li, Y., et al.: Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem. Eur. J. 20, 7895–7900 (2014)

    CAS  PubMed  Google Scholar 

  123. Hu, L., Yan, N., Chen, Q., et al.: Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem. Eur. J. 18, 8971–8977 (2012)

    CAS  PubMed  Google Scholar 

  124. Cao, X., Zheng, B., Rui, X., et al.: Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem. Int. Ed. 53, 1404–1409 (2014)

    CAS  Google Scholar 

  125. Xu, G., Ding, B., Shen, L., et al.: Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 1, 4490–4496 (2013)

    CAS  Google Scholar 

  126. Xia, W., Mahmood, A., Zou, R., et al.: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015)

    CAS  Google Scholar 

  127. Hao, G.P., Tang, C., Zhang, E., et al.: Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li–S batteries. Adv. Mater. 29, 1702829 (2017)

    Google Scholar 

  128. Hu, C., Kirk, C., Cai, Q., et al.: A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries. Adv. Energy Mater. 7, 1701082 (2017)

    Google Scholar 

  129. Lv, D., Zheng, J., Li, Q., et al.: High energy density lithium-sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015)

    Google Scholar 

  130. Peng, H.J., Hou, T.Z., Zhang, Q., et al.: Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv. Mater. Interfaces 1, 1400227 (2014)

    Google Scholar 

  131. Guo, J., Xu, Y., Wang, C.: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011)

    CAS  PubMed  Google Scholar 

  132. Zheng, G., Yang, Y., Cha, J.J., et al.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011)

    CAS  PubMed  Google Scholar 

  133. Xu, Z.L., Huang, J.Q., Chong, W.G., et al.: In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance. Adv. Energy Mater. 7, 1602078 (2017)

    Google Scholar 

  134. Ding, E., Hai, J., Li, T., et al.: Efficient hydrogen-generation CuO/Co3O4 heterojunction nanofibers for sensitive detection of cancer cells by portable pressure meter. Anal. Chem. 89, 8140–8147 (2017)

    CAS  PubMed  Google Scholar 

  135. Ji, L., Rao, M., Zheng, H., et al.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011)

    CAS  PubMed  Google Scholar 

  136. Chua, C.K., Pumera, M.: Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    CAS  PubMed  Google Scholar 

  137. Wang, H., Yang, Y., Liang, Y., et al.: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)

    CAS  PubMed  Google Scholar 

  138. Qiu, Y., Li, W., Zhao, W., et al.: High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)

    CAS  PubMed  Google Scholar 

  139. Fang, R., Zhao, S., Pei, S., et al.: Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10, 8676–8682 (2016)

    CAS  PubMed  Google Scholar 

  140. Chen, C.Y., Peng, H.J., Hou, T.Z., et al.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 29, 1606802 (2017)

    Google Scholar 

  141. Sheng, Z.H., Gao, H.L., Bao, W.J., et al.: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012)

    CAS  Google Scholar 

  142. Zheng, Y., Jiao, Y., Ge, L., et al.: Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013)

    CAS  Google Scholar 

  143. Qu, L., Liu, Y., Baek, J.B., et al.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    CAS  PubMed  Google Scholar 

  144. Zhang, C., Mahmood, N., Yin, H., et al.: Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25, 4932–4937 (2013)

    CAS  PubMed  Google Scholar 

  145. Poh, H.L., Simek, P., Sofer, Z., et al.: Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7, 5262–5272 (2013)

    CAS  PubMed  Google Scholar 

  146. Xie, Y., Meng, Z., Cai, T., et al.: Effect of boron-doping on the graphene aerogel used as cathode for the lithium sulfur battery. ACS Appl. Mater. Interfaces. 7, 25202–25210 (2015)

    CAS  PubMed  Google Scholar 

  147. Gu, X., Tong, C.J., Lai, C., et al.: A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 3, 16670–16678 (2015)

    CAS  Google Scholar 

  148. Xu, J., Su, D., Zhang, W., et al.: A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A 4, 17381–17393 (2016)

    CAS  Google Scholar 

  149. Yun, Y.S., Le, V.D., Kim, H., et al.: Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J. Power Sources 262, 79–85 (2014)

    CAS  Google Scholar 

  150. Hou, T.Z., Peng, H.J., Huang, J.Q., et al.: The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2D Mater. 2, 014011 (2015)

    Google Scholar 

  151. Song, J., Yu, Z., Gordin, M.L., et al.: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 16, 864–870 (2016)

    CAS  PubMed  Google Scholar 

  152. Zeng, L., Jiang, Y., Xu, J., et al.: Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li–S batteries. Nanoscale 7, 10940–10949 (2015)

    CAS  PubMed  Google Scholar 

  153. Yao, Y., Zeng, L., Hu, S., et al.: Binding S0.6Se0.4 in 1D carbon nanofiber with C–S bonding for high-performance flexible Li–S batteries and Na–S batteries. Small 13, 1603513 (2017)

    Google Scholar 

  154. Ma, J., Wang, J., He, Y.S., et al.: A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. J. Mater. Chem. A 2, 9200–9207 (2014)

    CAS  Google Scholar 

  155. Ma, J., He, Y.S., Zhang, W., et al.: An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy 16, 235–246 (2015)

    CAS  Google Scholar 

  156. Wang, C., Su, K., Wan, W., et al.: High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2, 5018–5023 (2014)

    CAS  Google Scholar 

  157. Hu, G., Xu, C., Sun, Z., et al.: 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28, 1603–1609 (2016)

    CAS  PubMed  Google Scholar 

  158. Wang, G., Kuang, S., Zhang, J., et al.: Graphitic carbon nitride/multiwalled carbon nanotubes composite as Pt-free counter electrode for high-efficiency dye-sensitized solar cells. Electrochim. Acta 187, 243–248 (2016)

    CAS  Google Scholar 

  159. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014)

    CAS  Google Scholar 

  160. Li, H., Cao, K., Cui, J., et al.: 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8, 6379–6385 (2016)

    CAS  PubMed  Google Scholar 

  161. Yang, W., Yang, W., Song, A., et al.: 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 10, 816–824 (2018)

    CAS  PubMed  Google Scholar 

  162. Fan, Y., Yang, Z., Hua, W., et al.: Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 7, 1602380 (2017)

    Google Scholar 

  163. Sun, Q., Fang, X., Weng, W., et al.: An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 10539–10544 (2015)

    CAS  Google Scholar 

  164. Song, J., Gordin, M.L., Xu, T., et al.: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)

    CAS  Google Scholar 

  165. Pan, H., Cheng, Z., Xiao, Z., et al.: The fusion of imidazolium-based ionic polymer and carbon nanotubes: one type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1703936 (2017)

    Google Scholar 

  166. Cai, J., Wu, C., Yang, S., et al.: Templated and catalytic fabrication of N-doped hierarchical porous carbon-carbon nanotube hybrids as host for lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 9, 33876–33886 (2017)

    CAS  PubMed  Google Scholar 

  167. Zhao, M.Q., Liu, X.F., Zhang, Q., et al.: Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6, 10759–10769 (2012)

    CAS  PubMed  Google Scholar 

  168. Tang, C., Zhang, Q., Zhao, M.Q., et al.: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26, 6100–6105 (2014)

    CAS  PubMed  Google Scholar 

  169. Zhang, Z., Kong, L.L., Liu, S., et al.: A high-efficiency sulfur/carbon composite based on 3D graphene Nanosheet@Carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 7, 1602543 (2017)

    Google Scholar 

  170. Chen, R., Zhao, T., Lu, J., et al.: Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 13, 4642–4649 (2013)

    CAS  PubMed  Google Scholar 

  171. Yu, M., Ma, J., Xie, M., et al.: Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv. Energy Mater. 7, 1602347 (2017)

    Google Scholar 

  172. Yuan, S., Bao, J.L., Wang, L., et al.: Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 6, 1501733 (2016)

    Google Scholar 

  173. Zhang, J., Yang, C.P., Yin, Y.X., et al.: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 28, 9539–9544 (2016)

    CAS  PubMed  Google Scholar 

  174. Wu, F., Ye, Y.S., Huang, J.Q., et al.: Sulfur nanodots stitched in 2D “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries. ACS Nano 11, 4694–4702 (2017)

    CAS  PubMed  Google Scholar 

  175. Liang, X., Nazar, L.F.: In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10, 4192–4198 (2016)

    CAS  PubMed  Google Scholar 

  176. Zhang, J., Shi, Y., Ding, Y., et al.: In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 16, 7276–7281 (2016)

    CAS  PubMed  Google Scholar 

  177. Pang, Q., Kundu, D., Nazar, L.F.: A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 3, 130–136 (2016)

    CAS  Google Scholar 

  178. Fang, R., Zhao, S., Sun, Z., et al.: Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 10, 56–61 (2018)

    Google Scholar 

  179. Mosavati, N., Salley, S.O., Ng, K.Y.S.: Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries. J. Power Sources 340, 210–216 (2017)

    CAS  Google Scholar 

  180. Li, X., Ding, K., Gao, B., et al.: Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 40, 655–662 (2017)

    CAS  Google Scholar 

  181. Ye, C., Zhang, L., Guo, C., et al.: A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702524 (2017)

    Google Scholar 

  182. Liu, X., Huang, J.Q., Zhang, Q., et al.: Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017)

    Google Scholar 

  183. Zhou, T., Zhao, Y., Zhou, G., et al.: An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 39, 291–296 (2017)

    CAS  Google Scholar 

  184. Tao, X., Wang, J., Liu, C., et al.: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu, J., Yuan, L., Yuan, K., et al.: SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. Nanoscale 8, 13638–13645 (2016)

    CAS  PubMed  Google Scholar 

  186. Liang, X., Kwok, C.Y., Lodi-Marzano, F., et al.: Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6, 1501636 (2016)

    Google Scholar 

  187. Li, Z., Zhang, J., Lou, X.W.: Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015)

    CAS  Google Scholar 

  188. Rehman, S., Tang, T., Ali, Z., et al.: Integrated design of MnO2@Carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13, 1700087 (2017)

    Google Scholar 

  189. Zhou, G., Zhao, Y., Zu, C., et al.: Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12, 240–249 (2015)

    CAS  Google Scholar 

  190. Li, Z., Zhang, J., Guan, B., et al.: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 7, 13065 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Fan, Q., Liu, W., Weng, Z., et al.: Ternary hybrid material for high-performance lithium-sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015)

    CAS  PubMed  Google Scholar 

  192. Zhang, Z., Lai, Y., Zhang, Z., et al.: Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim. Acta 129, 55–61 (2014)

    Google Scholar 

  193. Xiang, M., Wu, H., Liu, H., et al.: A flexible 3D multifunctional MgO-decorated carbon Foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702573 (2017)

    Google Scholar 

  194. Rehman, S., Guo, S., Hou, Y.: Rational design of Si/SiO2@Hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li–S battery. Adv. Mater. 28, 3167–3172 (2016)

    CAS  PubMed  Google Scholar 

  195. Kim, A.Y., Kim, M.K., Kim, J.Y., et al.: Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Res. 10, 2083–2095 (2017)

    CAS  Google Scholar 

  196. Carter, R., Oakes, L., Muralidharan, N., et al.: Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 9, 7185–7192 (2017)

    CAS  PubMed  Google Scholar 

  197. He, J., Luo, L., Chen, Y., et al.: Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater. 29, 1702707 (2017)

    Google Scholar 

  198. Kong, Y., Luo, J., Jin, C., et al.: Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research 11, 477–489 (2018)

    CAS  Google Scholar 

  199. Xiao, D., Lu, C., Chen, C., et al.: CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 10, 216–222 (2018)

    Google Scholar 

  200. Lu, Y., Li, X., Liang, J., et al.: A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries. Nanoscale 8, 17616–17622 (2016)

    CAS  PubMed  Google Scholar 

  201. Yuan, Z., Peng, H.J., Hou, T.Z., et al.: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016)

    CAS  PubMed  Google Scholar 

  202. Chen, T., Zhang, Z., Cheng, B., et al.: Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 139, 12710–12715 (2017)

    CAS  PubMed  Google Scholar 

  203. Cui, Z., Zu, C., Zhou, W., et al.: Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926–6931 (2016)

    CAS  PubMed  Google Scholar 

  204. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015)

    CAS  Google Scholar 

  205. Liang, X., Rangom, Y., Kwok, C.Y., et al.: Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29, 1603040 (2017)

    Google Scholar 

  206. Sun, Z., Zhang, J., Yin, L., et al.: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)

    PubMed  PubMed Central  Google Scholar 

  207. Guo, Y., Li, H., Zhai, T.: Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017)

    Google Scholar 

  208. Zhang, R., Cheng, X.B., Zhao, C.Z., et al.: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016)

    CAS  PubMed  Google Scholar 

  209. Liang, Z., Lin, D., Zhao, J., et al.: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U. S. A. 113, 2862–2867 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, H., Lin, D., Liu, Y., et al.: Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, e1701301 (2017)

    PubMed  PubMed Central  Google Scholar 

  211. Kim, J.S., Kim, D.W., Jung, H.T., et al.: Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015)

    CAS  Google Scholar 

  212. Mukherjee, R., Thomas, A.V., Datta, D., et al.: Defect-induced plating of lithium metal within porous graphene networks. Nat. Commun. 5, 3710 (2014)

    CAS  PubMed  Google Scholar 

  213. Yang, C., Yao, Y., He, S., et al.: Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017)

    Google Scholar 

  214. Zhang, R., Chen, X.R., Chen, X., et al.: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017)

    CAS  Google Scholar 

  215. Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (2016YFA0200102, 2017YFA0206301) and the National Natural Science Foundation of China (51631001, 51590882, 51672010, 81421004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanglong Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Hou, Y. Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. Electrochem. Energ. Rev. 1, 403–432 (2018). https://doi.org/10.1007/s41918-018-0016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0016-x

Keywords

PACS

Navigation