Skip to main content

The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies

Abstract

The application of lithium-ion batteries (LIBs) in consumer electronics and electric vehicles has been growing rapidly in recent years. This increased demand has greatly stimulated lithium-ion battery production, which subsequently has led to greatly increased quantities of spent LIBs. Because of this, considerable efforts are underway to minimize environmental pollution and reuse battery components. This article will review the current status of the main recycling processes for spent LIBs, including laboratory- and industrial-scale recycling processes. In addition, a brief review of the design and reaction mechanisms of LIBs will be provided, and typical physical, chemical, and bioleaching recycling processes will be discussed. The significance of recycling will also be emphasized in terms of economic benefits and environmental protection. Furthermore, due to the unprecedented development of electric vehicles, large quantities of retired power batteries are predicated to appear in the near future. And because of this, secondary uses of these retired power batteries will be discussed from an economic, technical, and environmental perspective. Finally, potential problems and challenges of current recycling processes and prospects of key recycling technologies will be addressed.

Graphical Abstract

Distribution of typical LIBs recycling companies around the world.

This is a preview of subscription content, access via your institution.

Fig. 1

Data obtained from [17]

Fig. 2

Data obtained from [23, 88]

Fig. 3

Copyright 2016 The Royal Society of Chemistry

Fig. 4

Copyright 2015 Elsevier

Fig. 5

Copyright 2016 Elsevier

Fig. 6

Copyright 2012 Elsevier

Fig. 7

Copyright 2015 Elsevier

Fig. 8

Copyright 2017 American Chemical Society

Fig. 9

Copyright 2017 Elsevier

Fig. 10

Copyright 2017 American Chemical Society

Fig. 11

Copyright 2014 Elsevier

Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Yoshino, A.: The birth of the lithium-ion battery. Angew. Chem. Int. Ed. Engl. 51, 5798–5800 (2012)

    CAS  PubMed  Google Scholar 

  2. 2.

    Tarascon, J.M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  Google Scholar 

  3. 3.

    Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004)

    CAS  Google Scholar 

  4. 4.

    Ohzuku, T., Brodd, R.J.: An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 174, 449–456 (2007)

    CAS  Google Scholar 

  5. 5.

    Mizushima, K., Jones, P.C., Wiseman, P.J., et al.: LixCoO2 (0 < x < − 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980)

    CAS  Google Scholar 

  6. 6.

    Ozawa, K.: Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion. 69, 212–221 (1994)

    CAS  Google Scholar 

  7. 7.

    Chiang, Y.-M.: Building a better battery. Science 330, 1485–1486 (2010)

    CAS  PubMed  Google Scholar 

  8. 8.

    Chen, R., Zhao, T., Zhang, X., et al.: Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz. 1, 423–444 (2016)

    CAS  Google Scholar 

  9. 9.

    Armand, M.: Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  10. 10.

    Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    CAS  PubMed  Google Scholar 

  11. 11.

    Manthiram, A., Knight, J.C., Myung, S.T., et al.: Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2015)

    Google Scholar 

  12. 12.

    Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014)

    CAS  Google Scholar 

  13. 13.

    Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016)

    PubMed  Google Scholar 

  14. 14.

    Zeng, X.L., Li, J.H., Singh, N.: Recycling of spent lithium-ion battery: a critical review. Crit. Rev. Environ. Sci. Technol. 44, 1129–1165 (2014)

    CAS  Google Scholar 

  15. 15.

    Chagnes, A., Pospiech, B.: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 88, 1191–1199 (2013)

    CAS  Google Scholar 

  16. 16.

    Frohlich, P., Lorenz, T., Martin, G., et al.: Valuable metals-recovery processes, current trends, and recycling strategies. Angew. Chem. Int. Ed. Engl. 56, 2544–2580 (2017)

    PubMed  Google Scholar 

  17. 17.

    The London Metal Exchange - an HKEX company: London Metal Exchange home page. https://www.lme.com/ (2018). Accessed 8 Feb 2018

  18. 18.

    SMM Inc.: Shanghai Metals Market New Energy Division home page. https://price.metal.com/prices/new-energy (2018). Accessed 1 Feb 2018

  19. 19.

    Aral, H., Vecchio-Sadus, A.: Toxicity of lithium to humans and the environment—a literature review. Ecotoxicol. Environ. Saf. 70, 349–356 (2008)

    CAS  PubMed  Google Scholar 

  20. 20.

    Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    CAS  Google Scholar 

  21. 21.

    Sun, Z., Cao, H., Xiao, Y., et al.: Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustain. Chem. Eng. 5, 21–40 (2017)

    CAS  Google Scholar 

  22. 22.

    Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    CAS  PubMed  Google Scholar 

  23. 23.

    Linden, D. (ed.): Handbook on Batteries, 2nd edn. McGraw-Hill, New York (1995)

    Google Scholar 

  24. 24.

    Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004)

    CAS  Google Scholar 

  25. 25.

    Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Arora, P., Zhang, Z.: Battery Separators. Chem. Rev. 104, 4419–4462 (2004)

    CAS  PubMed  Google Scholar 

  27. 27.

    Espinosa, D.C.R., Bernardes, A.M., Tenório, J.A.S.: An overview on the current processes for the recycling of batteries. J. Power Sources 135, 311–319 (2004)

    CAS  Google Scholar 

  28. 28.

    Bankole, O.E.: Battery recycling technologies: recycling waste lithium ion batteries with the impact on the environment in-view. J. Environ. Ecol. 4, 14–28 (2013)

    Google Scholar 

  29. 29.

    Vanitha, M., Balasubramanian, N.: Waste minimization and recovery of valuable metals from spent lithium-ion batteries—a review. Environ. Technol. Rev. 2, 101–115 (2013)

    CAS  Google Scholar 

  30. 30.

    Ordoñez, J., Gago, E.J., Girard, A.: Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energ. Rev. 60, 195–205 (2016)

    Google Scholar 

  31. 31.

    Xu, J., Thomas, H.R., Francis, R.W., et al.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527 (2008)

    CAS  Google Scholar 

  32. 32.

    Diekmann, J., Hanisch, C., Froböse, L., et al.: Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. J. Electrochem. Soc. 164, A6184–A6191 (2017)

    CAS  Google Scholar 

  33. 33.

    Li, J., Wang, G., Xu, Z.: Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Manag. 52, 221–227 (2016)

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang, X., Gaustad, G., Babbitt, C.W.: Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Manag. 51, 204–213 (2016)

    CAS  PubMed  Google Scholar 

  35. 35.

    Nan, J., Han, D., Zuo, X.: Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 152, 278–284 (2005)

    CAS  Google Scholar 

  36. 36.

    Gratz, E., Sa, Q., Apelian, D., et al.: A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255–262 (2014)

    CAS  Google Scholar 

  37. 37.

    Nie, H., Xu, L., Song, D., et al.: LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 17, 1276–1280 (2015)

    CAS  Google Scholar 

  38. 38.

    Dorella, G., Mansur, M.B.: A study of the separation of cobalt from spent Li-ion battery residues. J. Power Sources 170, 210–215 (2007)

    CAS  Google Scholar 

  39. 39.

    Li, L., Lu, J., Ren, Y., et al.: Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. Power Sources 218, 21–27 (2012)

    CAS  Google Scholar 

  40. 40.

    da Costa, A.J., Matos, J.F., Bernardes, A.M., et al.: Beneficiation of cobalt, copper and aluminum from wasted lithium-ion batteries by mechanical processing. Int. J. Miner. Process. 145, 77–82 (2015)

    Google Scholar 

  41. 41.

    Zhang, T., He, Y., Wang, F., et al.: Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manag. 34, 1051–1058 (2014)

    PubMed  Google Scholar 

  42. 42.

    Zhu, S., He, W., Li, G. et al.: Recovering copper from spent lithium ion battery by a mechanical separation process. In: 2011 International Conference on Materials for Renewable Energy & Environment, pp. 1008–1012, Shanghai, 20-22 May 2011

  43. 43.

    He, Y., Zhang, T., Wang, F., et al.: Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J. Clean. Prod. 143, 319–325 (2017)

    CAS  Google Scholar 

  44. 44.

    Yu, J., He, Y., Li, H., et al.: Effect of the secondary product of semi-solid phase Fenton on the flotability of electrode material from spent lithium-ion battery. Powder Technol. 315, 139–146 (2017)

    CAS  Google Scholar 

  45. 45.

    Yu, J., He, Y., Ge, Z., et al.: A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep. Purif. Technol. 190, 45–52 (2018)

    CAS  Google Scholar 

  46. 46.

    Zhang, T., He, Y.Q., Wang, F.F., et al.: Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Sep. Purif. Technol. 138, 21–27 (2014)

    CAS  Google Scholar 

  47. 47.

    Marinos, D., Mishra, B.: An approach to processing of lithium-ion batteries for the zero-waste recovery of materials. J. Sustain. Metall. 1, 263–274 (2015)

    Google Scholar 

  48. 48.

    Bertuol, D.A., Toniasso, C., Jiménez, B.M., et al.: Application of spouted bed elutriation in the recycling of lithium ion batteries. J. Power Sources 275, 627–632 (2015)

    CAS  Google Scholar 

  49. 49.

    Shin, S.M., Kim, N.H., Sohn, J.S., et al.: Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79, 172–181 (2005)

    CAS  Google Scholar 

  50. 50.

    Contestabile, M., Panero, S., Scrosati, B.: A laboratory-scale lithium-ion battery recycling process. J. Power Sources 92, 65–69 (2001)

    CAS  Google Scholar 

  51. 51.

    He, L.P., Sun, S.Y., Song, X.F., et al.: Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 46, 523–528 (2015)

    CAS  PubMed  Google Scholar 

  52. 52.

    Zeng, X.L., Li, J.H.: Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. J. Hazard. Mater. 271, 50–56 (2014)

    CAS  PubMed  Google Scholar 

  53. 53.

    Li, J., Shi, P., Wang, Z., et al.: A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77, 1132–1136 (2009)

    CAS  PubMed  Google Scholar 

  54. 54.

    Zheng, R., Zhao, L., Wang, W., et al.: Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Adv. 6, 43613–43625 (2016)

    CAS  Google Scholar 

  55. 55.

    Lee, C.K., Rhee, K.I.: Preparation of LiCoO2 from spent lithium-ion batteries. J. Power Sources 109, 17–21 (2002)

    CAS  Google Scholar 

  56. 56.

    Zhang, X., Xue, Q., Li, L., et al.: Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain. Chem. Eng. 4, 7041–7049 (2016)

    CAS  Google Scholar 

  57. 57.

    Sun, L., Qiu, K.: Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J. Hazard. Mater. 194, 378–384 (2011)

    CAS  PubMed  Google Scholar 

  58. 58.

    Lu, M., Zhang, H., Wang, B., et al.: The re-synthesis of LiCoO2 from spent lithium ion batteries separated by vacuum-assisted heat-treating method. Int. J. Electrochem. Sci. 8, 8201–8209 (2013)

    CAS  Google Scholar 

  59. 59.

    Hu, J., Zhang, J., Li, H., et al.: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 351, 192–199 (2017)

    CAS  Google Scholar 

  60. 60.

    Li, J., Wang, G., Xu, Z.: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J. Hazard. Mater. 302, 97–104 (2016)

    CAS  PubMed  Google Scholar 

  61. 61.

    Xiao, J., Li, J., Xu, Z.: Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J. Hazard. Mater. 338, 124–131 (2017)

    CAS  PubMed  Google Scholar 

  62. 62.

    Xiao, J., Li, J., Xu, Z.: Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy. Environ. Sci. Technol. 51, 11960–11966 (2017)

    CAS  PubMed  Google Scholar 

  63. 63.

    Ou, Z., Li, J., Wang, Z.: Application of mechanochemistry to metal recovery from second-hand resources: a technical overview. Environ. Sci. Process. Impacts 17, 1522–1530 (2015)

    CAS  PubMed  Google Scholar 

  64. 64.

    Balaz, P., Achimovicova, M., Balaz, M., et al.: Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013)

    CAS  PubMed  Google Scholar 

  65. 65.

    Zhang, Q., Lu, J., Saito, F., et al.: Room temperature acid extraction of Co from LiCo0.2Ni0.8O2 scrap by a mechanochemical treatment. Adv. Powder Technol. 11, 353–359 (2000)

    CAS  Google Scholar 

  66. 66.

    Guan, J., Li, Y., Guo, Y., et al.: Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries. ACS Sustain. Chem. Eng. 5, 1026–1032 (2017)

    CAS  Google Scholar 

  67. 67.

    Wang, M.M., Zhang, C.-C., Zhang, F.-S.: An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Manag. 51, 239–244 (2016)

    CAS  PubMed  Google Scholar 

  68. 68.

    Saeki, S., Lee, J., Zhang, Q., et al.: Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int. J. Miner. Process. 74, S373–S378 (2004)

    CAS  Google Scholar 

  69. 69.

    Wang, M.M., Zhang, C.C., Zhang, F.S.: Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Manag. 67, 232–239 (2017)

    CAS  PubMed  Google Scholar 

  70. 70.

    Yang, Y., Zheng, X., Cao, H., et al.: A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain. Chem. Eng. 5, 9972–9980 (2017)

    CAS  Google Scholar 

  71. 71.

    Ku, H., Jung, Y., Jo, M., et al.: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J. Hazard. Mater. 313, 138–146 (2016)

    CAS  PubMed  Google Scholar 

  72. 72.

    Zheng, X., Gao, W., Zhang, X., et al.: Spent lithium-ion battery recycling—reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag. 60, 680–688 (2017)

    CAS  PubMed  Google Scholar 

  73. 73.

    Barik, S.P., Prabaharan, G., Kumar, L.: Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study. J. Clean. Prod. 147, 37–43 (2017)

    CAS  Google Scholar 

  74. 74.

    Wang, R.C., Lin, Y.C., Wu, S.-H.: A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99, 194–201 (2009)

    CAS  Google Scholar 

  75. 75.

    Li, J., Li, X., Hu, Q., et al.: Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy 99, 7–12 (2009)

    CAS  Google Scholar 

  76. 76.

    Takacova, Z., Havlik, T., Kukurugya, F., et al.: Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach. Hydrometallurgy 163, 9–17 (2016)

    CAS  Google Scholar 

  77. 77.

    Zhang, P.W., Yokoyama, T., Itabashi, O., et al.: Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47, 259–271 (1998)

    CAS  Google Scholar 

  78. 78.

    Liu, K., Zhang, F.-S.: Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. J. Hazard. Mater. 316, 19–25 (2016)

    CAS  PubMed  Google Scholar 

  79. 79.

    Meshram, P., Pandey, B.D., Mankhand, T.R.: Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects. Waste Manag. 45, 306–313 (2015)

    CAS  PubMed  Google Scholar 

  80. 80.

    Li, H., Xing, S., Liu, Y., et al.: Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain. Chem. Eng. 5, 8017–8024 (2017)

    CAS  Google Scholar 

  81. 81.

    Zhu, S.G., He, W.Z., Li, G.M., et al.: Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans. Nonferr. Metals Soc. 22, 2274–2281 (2012)

    CAS  Google Scholar 

  82. 82.

    Swain, B., Jeong, J., Lee, J.C., et al.: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J. Power Sources 167, 536–544 (2007)

    CAS  Google Scholar 

  83. 83.

    Kim, S., Yang, D., Rhee, K., et al.: Recycling process of spent battery modules in used hybrid electric vehicles using physical/chemical treatments. Res. Chem. Intermed. 40, 2447–2456 (2014)

    CAS  Google Scholar 

  84. 84.

    Ferreira, D.A., Prados, L.M.Z., Majuste, D., et al.: Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J. Power Sources 187, 238–246 (2009)

    CAS  Google Scholar 

  85. 85.

    Jha, M.K., Kumari, A., Jha, A.K., et al.: Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag. 33, 1890–1897 (2013)

    CAS  PubMed  Google Scholar 

  86. 86.

    Mantuano, D.P., Dorella, G., Elias, R.C.A., et al.: Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J. Power Sources 159, 1510–1518 (2006)

    CAS  Google Scholar 

  87. 87.

    He, L.P., Sun, S.Y., Song, X.F., et al.: Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manag. 64, 171–181 (2017)

    CAS  PubMed  Google Scholar 

  88. 88.

    Lee, C.K., Rhee, K.I.: Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 68, 5–10 (2003)

    CAS  Google Scholar 

  89. 89.

    Castillo, S., Ansart, F., Laberty-Robert, C., et al.: Advances in the recovering of spent lithium battery compounds. J. Power Sources 112, 247–254 (2002)

    CAS  Google Scholar 

  90. 90.

    Chen, X., Ma, H., Luo, C., et al.: Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 326, 77–86 (2017)

    CAS  PubMed  Google Scholar 

  91. 91.

    Pinna, E.G., Ruiz, M.C., Ojeda, M.W., et al.: Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 167, 66–71 (2017)

    CAS  Google Scholar 

  92. 92.

    Meng, Q., Zhang, Y., Dong, P.: Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Manag. 64, 214–218 (2017)

    CAS  PubMed  Google Scholar 

  93. 93.

    Granata, G., Moscardini, E., Pagnanelli, F., et al.: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations. J. Power Sources 206, 393–401 (2012)

    CAS  Google Scholar 

  94. 94.

    Meshram, P., Pandey, B.D., Mankhand, T.R.: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 281, 418–427 (2015)

    CAS  Google Scholar 

  95. 95.

    Tanong, K., Coudert, L., Chartier, M., et al.: Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Environ. Technol. 38, 3167–3179 (2017)

    CAS  PubMed  Google Scholar 

  96. 96.

    Joulié, M., Billy, E., Laucournet, R., et al.: Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes. Hydrometallurgy 169, 426–432 (2017)

    Google Scholar 

  97. 97.

    Pagnanelli, F., Moscardini, E., Granata, G., et al.: Acid reducing leaching of cathodic powder from spent lithium ion batteries: glucose oxidative pathways and particle area evolution. J. Ind. Eng. Chem. 20, 3201–3207 (2014)

    CAS  Google Scholar 

  98. 98.

    Wang, J., Chen, M., Chen, H., et al.: Leaching study of spent Li-ion batteries. Procedia Environ. Sci 16, 443–450 (2012)

    Google Scholar 

  99. 99.

    Li, L., Bian, Y., Zhang, X., et al.: Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. J. Power Sources 377, 70–79 (2018)

    CAS  Google Scholar 

  100. 100.

    Zeng, X., Li, J., Shen, B.: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 295, 112–118 (2015)

    CAS  PubMed  Google Scholar 

  101. 101.

    Chen, X., Luo, C., Zhang, J., et al.: Sustainable recovery of metals from spent lithium-ion batteries: a green process. ACS Sustain. Chem. Eng. 3, 3104–3113 (2015)

    CAS  Google Scholar 

  102. 102.

    Chen, X., Fan, B., Xu, L., et al.: An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J. Clean. Prod. 112, 3562–3570 (2016)

    CAS  Google Scholar 

  103. 103.

    Nayaka, G.P., Pai, K.V., Santhosh, G., et al.: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. J. Environ. Chem. Eng. 4, 2378–2383 (2016)

    CAS  Google Scholar 

  104. 104.

    He, L.P., Sun, S., Mu, Y.Y., et al.: Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustain. Chem. Eng. 5, 714–721 (2016)

    Google Scholar 

  105. 105.

    Li, L., Qu, W., Zhang, X., et al.: Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 282, 544–551 (2015)

    CAS  Google Scholar 

  106. 106.

    Gao, W., Zhang, X., Zheng, X., et al.: Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environ. Sci. Technol. 51, 1662–1669 (2017)

    CAS  PubMed  Google Scholar 

  107. 107.

    Nayaka, G.P., Pai, K.V., Santhosh, G., et al.: Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 161, 54–57 (2016)

    CAS  Google Scholar 

  108. 108.

    Li, L., Ge, J., Wu, F., et al.: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288–293 (2010)

    CAS  PubMed  Google Scholar 

  109. 109.

    Li, L., Ge, J., Chen, R., et al.: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag. 30, 2615–2621 (2010)

    CAS  PubMed  Google Scholar 

  110. 110.

    Sun, L., Qiu, K.: Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 32, 1575–1582 (2012)

    CAS  PubMed  Google Scholar 

  111. 111.

    Li, L., Dunn, J.B., Zhang, X.X., et al.: Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources 233, 180–189 (2013)

    CAS  Google Scholar 

  112. 112.

    Nayaka, G.P., Manjanna, J., Pai, K.V., et al.: Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 151, 73–77 (2015)

    CAS  Google Scholar 

  113. 113.

    Nayaka, G.P., Pai, K.V., Manjanna, J., et al.: Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste Manag. 51, 234–238 (2016)

    CAS  PubMed  Google Scholar 

  114. 114.

    Golmohammadzadeh, R., Rashchi, F., Vahidi, E.: Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects. Waste Manag. 64, 244–254 (2017)

    CAS  PubMed  Google Scholar 

  115. 115.

    Zhang, X., Cao, H., Xie, Y., et al.: A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: process optimization and kinetics analysis. Sep. Purif. Technol. 150, 186–195 (2015)

    CAS  Google Scholar 

  116. 116.

    Pegoretti, V.C.B., Dixini, P.V.M., Smecellato, P.C., et al.: Thermal synthesis, characterization and electrochemical study of high-temperature (HT) LiCoO2 obtained from Co(OH)2 recycled of spent lithium ion batteries. Mater. Res. Bull. 86, 5–9 (2017)

    CAS  Google Scholar 

  117. 117.

    Wang, F., Sun, R., Xu, J., et al.: Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid–liquid separation and solvent extraction. RSC Adv. 6, 85303–85311 (2016)

    CAS  Google Scholar 

  118. 118.

    Chen, L., Tang, X., Zhang, Y., et al.: Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108, 80–86 (2011)

    CAS  Google Scholar 

  119. 119.

    Guo, X., Cao, X., Huang, G., et al.: Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling. J. Environ. Manag. 198 Part 1, 84–89 (2017)

    Google Scholar 

  120. 120.

    Zheng, R., Wang, W., Dai, Y., et al.: A closed-loop process for recycling LiNixCoyMn(1−xy)O2 from mixed cathode materials of lithium-ion batteries. Green Energy Environ. 2, 42–50 (2017)

    Google Scholar 

  121. 121.

    Joo, S.H., Shin, D.J., Oh, C., et al.: Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy 159, 65–74 (2016)

    CAS  Google Scholar 

  122. 122.

    Granata, G., Pagnanelli, F., Moscardini, E., et al.: Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: accomplishment of European guidelines by optimizing mechanical pre-treatment and solvent extraction operations. J. Power Sources 212, 205–211 (2012)

    CAS  Google Scholar 

  123. 123.

    Jha, A.K., Jha, M.K., Kumari, A., et al.: Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep. Purif. Technol. 104, 160–166 (2013)

    CAS  Google Scholar 

  124. 124.

    Kang, J., Senanayake, G., Sohn, J., et al.: Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100, 168–171 (2010)

    CAS  Google Scholar 

  125. 125.

    Nan, J., Han, D., Yang, M., et al.: Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84, 75–80 (2006)

    CAS  Google Scholar 

  126. 126.

    Pagnanelli, F., Moscardini, E., Altimari, P., et al.: Cobalt products from real waste fractions of end of life lithium ion batteries. Waste Manag. 51, 214–221 (2016)

    CAS  PubMed  Google Scholar 

  127. 127.

    Pranolo, Y., Zhang, W., Cheng, C.Y.: Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system. Hydrometallurgy 102, 37–42 (2010)

    CAS  Google Scholar 

  128. 128.

    Swain, B., Jeong, J., Lee, J.C., et al.: Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: a mathematical model correlation to predict optimum operational conditions. Sep. Purif. Technol. 63, 360–369 (2008)

    CAS  Google Scholar 

  129. 129.

    Suzuki, T., Nakamura, T., Inoue, Y., et al.: A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396–401 (2012)

    CAS  Google Scholar 

  130. 130.

    Virolainen, S., Fallah Fini, M., Laitinen, A., et al.: Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co. Sep. Purif. Technol. 179, 274–282 (2017)

    CAS  Google Scholar 

  131. 131.

    Joo, S.-H., Shin, S.M., Shin, D., et al.: Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene. Hydrometallurgy 156, 136–141 (2015)

    CAS  Google Scholar 

  132. 132.

    Wang, F., He, F., Zhao, J., et al.: Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex272, PC-88A and their mixtures. Sep. Purif. Technol. 93, 8–14 (2012)

    CAS  Google Scholar 

  133. 133.

    Chen, X., Chen, Y., Zhou, T., et al.: Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manag. 38, 349–356 (2015)

    CAS  PubMed  Google Scholar 

  134. 134.

    Joo, S.H., Shin, D., Oh, C., et al.: Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material. J. Power Sources 305, 175–181 (2016)

    CAS  Google Scholar 

  135. 135.

    Barbieri, E.M.S., Lima, E.P.C., Cantarino, S.J., et al.: Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties. J. Power Sources 269, 158–163 (2014)

    CAS  Google Scholar 

  136. 136.

    Barbieri, E.M.S., Lima, E.P.C., Lelis, M.F.F., et al.: Recycling of cobalt from spent Li-ion batteries as beta–Co(OH)(2) and the application of Co3O4 as a pseudocapacitor. J. Power Sources 270, 158–165 (2014)

    CAS  Google Scholar 

  137. 137.

    Freitas, M.B.J.G., Celante, V.G., Pietre, M.K.: Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 195, 3309–3315 (2010)

    CAS  Google Scholar 

  138. 138.

    Lupi, C., Pasquali, M., Dell’era, A.: Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manag. 25, 215–220 (2005)

    CAS  PubMed  Google Scholar 

  139. 139.

    Li, L., Zeng, G.S., Luo, S.L., et al.: Influences of solution pH and redox potential on the bioleaching of LiCoO2 from spent lithium-ion batteries. J. Korean Soc. Appl. Biol. Chem. 56, 187–192 (2013)

    CAS  Google Scholar 

  140. 140.

    Bahaloo-Horeh, N., Mousavi, S.M.: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manag. 60, 666–679 (2017)

    CAS  PubMed  Google Scholar 

  141. 141.

    Cerruti, C., Curutchet, G., Donati, E.: Bio-dissolution of spent nickel–cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 62, 209–219 (1998)

    CAS  PubMed  Google Scholar 

  142. 142.

    Horeh, N.B., Mousavi, S.M., Shojaosadati, S.A.: Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sources 320, 257–266 (2016)

    CAS  Google Scholar 

  143. 143.

    Mishra, D., Kim, D.J., Ralph, D.E., et al.: Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 28, 333–338 (2008)

    CAS  PubMed  Google Scholar 

  144. 144.

    Xin, B., Zhang, D., Zhang, X., et al.: Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 100, 6163–6169 (2009)

    CAS  PubMed  Google Scholar 

  145. 145.

    Chen, J., Li, Q., Song, J., et al.: Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries. Green Chem. 18, 2500–2506 (2016)

    CAS  Google Scholar 

  146. 146.

    Chen, S., He, T., Lu, Y., et al.: Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Li-ion batteries. J. Energy Storage 8, 262–273 (2016)

    Google Scholar 

  147. 147.

    Kim, H.S., Shin, E.J.: Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes. Bull. Korean Chem. Soc. 34, 851–855 (2013)

    CAS  Google Scholar 

  148. 148.

    Zhang, X., Xie, Y., Cao, H., et al.: A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries. Waste Manag. 34, 1715–1724 (2014)

    PubMed  Google Scholar 

  149. 149.

    Song, X., Hu, T., Liang, C., et al.: Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv. 7, 4783–4790 (2017)

    CAS  Google Scholar 

  150. 150.

    Li, X., Zhang, J., Song, D., et al.: Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power Sources 345, 78–84 (2017)

    CAS  Google Scholar 

  151. 151.

    Zou, H., Gratz, E., Apelian, D., et al.: A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem. 15, 1183–1191 (2013)

    CAS  Google Scholar 

  152. 152.

    Sa, Q., Heelan, J.A., Lu, Y., et al.: Copper impurity effects on LiNi1/3Mn1/3Co1/3O2 cathode material. ACS Appl. Mater. Interfaces. 7, 20585–20590 (2015)

    CAS  PubMed  Google Scholar 

  153. 153.

    Weng, Y., Xu, S., Huang, G., et al.: Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 prepared from spent lithium ion batteries. J. Hazard. Mater. 246–247, 163–172 (2013)

    PubMed  Google Scholar 

  154. 154.

    Sa, Q., Gratz, E., He, M., et al.: Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream. J. Power Sources 282, 140–145 (2015)

    CAS  Google Scholar 

  155. 155.

    Li, L., Fan, E., Guan, Y., et al.: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain. Chem. Eng. 5, 5224–5233 (2017)

    CAS  Google Scholar 

  156. 156.

    Yao, L., Feng, Y., Xi, G.: A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Adv. 5, 44107–44114 (2015)

    CAS  Google Scholar 

  157. 157.

    Yao, L., Yao, H., Xi, G., et al.: Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using d, l-malic acid. RSC Adv. 6, 17947–17954 (2016)

    CAS  Google Scholar 

  158. 158.

    Li, L., Bian, Y., Zhang, X., et al.: Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag. 71, 362–371 (2018)

    CAS  PubMed  Google Scholar 

  159. 159.

    Ganter, M.J., Landi, B.J., Babbitt, C.W., et al.: Cathode refunctionalization as a lithium ion battery recycling alternative. J. Power Sources 256, 274–280 (2014)

    CAS  Google Scholar 

  160. 160.

    Kim, D.S., Sohn, J.S., Lee, C.K., et al.: Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. J. Power Sources 132, 145–149 (2004)

    CAS  Google Scholar 

  161. 161.

    Li, L., Chen, R.J., Sun, F., et al.: Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108, 220–225 (2011)

    CAS  Google Scholar 

  162. 162.

    Li, L., Zhang, X., Chen, R., et al.: Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J. Power Sources 249, 28–34 (2014)

    CAS  Google Scholar 

  163. 163.

    Bernardes, A.M., Espinosa, D.C.R., Tenorio, J.A.S.: Recycling of batteries: a review of current processes and technologies. J. Power Sources 130, 291–298 (2004)

    CAS  Google Scholar 

  164. 164.

    Meshram, P., Pandey, B.D., Mankhand, T.R.: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150, 192–208 (2014)

    CAS  Google Scholar 

  165. 165.

    Zhang, X., Xie, Y., Lin, X., et al.: An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J. Mater. Cycles Waste Manag. 15, 420–430 (2013)

    CAS  Google Scholar 

  166. 166.

    Zeng, X., Li, J., Liu, L.: Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew. Sustain. Energy Rev. 52, 1759–1767 (2015)

    CAS  Google Scholar 

  167. 167.

    Swain, B.: Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017)

    CAS  Google Scholar 

  168. 168.

    Umicore: Umicore Recycling Division home page. http://www.umicore.com/en/industries/recycling/ (2018). Accessed 20 Jan 2018

  169. 169.

    Retriev Technologies: Retriev Technologies home page. http://retrievtech.com/ (2018). Accessed 20 Jan 2018

  170. 170.

    Batrec Industrie AG: Batrec Recycling Services Division home page. http://www.batrec.ch/en/Recycling-Services (2017). Accessed 20 Nov 2017

  171. 171.

    Accurec Recycling GmbH: Accurec Battery Recycling Division home page. http://accurec.de/nimh (2017). Accessed 10 Nov 2017

  172. 172.

    Foster, M., Isely, P., Standridge, C.R., et al.: Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. J. Ind. Eng. Manag. 7, 698–715 (2014)

    Google Scholar 

  173. 173.

    Neubauer, J., Pesaran, A., Williams, B. et al.: A techno-economic analysis of PEV battery second use: repurposed-battery selling price and commercial and industrial end-user value. In: the 2012 SAE World Congress and Exhibition, SAE International, Detroit, 24–26 April 2012

  174. 174.

    Neubauer, J.S., Wood, E., Pesaran, A.: A second life for electric vehicle batteries: answering questions on battery degradation and value. SAE Int. J. Mater. Manf. 8, 544–553 (2015)

    Google Scholar 

  175. 175.

    Cready, E., Lippert, J., Pihl, J. et al.: Technical and economic feasibility of applying used EV batteries in stationary applications. Sandia National Labs, Livermore (2003)

  176. 176.

    Williams, B., Lipman, T.: Strategy for overcoming cost hurdles of plug-in-hybrid battery in california. Transp. Res. Rec. J. Transp. Res. Board 2191, 59–66 (2010)

    Google Scholar 

  177. 177.

    Williams, B.: Second life for plug-in vehicle batteries: effect of grid energy storage value on battery lease payments. Transp. Res. Rec. 2287, 64–71 (2012)

    Google Scholar 

  178. 178.

    Neubauer, J., Smith, K., Wood, E. et al.: Identifying and overcoming critical barriers to widespread second use of PEV batteries. National Renewable Energy Laboratory, Golden (2015)

  179. 179.

    Gohla-Neudecker, B., Bowler, M., Mohr, S.: Battery 2nd life: leveraging the sustainability potential of EVs and renewable energy grid integration. In: 2015 International Conference on Clean Electrical Power, pp. 311–318, Taormina, 16–18 June 2015

  180. 180.

    Ahmadi, L., Young, S.B., Fowler, M., et al.: A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 22, 111–124 (2017)

    CAS  Google Scholar 

  181. 181.

    Ahmadi, L., Yip, A., Fowler, M., et al.: Environmental feasibility of re-use of electric vehicle batteries. Sustain. Energy Technol. Assess. 6, 64–74 (2014)

    Google Scholar 

  182. 182.

    Ahmadi, L., Fowler, M., Young, S.B., et al.: Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustain. Energy Technol. Assess. 8, 9–17 (2014)

    Google Scholar 

  183. 183.

    Richa, K., Babbitt, C.W., Nenadic, N.G., et al.: Environmental trade-offs across cascading lithium-ion battery life cycles. Int. J. Life Cycle Assess. 22, 66–81 (2015)

    Google Scholar 

  184. 184.

    Rothermel, S., Evertz, M., Kasnatscheew, J., et al.: Graphite recycling from spent lithium-ion batteries. ChemSusChem 9, 3473–3484 (2016)

    CAS  PubMed  Google Scholar 

  185. 185.

    Liu, Y., Mu, D., Zheng, R., et al.: Supercritical CO2 extraction of organic carbonate-based electrolytes of lithium-ion batteries. RSC Adv. 4, 54525–54531 (2014)

    CAS  Google Scholar 

  186. 186.

    Liu, Y., Mu, D., Li, R., et al.: Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries. J. Phys. Chem. C 121, 4181–4187 (2017)

    CAS  Google Scholar 

  187. 187.

    Liu, Y.L., Mu, D.Y., Dai, Y.K., et al.: Analysis on extraction behaviour of lithium-ion battery electrolyte solvents in supercritical CO2 by gas chromatography. Int. J. Electrochem. Sci. 11, 7594–7604 (2016)

    CAS  Google Scholar 

  188. 188.

    Grutzke, M., Monnighoff, X., Horsthemke, F., et al.: Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv. 5, 43209–43217 (2015)

    Google Scholar 

  189. 189.

    Grützke, M., Kraft, V., Weber, W., et al.: Supercritical carbon dioxide extraction of lithium-ion battery electrolytes. J. Supercrit. Fluids 94, 216–222 (2014)

    Google Scholar 

  190. 190.

    Nowak, S., Winter, M.: The role of sub- and supercritical CO2 as “processing solvent” for the recycling and sample preparation of lithium ion battery electrolytes. Molecules 22, 403–424 (2017)

    PubMed Central  Google Scholar 

  191. 191.

    Zhang, Y., Guo, X., Yao, Y., et al.: Synthesis of Mg-decorated carbon nanocomposites from mesocarbon microbeads (MCMB) graphite: application for wastewater treatment. ACS Omega 1, 417–423 (2016)

    CAS  Google Scholar 

  192. 192.

    Zhang, Y., Guo, X., Wu, F., et al.: Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment. ACS Appl. Mater. Interfaces 8, 21315–21325 (2016)

    CAS  PubMed  Google Scholar 

  193. 193.

    Zhang, Y., Guo, X., Yao, Y., et al.: Mg-enriched engineered carbon from lithium-ion battery anode for phosphate removal. ACS Appl. Mater. Interfaces 8, 2905–2909 (2016)

    CAS  PubMed  Google Scholar 

  194. 194.

    Zhao, T., Yao, Y., Wang, M., et al.: Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl. Mater. Interfaces 9, 25369–25376 (2017)

    CAS  PubMed  Google Scholar 

  195. 195.

    Chen, X., Zhu, Y., Peng, W., et al.: Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. J Mater Chem A 5, 5880–5885 (2017)

    CAS  Google Scholar 

  196. 196.

    Guo, Y., Li, F., Zhu, H., et al.: Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manag. 51, 227–233 (2016)

    CAS  PubMed  Google Scholar 

  197. 197.

    Schauerman, C.M., Ganter, M.J., Gaustad, G., et al.: Recycling single-wall carbon nanotube anodes from lithium ion batteries. J. Mater. Chem. 22, 12008–12015 (2012)

    CAS  Google Scholar 

  198. 198.

    Natarajan, S., Shanthana Lakshmi, D., Bajaj, H.C., et al.: Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer–graphite nanocomposite thin films. J. Environ. Chem. Eng. 3, 2538–2545 (2015)

    CAS  Google Scholar 

  199. 199.

    Kirchain Jr., R.E., Gregory, J.R., Olivetti, E.A.: Environmental life-cycle assessment. Nat. Mater. 16, 693–697 (2017)

    CAS  PubMed  Google Scholar 

  200. 200.

    Dunn, J.B., Gaines, L., Sullivan, J., et al.: Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 46, 12704–12710 (2012)

    CAS  PubMed  Google Scholar 

  201. 201.

    Gaines, L.: To recycle, or not to recycle, that is the question: insights from life-cycle analysis. MRS Bull. 37, 333–338 (2012)

    CAS  Google Scholar 

  202. 202.

    Dunn, J.B., Gaines, L., Kelly, J.C., et al.: The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 8, 158–168 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National 973 Program (2015CB251106), the Joint Funds of the National Natural Science Foundation of China (U1564206), and the Major Achievements Transformation Project for Central University in Beijing. J. Lu and K. Amine gratefully acknowledge the support from the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy, and the Vehicle Technologies Office. The Argonne National Laboratory is operated for the DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357. This work was especially made possible thanks to the US-China Electric Vehicle and Battery Technology program between Beijing Institute of Technology and Argonne National Laboratory.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng Wu or Khalil Amine or Jun Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, X., Li, M. et al. The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochem. Energ. Rev. 1, 461–482 (2018). https://doi.org/10.1007/s41918-018-0012-1

Download citation

Keywords

  • Spent lithium-ion batteries
  • Recycling
  • Leaching
  • Secondary use