Skip to main content

Advertisement

Log in

Recent Advances in Sodium-Ion Battery Materials

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Grid-scale energy storage systems with low-cost and high-performance electrodes are needed to meet the requirements of sustainable energy systems. Due to the wide abundance and low cost of sodium resources and their similar electrochemistry to the established lithium-ion batteries, sodium-ion batteries (SIBs) have attracted considerable interest as ideal candidates for grid-scale energy storage systems. In the past decade, though tremendous efforts have been made to promote the development of SIBs, and significant advances have been achieved, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this review, the latest progress in electrode materials for SIBs, including a variety of promising cathodes and anodes, is briefly summarized. Besides, the sodium storage mechanisms, endeavors on electrochemical property enhancements, structural and compositional optimizations, challenges and perspectives of the electrode materials for SIBs are discussed. Though enormous challenges may lie ahead, we believe that through intensive research efforts, sodium-ion batteries with low operation cost and longevity will be commercialized for large-scale energy storage application in the near future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, S.W., Seo, D.H., Ma, X., et al.: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012)

    CAS  Google Scholar 

  2. Pan, H., Hu, Y.S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)

    CAS  Google Scholar 

  3. Kim, H., Kim, H., Ding, Z., et al.: Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016)

    Google Scholar 

  4. Fang, C., Huang, Y., Zhang, W., et al.: Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 6, 1501727 (2016)

    Google Scholar 

  5. Fang, Y.J., Chen, Z.X., Ai, X.P., et al.: Recent developments in cathode materials for Na ion batteries. Acta Phys. Chim. Sin. 33, 211–241 (2017)

    CAS  Google Scholar 

  6. Han, M.H., Gonzalo, E., Singh, G., et al.: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015)

    Google Scholar 

  7. Fang, Y., Zhang, J., Xiao, L., et al.: Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 4, 1600392 (2017)

    PubMed  PubMed Central  Google Scholar 

  8. Fang, Y., Chen, Z.X., Xiao, L., et al.: Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 14, 1703116 (2018)

    Google Scholar 

  9. Hou, H., Qiu, X., Wei, W., et al.: Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017)

    Google Scholar 

  10. Xia, Q., Li, W., Miao, Z., et al.: Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 10, 4055–4081 (2017)

    CAS  Google Scholar 

  11. Xiao, Y., Lee, S.H., Sun, Y.-K.: The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 1601329 (2017)

    Google Scholar 

  12. Ponrouch, A., Marchante, E., Courty, M., et al.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012)

    CAS  Google Scholar 

  13. Jiang, X., Zeng, Z., Xiao, L., et al.: An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan. ACS Appl. Mater. Interfaces. 9, 43733–43738 (2017)

    CAS  PubMed  Google Scholar 

  14. Wu, F., Zhu, N., Bai, Y., et al.: Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability. ACS Appl. Mater. Interfaces. 8, 21381–21386 (2016)

    CAS  PubMed  Google Scholar 

  15. Zeng, Z., Jiang, X., Li, R., et al.: A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 3, 1600066 (2016)

    Google Scholar 

  16. Wang, P.F., You, Y., Yin, Y.-X., et al.: Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018)

    Google Scholar 

  17. Doeff, M.M., Peng, M.Y., Ma, Y., et al.: Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J. Electrochem. Soc. 141, L145–L147 (1994)

    CAS  Google Scholar 

  18. Delmas, C., Fouassier, C., Hagenmuller, P.: Structural classification and properties of the layered oxides. Physica B + C 99, 81–85 (1980)

    CAS  Google Scholar 

  19. Yabuuchi, N., Komaba, S.: Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci. Technol. Adv. Mater. 15, 043501 (2014)

    PubMed  PubMed Central  Google Scholar 

  20. Cao, Y., Xiao, L., Wang, W., et al.: Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23, 3155–3160 (2011)

    CAS  PubMed  Google Scholar 

  21. Hosono, E., Saito, T., Hoshino, J., et al.: High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J. Power Sources 217, 43–46 (2012)

    CAS  Google Scholar 

  22. Qiao, R., Dai, K., Mao, J., et al.: Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries. Nano Energy 16, 186–195 (2015)

    CAS  Google Scholar 

  23. Wang, C.H., Yeh, Y.W., Wongittharom, N., et al.: Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes. J. Power Sources 274, 1016–1023 (2015)

    CAS  Google Scholar 

  24. Sauvage, F., Laffont, L., Tarascon, J.M., et al.: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289–3294 (2007)

    CAS  PubMed  Google Scholar 

  25. Kim, H., Kim, D.J., Seo, D.H., et al.: Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 24, 1205–1211 (2012)

    CAS  Google Scholar 

  26. Funabiki, F., Hayakawa, H., Kijima, N., et al.: Electrical conductivities of Na0.44Mn1−xTixO2. Electrochem. Solid-State Lett. 12, F35–F38 (2009)

    CAS  Google Scholar 

  27. Jiang, X., Liu, S., Xu, H., et al.: Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries. Chem. Commun. 51, 8480–8483 (2015)

    CAS  Google Scholar 

  28. Guo, S., Yu, H., Liu, D., et al.: A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chem. Commun. 50, 7998–8001 (2014)

    CAS  Google Scholar 

  29. Xu, S., Wang, Y., Ben, L., et al.: Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries. Adv. Energy Mater. 5, 1501156 (2015)

    Google Scholar 

  30. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    CAS  PubMed  Google Scholar 

  31. Zhao, J., Zhao, L., Dimov, N., et al.: Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 160, A3077–A3081 (2013)

    CAS  Google Scholar 

  32. Yabuuchi, N., Yoshida, H., Komaba, S.: Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 80, 716–719 (2012)

    CAS  Google Scholar 

  33. Lee, E., Brown, D.E., Alp, E.E., et al.: New Insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem. Mater. 27, 6755–6764 (2015)

    CAS  Google Scholar 

  34. Yabuuchi, N., Kajiyama, M., Iwatate, J., et al.: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)

    CAS  PubMed  Google Scholar 

  35. Bai, Y., Zhao, L., Wu, C., et al.: Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces. 8, 2857–2865 (2016)

    CAS  PubMed  Google Scholar 

  36. Kubota, K., Asari, T., Yoshida, H., et al.: Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium-ion batteries. Adv. Funct. Mater. 26, 6047–6059 (2016)

    CAS  Google Scholar 

  37. Yoshida, H., Yabuuchi, N., Komaba, S.: NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013)

    CAS  Google Scholar 

  38. Mu, L., Xu, S., Li, Y., et al.: Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015)

    CAS  PubMed  Google Scholar 

  39. Li, Y., Yang, Z., Xu, S., et al.: Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2, 1500031 (2015)

    Google Scholar 

  40. Ortiz-Vitoriano, N., Drewett, N.E., Gonzalo, E., et al.: High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10, 1051–1074 (2017)

    CAS  Google Scholar 

  41. Parant, J.P., Olazcuaga, R., Devalette, M., et al.: Sur quelques nouvelles phases de formule NaxMnO2 (x ≤ 1). J. Solid State Chem. 3, 1–11 (1971)

    CAS  Google Scholar 

  42. Mendiboure, A., Delmas, C., Hagenmuller, P.: Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem. 3, 1–11 (1985)

    Google Scholar 

  43. Clement, R.J., Billaud, J., Armstrong, A.R., et al.: Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9, 3240–3251 (2016)

    CAS  Google Scholar 

  44. Yabuuchi, N., Hara, R., Kajiyama, M., et al.: New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 4, 1301453 (2014)

    Google Scholar 

  45. Yuan, D., Hu, X., Qian, J., et al.: P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 116, 300–305 (2014)

    CAS  Google Scholar 

  46. Thorne, J., Dunlap, R., Obrovac, M.D.: Structure and electrochemistry of NaxFexMn1−xO2 (1.0 ≤ x≤0.5) for Na-ion battery positive electrodes. J. Electrochem. Soc. 160, A361–A367 (2013)

    CAS  Google Scholar 

  47. Li, Z.Y., Zhang, J., Gao, R., et al.: Li-substituted co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2−xLixO2 as high-rate-capability cathode materials for sodium ion batteries. J. Phys. Chem. C 120, 9007–9016 (2016)

    CAS  Google Scholar 

  48. Sun, X., Jin, Y., Zhang, C.Y., et al.: Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries. J. Mater. Chem. A 2, 17268–17271 (2014)

    CAS  Google Scholar 

  49. Yuan, D., He, W., Pei, F., et al.: Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 3895–3899 (2013)

    CAS  Google Scholar 

  50. Vassilaras, P., Ma, X., Li, X., et al.: Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 160, A207–A211 (2013)

    CAS  Google Scholar 

  51. Yuan, D.D., Wang, Y.X., Cao, Y.L., et al.: Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces. 7, 8585–8591 (2015)

    CAS  PubMed  Google Scholar 

  52. Wang, P.F., Yao, H.R., Liu, X.Y., et al.: Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29, 1700210 (2017)

    Google Scholar 

  53. Yuan, D., Liang, X., Wu, L., et al.: A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 26, 6301–6306 (2014)

    CAS  PubMed  Google Scholar 

  54. Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)

    CAS  PubMed  Google Scholar 

  55. Yu, C.Y., Park, J.S., Jung, H.G., et al.: NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015)

    CAS  Google Scholar 

  56. Guignard, M., Didier, C., Darriet, J., et al.: P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74–80 (2013)

    CAS  PubMed  Google Scholar 

  57. Wang, Y., Yuan, D., Chen, Z., et al.: Effect of Li1/3Mn2/3-substitution on electrochemical performance of P2-Na0.74CoO2 cathode for sodium-ion batteries. Electrochim. Acta 222, 862–866 (2016)

    CAS  Google Scholar 

  58. Fang, Y., Yu, X.Y., Lou, X.W.: A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew. Chem. Int. Ed. 56, 5801–5805 (2017)

    CAS  Google Scholar 

  59. de la Llave, E., Talaie, E., Levi, E., et al.: Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem. Mater. 28, 9064–9076 (2016)

    Google Scholar 

  60. Ma, C., Alvarado, J., Xu, J., et al.: Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017)

    CAS  PubMed  Google Scholar 

  61. Rong, X., Liu, J., Hu, E., et al.: Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018)

    CAS  Google Scholar 

  62. Oh, S.M., Myung, S.T., Hassoun, J., et al.: Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 22, 149–152 (2012)

    CAS  Google Scholar 

  63. Fang, Y., Liu, Q., Xiao, L., et al.: High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries. ACS Appl. Mater. Interfaces. 7, 17977–17984 (2015)

    CAS  PubMed  Google Scholar 

  64. Galceran, M., Roddatis, V., Zúñiga, F., et al.: Na–vacancy and charge ordering in Na≈2/3FePO4. Chem. Mater. 26, 3289–3294 (2014)

    CAS  Google Scholar 

  65. Galceran, M., Saurel, D., Acebedo, B., et al.: The mechanism of NaFePO4 (de) sodiation determined by in situ X-ray diffraction. Phys. Chem. Chem. Phys. 16, 8837–8842 (2014)

    CAS  PubMed  Google Scholar 

  66. Lu, J., Chung, S.C., Nishimura, S.I., et al.: Phase diagram of olivine NaxFePO4 (0 < x < 1). Chem. Mater. 25, 4557–4565 (2013)

    CAS  Google Scholar 

  67. Barpanda, P., Ye, T., Nishimura, S.I., et al.: Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 24, 116–119 (2012)

    CAS  Google Scholar 

  68. Kim, H., Shakoor, R., Park, C., et al.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013)

    CAS  Google Scholar 

  69. Chen, C.Y., Matsumoto, K., Nohira, T., et al.: Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J. Power Sources 246, 783–787 (2014)

    CAS  Google Scholar 

  70. Longoni, G., Wang, J.E., Jung, Y.H., et al.: The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. J. Power Sources 302, 61–69 (2016)

    CAS  Google Scholar 

  71. Song, H.J., Kim, D.S., Kim, J.C., et al.: An approach to flexible Na-ion batteries with exceptional rate capability and long lifespan using Na2FeP2O7 nanoparticles on porous carbon cloth. J. Mater. Chem. A 5, 5502–5510 (2017)

    CAS  Google Scholar 

  72. Chen, M., Chen, L., Hu, Z., et al.: Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 29, 1605535 (2017)

  73. Niu, Y., Xu, M., Bao, S.J., et al.: Porous graphene to encapsulate Na6.24Fe4.88(P2O7)4 as composite cathode materials for Na-ion batteries. Chem. Commun. 51, 13120–13122 (2015)

    CAS  Google Scholar 

  74. Chen, C.Y., Matsumoto, K., Nohira, T., et al.: Full utilization of superior charge–discharge characteristics of Na1.56Fe1.22P2O7 positive electrode by using ionic liquid electrolyte. J. Electrochem. Soc. 162, A176–A180 (2015)

    CAS  Google Scholar 

  75. Lin, B., Zhang, S., Deng, C.: Understanding the effect of depressing surface moisture sensitivity on promoting sodium intercalation in coral-like Na3.12Fe2.44(P2O7)2/C synthesized via a flash-combustion strategy. J. Mater. Chem. A 4, 2550–2559 (2016)

    CAS  Google Scholar 

  76. Song, H.J., Kim, K.H., Kim, J.C., et al.: Superior sodium storage performance of reduced graphene oxide-supported Na3.12Fe2.44(P2O7)2/C nanocomposites. Chem. Commun. 53, 9316–9319 (2017)

    CAS  Google Scholar 

  77. Jian, Z., Han, W., Lu, X., et al.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013)

    CAS  Google Scholar 

  78. Zhang, J., Fang, Y., Xiao, L., et al.: Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 7177–7184 (2017)

    CAS  PubMed  Google Scholar 

  79. Zhu, C., Kopold, P., van Aken, P.A., et al.: High power-high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28, 2409–2416 (2016)

    CAS  PubMed  Google Scholar 

  80. Zhu, X., Fang, Y., Ai, X., et al.: Na3V2(PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. J. Alloys Compd. 646, 170–174 (2015)

    CAS  Google Scholar 

  81. Xu, Y., Wei, Q., Xu, C., et al.: Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultra long-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1600389 (2016)

  82. Zhang, J., Yuan, T., Wan, H., et al.: Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in situ self-decorated conducting polymer route. Sci. China Chem. 60, 1546–1553 (2017)

    CAS  Google Scholar 

  83. Lim, S.J., Han, D.W., Nam, D.H., et al.: Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J. Mater. Chem. A 2, 19623–19632 (2014)

    CAS  Google Scholar 

  84. Klee, R., Lavela, P., Aragón, M., et al.: Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries. J. Power Sources 313, 73–80 (2016)

    CAS  Google Scholar 

  85. Li, H., Yu, X., Bai, Y., et al.: Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J. Mater. Chem. A 3, 9578–9586 (2015)

    CAS  Google Scholar 

  86. Zhu, C., Song, K., van Aken, P.A., et al.: Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14, 2175–2180 (2014)

    CAS  PubMed  Google Scholar 

  87. Rui, X., Sun, W., Wu, C., et al.: An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015)

    CAS  PubMed  Google Scholar 

  88. Chen, L., Zhao, Y., Liu, S., et al.: Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries. ACS Appl. Mater. Interfaces. 9, 44485–44493 (2017)

    CAS  PubMed  Google Scholar 

  89. Fang, Y., Xiao, L., Ai, X., et al.: Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895–5900 (2015)

    CAS  PubMed  Google Scholar 

  90. Wei, T., Yang, G., Wang, C.: Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and -stable Na-ion storage. Nano Energy 39, 363–370 (2017)

    CAS  Google Scholar 

  91. Song, J., Xu, M., Wang, L., et al.: Exploration of NaVOPO4 as a cathode for a Na-ion battery. Chem. Commun. 49, 5280–5282 (2013)

    CAS  Google Scholar 

  92. He, G., Kan, W.H., Manthiram, A.: A 3.4 V layered VOPO4 cathode for Na-ion batteries. Chem. Mater. 28, 682–688 (2016)

    CAS  Google Scholar 

  93. He, G., Huq, A., Kan, W.H., et al.: β-NaVOPO4 obtained by a low-temperature synthesis process: a new 3.3 V cathode for sodium-ion batteries. Chem. Mater. 28, 1503–1512 (2016)

    CAS  Google Scholar 

  94. Zhu, Y., Peng, L., Chen, D., et al.: Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 16, 742–747 (2016)

    CAS  PubMed  Google Scholar 

  95. Fang, Y., Liu, Q., Xiao, L., et al.: A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem 4, 1167–1180 (2018)

    CAS  Google Scholar 

  96. Shiratsuchi, T., Okada, S., Yamaki, J., et al.: FePO4 cathode properties for Li and Na secondary cells. J. Power Sources 159, 268–271 (2006)

    CAS  Google Scholar 

  97. Liu, Y., Xu, Y., Han, X., et al.: Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 12, 5664–5668 (2012)

    CAS  PubMed  Google Scholar 

  98. Xu, S., Zhang, S., Zhang, J., et al.: A maize-like FePO4@ MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014)

    CAS  Google Scholar 

  99. Yang, G., Ding, B., Wang, J., et al.: Excellent cycling stability and superior rate capability of a graphene–amorphous FePO4 porous nanowire hybrid as a cathode material for sodium ion batteries. Nanoscale 8, 8495–8499 (2016)

    CAS  PubMed  Google Scholar 

  100. Liu, Y., Xu, S., Zhang, S., et al.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)

    CAS  Google Scholar 

  101. Fang, Y., Xiao, L., Qian, J., et al.: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14, 3539–3543 (2014)

    CAS  PubMed  Google Scholar 

  102. Li, C., Miao, X., Chu, W., et al.: Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J. Mater. Chem. A 3, 8265–8271 (2015)

    CAS  Google Scholar 

  103. Barpanda, P., Oyama, G., Nishimura, S.-I., et al.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Oyama, G., Pecher, O., Griffith, K.J., et al.: Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate. Chem. Mater. 28, 5321–5328 (2016)

    CAS  Google Scholar 

  105. Oyama, G., Nishimura, S.I., Suzuki, Y., et al.: Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2xFe2−x(SO4)3 as an advanced sodium battery cathode material. ChemElectroChem 2, 1019–1023 (2015)

    CAS  Google Scholar 

  106. Yu, T., Lin, B., Li, Q., et al.: First exploration of freestanding and flexible Na2+2xFe2−x(SO4)3@ porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. Phys. Chem. Chem. Phys. 18, 26933–26941 (2016)

    CAS  PubMed  Google Scholar 

  107. Singh, P., Shiva, K., Celio, H., et al.: Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 8, 3000–3005 (2015)

    CAS  Google Scholar 

  108. Reynaud, M., Rousse, G., Abakumov, A.M., et al.: Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2·4H2O. J. Mater. Chem. A 2, 2671–2680 (2014)

    CAS  Google Scholar 

  109. Dwibedi, D., Araujo, R.B., Chakraborty, S., et al.: Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. J. Mater. Chem. A 3, 18564–18571 (2015)

    CAS  Google Scholar 

  110. Recham, N., Chotard, J.N., Dupont, L., et al.: Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 156, A993–A999 (2009)

    CAS  Google Scholar 

  111. Kawabe, Y., Yabuuchi, N., Kajiyama, M., et al.: Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 13, 1225–1228 (2011)

    CAS  Google Scholar 

  112. Smiley, D.L., Goward, G.R.: Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling. Chem. Mater. 28, 7645–7656 (2016)

    CAS  Google Scholar 

  113. Deng, X., Shi, W., Sunarso, J., et al.: A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl. Mater. Interfaces. 9, 16280–16287 (2017)

    CAS  PubMed  Google Scholar 

  114. Ko, J.S., Doan-Nguyen, V.V., Kim, H.-S., et al.: High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5, 18707–18715 (2017)

    CAS  Google Scholar 

  115. Le Meins, J.M., Crosnier-Lopez, M.P., Hemon-Ribaud, A., et al.: Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148, 260–277 (1999)

    Google Scholar 

  116. Liu, Q., Wang, D., Yang, X., et al.: Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 3, 21478–21485 (2015)

    CAS  Google Scholar 

  117. Bianchini, M., Fauth, F., Brisset, N., et al.: Comprehensive investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 27, 3009–3020 (2015)

    CAS  Google Scholar 

  118. Serras, P., Palomares, V., Goñi, A., et al.: High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 22, 22301–22308 (2012)

    CAS  Google Scholar 

  119. Sauvage, F., Quarez, E., Tarascon, J.M., et al.: Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci. 8, 1215–1221 (2006)

    CAS  Google Scholar 

  120. Bianchini, M., Xiao, P., Wang, Y., et al.: Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 7, 1700514 (2017)

    Google Scholar 

  121. Sharma, N., Serras, P., Palomares, V., et al.: Sodium distribution and reaction mechanisms of a Na3V2O2(PO4)2F electrode during use in a sodium-ion battery. Chem. Mater. 26, 3391–3402 (2014)

    CAS  Google Scholar 

  122. Park, Y.U., Seo, D.H., Kwon, H.S., et al.: A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 135, 13870–13878 (2013)

    CAS  PubMed  Google Scholar 

  123. Peng, M., Li, B., Yan, H., et al.: Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries. Angew. Chem. Int. Ed. 54, 6452–6456 (2015)

    CAS  Google Scholar 

  124. Sanz, F., Parada, C., Rojo, J., et al.: Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4M II3 (PO4)2(P2O7) (MII = Mn, Co, Ni). Chem. Mater. 13, 1334–1340 (2001)

    CAS  Google Scholar 

  125. Sanz, F., Parada, C., Amador, U., et al.: Na4Co3(PO4)2P2O7, a new sodium cobalt phosphate containing a three-dimensional system of large intersecting tunnels. J. Solid State Chem. 123, 129–139 (1996)

    CAS  Google Scholar 

  126. Wood, S.M., Eames, C., Kendrick, E., et al.: Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2(P2O7) (M = Fe, Mn, Co, Ni) for possible high-rate cathodes. J. Phys. Chem. C 119, 15935–15941 (2015)

    CAS  Google Scholar 

  127. Kim, H., Park, I., Seo, D.H., et al.: New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J. Am. Chem. Soc. 134, 10369–10372 (2012)

    CAS  PubMed  Google Scholar 

  128. Kim, H., Yoon, G., Park, I., et al.: Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ. Sci. 8, 3325–3335 (2015)

    CAS  Google Scholar 

  129. Kim, H., Park, I., Lee, S., et al.: Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 25, 3614–3622 (2013)

    CAS  Google Scholar 

  130. Kim, H., Yoon, G., Park, I., et al.: Highly stable iron-and manganese-based cathodes for long-lasting sodium rechargeable batteries. Chem. Mater. 28, 7241–7249 (2016)

    CAS  Google Scholar 

  131. Nose, M., Nakayama, H., Nobuhara, K., et al.: Na4Co3(PO4)2P2O7: a novel storage material for sodium-ion batteries. J. Power Sources 234, 175–179 (2013)

    CAS  Google Scholar 

  132. Lim, S.Y., Kim, H., Chung, J., et al.: Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. 111, 599–604 (2014)

    CAS  PubMed  Google Scholar 

  133. Li, Q., Lin, B., Zhang, S., et al.: Towards high potential and ultra long-life cathodes for sodium ion batteries: freestanding 3D hybrid foams of Na7V4(P2O7)4(PO4) and Na7V3(P2O7)4@ biomass-derived porous carbon. J. Mater. Chem. A 4, 5719–5729 (2016)

    CAS  Google Scholar 

  134. Huang, W., Zhou, J., Li, B., et al.: Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Sci. Rep. 4, 4188 (2014)

    PubMed  PubMed Central  Google Scholar 

  135. Hassanzadeh, N., Sadrnezhaad, S.K., Chen, G.: In-situ hydrothermal synthesis of Na3MnCO3PO4/rGO hybrid as a cathode for Na-ion battery. Electrochim. Acta 208, 188–194 (2016)

    CAS  Google Scholar 

  136. Shiva, K., Singh, P., Zhou, W., et al.: NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ. Sci. 9, 3103–3106 (2016)

    CAS  Google Scholar 

  137. Tripathi, R., Ramesh, T., Ellis, B.L., et al.: Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem. Int. Ed. 49, 8738–8742 (2010)

    CAS  Google Scholar 

  138. Wu, X., Deng, W., Qian, J., et al.: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1, 10130–10134 (2013)

    CAS  Google Scholar 

  139. You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014)

    CAS  Google Scholar 

  140. Wang, L., Song, J., Qiao, R., et al.: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015)

    CAS  PubMed  Google Scholar 

  141. Wang, L., Lu, Y., Liu, J., et al.: A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)

    CAS  Google Scholar 

  142. Song, J., Wang, L., Lu, Y., et al.: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015)

    CAS  PubMed  Google Scholar 

  143. Yang, D., Xu, J., Liao, X.Z., et al.: Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chem. Commun. 50, 13377–13380 (2014)

    CAS  Google Scholar 

  144. Li, W.J., Chou, S.L., Wang, J.Z., et al.: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015)

    CAS  Google Scholar 

  145. Yue, Y., Binder, A.J., Guo, B., et al.: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53, 3134–3137 (2014)

    CAS  Google Scholar 

  146. Okubo, M., Li, C.H., Talham, D.R.: High rate sodium ion insertion into core–shell nanoparticles of Prussian blue analogues. Chem. Commun. 50, 1353–1355 (2014)

    CAS  Google Scholar 

  147. Xie, M., Huang, Y., Xu, M., et al.: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries. J. Power Sources 302, 7–12 (2016)

    CAS  Google Scholar 

  148. Wu, X., Wu, C., Wei, C., et al.: Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces. 8, 5393–5399 (2016)

    CAS  PubMed  Google Scholar 

  149. Ji, Z., Han, B., Liang, H., et al.: On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces. 8, 33619–33625 (2016)

    CAS  PubMed  Google Scholar 

  150. Qian, J., Wu, C., Cao, Y., et al.: Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018)

    Google Scholar 

  151. Bin, D., Wang, F., Tamirat, A.G., et al.: Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703008

    Article  Google Scholar 

  152. Luo, W., Shen, F., Bommier, C., et al.: Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231–240 (2016)

    CAS  PubMed  Google Scholar 

  153. Nobuhara, K., Nakayama, H., Nose, M., et al.: First-principles study of alkali metal–graphite intercalation compounds. J. Power Sources 243, 585–587 (2013)

    CAS  Google Scholar 

  154. Okamoto, Y.: Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J. Phys. Chem. C 118, 16–19 (2014)

    CAS  Google Scholar 

  155. Cao, Y., Xiao, L., Sushko, M.L., et al.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)

    CAS  PubMed  Google Scholar 

  156. Wen, Y., He, K., Zhu, Y., et al.: Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)

    CAS  PubMed  Google Scholar 

  157. Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169–10173 (2014)

    CAS  Google Scholar 

  158. Kim, H., Hong, J., Park, Y.U., et al.: Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25, 534–541 (2015)

    CAS  Google Scholar 

  159. Kim, H., Hong, J., Yoon, G., et al.: Sodium intercalation chemistry in graphite. Energy Environ. Sci. 8, 2963–2969 (2015)

    CAS  Google Scholar 

  160. Jian, Z., Bommier, C., Luo, L., et al.: Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29, 2314–2320 (2017)

    CAS  Google Scholar 

  161. Luo, W., Jian, Z., Xing, Z., et al.: Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 1, 516–522 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Stevens, D., Dahn, J.: High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000)

    CAS  Google Scholar 

  163. Alcántara, R., Lavela, P., Ortiz, G.F., et al.: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-State Lett. 8, A222–A225 (2005)

    Google Scholar 

  164. Yan, Y., Yin, Y.X., Guo, Y.G., et al.: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4, 1301584 (2014)

    Google Scholar 

  165. Hou, H., Banks, C.E., Jing, M., et al.: Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015)

    CAS  PubMed  Google Scholar 

  166. Wang, S., Xia, L., Yu, L., et al.: Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6, 1502217 (2016)

    Google Scholar 

  167. Li, W., Zhou, M., Li, H., et al.: A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8, 2916–2921 (2015)

    CAS  Google Scholar 

  168. Qie, L., Chen, W., Xiong, X., et al.: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015)

    Google Scholar 

  169. Li, Y., Wang, Z., Li, L., et al.: Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016)

    CAS  Google Scholar 

  170. Lotfabad, E.M., Ding, J., Cui, K., et al.: High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2014)

    CAS  PubMed  Google Scholar 

  171. Li, Y., Hu, Y.S., Titirici, M.M., et al.: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659 (2016)

    Google Scholar 

  172. Liu, P., Li, Y., Hu, Y.S., et al.: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 4, 13046–13052 (2016)

    CAS  Google Scholar 

  173. Wu, L., Buchholz, D., Vaalma, C., et al.: Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem 3, 292–298 (2016)

    CAS  Google Scholar 

  174. Yan, D., Yu, C., Zhang, X., et al.: Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 191, 385–391 (2016)

    CAS  Google Scholar 

  175. Gaddam, R.R., Yang, D., Narayan, R., et al.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)

    CAS  Google Scholar 

  176. Yang, T., Qian, T., Wang, M., et al.: A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 28, 539–545 (2016)

    CAS  PubMed  Google Scholar 

  177. Hong, K.L., Qie, L., Zeng, R., et al.: Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014)

    CAS  Google Scholar 

  178. Li, H., Shen, F., Luo, W., et al.: Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl. Mater. Interfaces. 8, 2204–2210 (2016)

    CAS  PubMed  Google Scholar 

  179. Qiu, S., Cao, Y., Ai, X., et al.: Discussion on the mechanism of sodium storage of different structural types of carbon material. Sci. Sin. Chim. 47, 573–578 (2017)

    Google Scholar 

  180. Stevens, D., Dahn, J.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001)

    CAS  Google Scholar 

  181. Qiu, S., Xiao, L., Sushko, M.L., et al.: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7, 1700403 (2017)

    Google Scholar 

  182. Bommier, C., Surta, T.W., Dolgos, M., et al.: New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15, 5888–5892 (2015)

    CAS  PubMed  Google Scholar 

  183. Xiao, L., Cao, Y., Henderson, W.A., et al.: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016)

    CAS  Google Scholar 

  184. Xiao, L., Lu, H., Fang, Y., et al.: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703238

    Article  Google Scholar 

  185. Zhang, N., Han, X., Liu, Y., et al.: 3D porous γ-Fe2O3@ C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5, 1401123 (2015)

    Google Scholar 

  186. Liu, S., Wang, Y., Dong, Y., et al.: Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life, high-rate alkali-metal storage. ChemElectroChem 3, 38–44 (2016)

    CAS  Google Scholar 

  187. David, L., Bhandavat, R., Singh, G.: MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014)

    CAS  PubMed  Google Scholar 

  188. Choi, S.H., Ko, Y.N., Lee, J.K., et al.: 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25, 1780–1788 (2015)

    CAS  Google Scholar 

  189. Hu, Z., Wang, L., Zhang, K., et al.: MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 12794–12798 (2014)

    CAS  Google Scholar 

  190. Sahu, T.S., Mitra, S.: Exfoliated MoS2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery. Sci. Rep. 5, 12571 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang, S., Yu, X., Yu, H., et al.: Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces. 6, 21880–21885 (2014)

    CAS  PubMed  Google Scholar 

  192. Zhao, C., Yu, C., Zhang, M., et al.: Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 41, 66–74 (2017)

    CAS  Google Scholar 

  193. Xie, X., Makaryan, T., Zhao, M., et al.: MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6, 1502161 (2016)

    Google Scholar 

  194. Kalluri, S., Seng, K.H., Guo, Z., et al.: Sodium and lithium storage properties of spray-dried molybdenum disulfide–graphene hierarchical microspheres. Sci. Rep. 5, 11989 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lu, Y., Zhao, Q., Zhang, N., et al.: Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 26, 911–918 (2016)

    CAS  Google Scholar 

  196. Xu, M., Yi, F., Niu, Y., et al.: Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries. J. Mater. Chem. A 3, 9932–9937 (2015)

    CAS  Google Scholar 

  197. Zhu, C., Kopold, P., Li, W., et al.: A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv. Sci. 2, 1500200 (2015)

    PubMed  PubMed Central  Google Scholar 

  198. Cho, E., Song, K., Park, M.H., et al.: SnS 3D flowers with superb kinetic properties for anodic use in next-generation sodium rechargeable batteries. Small 12, 2510–2517 (2016)

    CAS  PubMed  Google Scholar 

  199. Wu, L., Lu, H., Xiao, L., et al.: A tin (II) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2, 16424–16428 (2014)

    CAS  Google Scholar 

  200. Wu, L., Hu, X., Qian, J., et al.: A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1, 7181–7184 (2013)

    CAS  Google Scholar 

  201. Sun, W., Rui, X., Yang, D., et al.: Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 9, 11371–11381 (2015)

    CAS  PubMed  Google Scholar 

  202. Qu, B., Ma, C., Ji, G., et al.: Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)

    CAS  PubMed  Google Scholar 

  203. Zhu, Y., Nie, P., Shen, L., et al.: High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7, 3309–3315 (2015)

    CAS  PubMed  Google Scholar 

  204. Yu, D.Y.W., Prikhodchenko, P.V., Mason, C.W., et al.: High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)

    PubMed  Google Scholar 

  205. Zhao, Y., Manthiram, A.: Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 51, 13205–13208 (2015)

    CAS  Google Scholar 

  206. Wang, S., Yuan, S., Yin, Y.B., et al.: Green and facile fabrication of MWNTs@ Sb2S3@ PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33, 493–499 (2016)

    CAS  Google Scholar 

  207. Hou, H., Jing, M., Huang, Z., et al.: One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 7, 19362–19369 (2015)

    CAS  PubMed  Google Scholar 

  208. Wu, L., Lu, H., Xiao, L., et al.: Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources 293, 784–789 (2015)

    CAS  Google Scholar 

  209. He, P., Fang, Y., Yu, X.-Y., et al.: Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56, 12202–12205 (2017)

    CAS  Google Scholar 

  210. Zhou, T., Pang, W.K., Zhang, C., et al.: Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014)

    CAS  PubMed  Google Scholar 

  211. Shadike, Z., Zhou, Y.-N., Ding, F., et al.: The new electrochemical reaction mechanism of Na/FeS2 cell at ambient temperature. J. Power Sources 260, 72–76 (2014)

    CAS  Google Scholar 

  212. Chen, W., Qi, S., Yu, M., et al.: Design of FeS2@ rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochim. Acta 230, 1–9 (2017)

    CAS  Google Scholar 

  213. Hu, Z., Zhu, Z., Cheng, F., et al.: Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015)

    CAS  Google Scholar 

  214. Chen, W., Qi, S., Guan, L., et al.: Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J. Mater. Chem. A 5, 5332–5341 (2017)

    CAS  Google Scholar 

  215. Kitajou, A., Yamaguchi, J., Hara, S., et al.: Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 247, 391–395 (2014)

    CAS  Google Scholar 

  216. Walter, M., Zünd, T., Kovalenko, M.V.: Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7, 9158–9163 (2015)

    CAS  PubMed  Google Scholar 

  217. Liu, Z., Lu, T., Song, T., et al.: Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017)

    Google Scholar 

  218. Peng, S., Han, X., Li, L., et al.: Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)

    CAS  PubMed  Google Scholar 

  219. Zhang, K., Hu, Z., Liu, X., et al.: FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 27, 3305–3309 (2015)

    CAS  PubMed  Google Scholar 

  220. Fang, Y., Yu, X.Y., Lou, X.W.: Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 30, 1706668 (2018)

    Google Scholar 

  221. Li, Z., Zhang, L., Ge, X., et al.: Core–shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32, 494–502 (2017)

    CAS  Google Scholar 

  222. Fan, X., Mao, J., Zhu, Y., et al.: Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv. Energy Mater. 5, 1500174 (2015)

    Google Scholar 

  223. Kim, Y., Kim, Y., Choi, A., et al.: Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26, 4139–4144 (2014)

    CAS  PubMed  Google Scholar 

  224. Qian, J., Xiong, Y., Cao, Y., et al.: Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 14, 1865–1869 (2014)

    CAS  PubMed  Google Scholar 

  225. Liu, J., Kopold, P., Wu, C., et al.: Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8, 3531–3538 (2015)

    CAS  Google Scholar 

  226. Li, Q., Li, Z., Zhang, Z., et al.: Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 6, 1600376 (2016)

    Google Scholar 

  227. Ma, L., Yan, P., Wu, S., et al.: Engineering tin phosphides@ carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J. Mater. Chem. A 5, 16994–17000 (2017)

    CAS  Google Scholar 

  228. Li, W.J., Chou, S.L., Wang, J.Z., et al.: A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 51, 3682–3685 (2015)

    CAS  Google Scholar 

  229. Zhang, W., Dahbi, M., Amagasa, S., et al.: Iron phosphide as negative electrode material for Na-ion batteries. Electrochem. Commun. 69, 11–14 (2016)

    CAS  Google Scholar 

  230. Han, F., Tan, C.Y.J., Gao, Z.: Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phase-modified amorphous and mesoporous iron phosphide. ChemElectroChem 3, 1054–1062 (2016)

    CAS  Google Scholar 

  231. Qian, J., Chen, Y., Wu, L., et al.: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070–7072 (2012)

    CAS  Google Scholar 

  232. Darwiche, A., Marino, C., Sougrati, M.T., et al.: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012)

    CAS  PubMed  Google Scholar 

  233. Xiao, L., Cao, Y., Xiao, J., et al.: High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321–3323 (2012)

    CAS  Google Scholar 

  234. Wu, L., Hu, X., Qian, J., et al.: Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 7, 323–328 (2014)

    CAS  Google Scholar 

  235. Liu, Z., Yu, X.Y., Lou, X.W., et al.: Sb@ C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 9, 2314–2318 (2016)

    CAS  Google Scholar 

  236. Zhu, Y., Han, X., Xu, Y., et al.: Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7, 6378–6386 (2013)

    CAS  PubMed  Google Scholar 

  237. Liu, S., Feng, J., Bian, X., et al.: The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 9, 1229–1236 (2016)

    CAS  Google Scholar 

  238. Gu, J., Du, Z., Zhang, C., et al.: Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 7, 1700447 (2017)

    Google Scholar 

  239. Liu, J., Yu, L., Wu, C., et al.: New nanoconfined galvanic replacement synthesis of hollow Sb@ C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 17, 2034–2042 (2017)

    CAS  PubMed  Google Scholar 

  240. Chevrier, V., Ceder, G.: Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011)

    CAS  Google Scholar 

  241. Ellis, L.D., Hatchard, T.D., Obrovac, M.N.: Reversible insertion of sodium in tin. J. Electrochem. Soc. 159, A1801–A1805 (2012)

    CAS  Google Scholar 

  242. Wang, J.W., Liu, X.H., Mao, S.X., et al.: Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 12, 5897–5902 (2012)

    CAS  PubMed  Google Scholar 

  243. Liu, Y., Zhang, N., Jiao, L., et al.: Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27, 6702–6707 (2015)

    CAS  PubMed  Google Scholar 

  244. Mao, M., Yan, F., Cui, C., et al.: Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17, 3830–3836 (2017)

    CAS  PubMed  Google Scholar 

  245. Nam, D.H., Kim, T.H., Hong, K.S., et al.: Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano 8, 11824–11835 (2014)

    CAS  PubMed  Google Scholar 

  246. Li, W., Hu, S., Luo, X., et al.: Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29, 1605820 (2017)

    Google Scholar 

  247. Qian, J., Wu, X., Cao, Y., et al.: High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 52, 4633–4636 (2013)

    CAS  Google Scholar 

  248. Kim, Y., Park, Y., Choi, A., et al.: An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013)

    CAS  PubMed  Google Scholar 

  249. Zhang, C., Wang, X., Liang, Q., et al.: Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16, 2054–2060 (2016)

    CAS  PubMed  Google Scholar 

  250. Sun, J., Lee, H.-W., Pasta, M., et al.: A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015)

    CAS  PubMed  Google Scholar 

  251. Hembram, K., Jung, H., Yeo, B.C., et al.: Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J. Phys. Chem. C 119, 15041–15046 (2015)

    CAS  Google Scholar 

  252. Abellán, G., Neiss, C., Lloret, V., et al.: Exploring the formation of black phosphorus intercalation compounds with alkali metals. Angew. Chem. Int. Ed. 56, 15267–15273 (2017)

    Google Scholar 

  253. Xu, Y., Swaans, E., Basak, S., et al.: Reversible Na-ion uptake in Si nanoparticles. Adv. Energy Mater. 6, 1501436 (2016)

    Google Scholar 

  254. Liu, S., Feng, J., Bian, X., et al.: Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. J. Mater. Chem. A 4, 10098–10104 (2016)

    CAS  Google Scholar 

  255. Kohandehghan, A., Cui, K., Kupsta, M., et al.: Activation with Li enables facile sodium storage in germanium. Nano Lett. 14, 5873–5882 (2014)

    CAS  PubMed  Google Scholar 

  256. Guo, S., Yi, J., Sun, Y., et al.: Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 9, 2978–3006 (2016)

    CAS  Google Scholar 

  257. Xiong, H., Slater, M.D., Balasubramanian, M., et al.: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011)

    CAS  Google Scholar 

  258. Zhu, X., Li, Q., Fang, Y., et al.: Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage. Part. Part. Syst. Charact. 33, 545–552 (2016)

    CAS  Google Scholar 

  259. Xiong, Y., Qian, J., Cao, Y., et al.: Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces. 8, 16684–16689 (2016)

    CAS  PubMed  Google Scholar 

  260. Xiong, Y., Qian, J., Cao, Y., et al.: Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. J. Mater. Chem. A 4, 11351–11356 (2016)

    CAS  Google Scholar 

  261. Kim, K.T., Ali, G., Chung, K.Y., et al.: Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416–422 (2014)

    CAS  PubMed  Google Scholar 

  262. Chen, C., Wen, Y., Hu, X., et al.: Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015)

    CAS  PubMed  Google Scholar 

  263. Huang, J., Yuan, D., Zhang, H., et al.: Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv. 3, 12593–12597 (2013)

    CAS  Google Scholar 

  264. Wu, L., Buchholz, D., Bresser, D., et al.: Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 251, 379–385 (2014)

    CAS  Google Scholar 

  265. Wu, L., Bresser, D., Buchholz, D., et al.: Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 5, 1401142 (2015)

    Google Scholar 

  266. Su, D., Dou, S., Wang, G.: Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 27, 6022–6029 (2015)

    CAS  Google Scholar 

  267. Wang, H., Jia, G., Guo, Y., et al.: Atomic layer deposition of amorphous TiO2 on carbon nanotube networks and their superior Li and Na ion storage properties. Adv. Mater. Interfaces 3, 1600375 (2016)

    Google Scholar 

  268. Wu, Y., Jiang, Y., Shi, J., et al.: Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 13, 1700129 (2017)

    Google Scholar 

  269. Zhang, Y., Wang, C., Hou, H., et al.: Sodium-ion batteries: nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7, 1600173 (2017)

  270. Sun, Y., Zhao, L., Pan, H., et al.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)

    PubMed  Google Scholar 

  271. Xu, G., Tian, Y., Wei, X., et al.: Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. J. Power Sources 337, 180–188 (2017)

    CAS  Google Scholar 

  272. Hasegawa, G., Kanamori, K., Kiyomura, T., et al.: Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv. Energy Mater. 5, 1400730 (2015)

  273. Yu, X., Pan, H., Wan, W., et al.: A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 13, 4721–4727 (2013)

    CAS  PubMed  Google Scholar 

  274. Liu, J., Tang, K., Song, K., et al.: Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 15, 20813–20818 (2013)

    CAS  PubMed  Google Scholar 

  275. Yang, L.Y., Li, H.Z., Liu, J., et al.: Li4Ti5O12 nanosheets as high-rate and long-life anode materials for sodium-ion batteries. J. Mater. Chem. A 3, 24446–24452 (2015)

    CAS  Google Scholar 

  276. Senguttuvan, P., Rousse, G., Seznec, V., et al.: Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011)

    CAS  Google Scholar 

  277. Liu, J., Banis, M.N., Xiao, B., et al.: Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. J. Mater. Chem. A 3, 24281–24288 (2015)

    CAS  Google Scholar 

  278. Xu, J., Ma, C., Balasubramanian, M., et al.: Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery. Chem. Commun. 50, 12564–12567 (2014)

    CAS  Google Scholar 

  279. Rudola, A., Sharma, N., Balaya, P.: Introducing a 0.2 V sodium-ion battery anode: the Na2Ti3O7 to Na3−xTi3O7 pathway. Electrochem. Commun. 61, 10–13 (2015)

    CAS  Google Scholar 

  280. Muñoz-Márquez, M.A., Zarrabeitia, M., Castillo-Martínez, E., et al.: Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Interfaces. 7, 7801–7808 (2015)

    PubMed  Google Scholar 

  281. Ni, J., Fu, S., Wu, C., et al.: Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 6, 1502568 (2016)

  282. Xie, F., Zhang, L., Su, D., et al.: Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29, 1700989 (2017)

  283. Yang, J., Wang, H., Hu, P., et al.: A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small 11, 3744–3749 (2015)

    CAS  PubMed  Google Scholar 

  284. Yang, G., Song, H., Wu, M., et al.: Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J. Mater. Chem. A 3, 18718–18726 (2016)

    Google Scholar 

  285. Jiang, Y., Shi, J., Wang, M., et al.: Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl. Mater. Interfaces. 8, 689–695 (2016)

    CAS  PubMed  Google Scholar 

  286. Wang, D., Liu, Q., Chen, C., et al.: NASICON-structured NaTi2(PO4)3@ C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 8, 2238–2246 (2016)

    CAS  PubMed  Google Scholar 

  287. Fang, Y., Xiao, L., Qian, J., et al.: 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6, 1502197 (2016)

  288. Deng, J., Luo, W.B., Chou, S.L., et al.: Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8, 1701428 (2018)

    Google Scholar 

  289. Ren, W., Yao, X., Niu, C., et al.: Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy 28, 216–223 (2016)

    CAS  Google Scholar 

  290. Komaba, S., Murata, W., Ishikawa, T., et al.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011)

    CAS  Google Scholar 

  291. Ming, J., Ming, H., Yang, W., et al.: A sustainable iron-based sodium ion battery of porous carbon–Fe3O4/Na2FeP2O7 with high performance. RSC Adv. 5, 8793–8800 (2015)

    CAS  Google Scholar 

  292. Hasa, I., Hassoun, J., Sun, Y.K., et al.: Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. ChemPhysChem 15, 2152–2155 (2014)

    CAS  PubMed  Google Scholar 

  293. Ye, H., Wang, Y., Zhao, F., et al.: Iron-based sodium-ion full batteries. J. Mater. Chem. A 4, 1754–1761 (2016)

    CAS  Google Scholar 

  294. Kim, D., Lee, E., Slater, M., et al.: Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66–69 (2012)

    CAS  Google Scholar 

  295. Wang, X., Liu, G., Iwao, T., et al.: Role of ligand-to-metal charge transfer in O3-type NaFeO2–NaNiO2 solid solution for enhanced electrochemical properties. J. Phys. Chem. C 118, 2970–2976 (2014)

    CAS  Google Scholar 

  296. Wen, Y., Wang, B., Zeng, G., et al.: Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem. Asian J. 10, 661–666 (2015)

    CAS  PubMed  Google Scholar 

  297. Xu, S.Y., Wu, X.Y., Li, Y.M., et al.: Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 23, 118202 (2014)

    Google Scholar 

  298. Chen, X., Zhou, X., Hu, M., et al.: Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J. Mater. Chem. A 3, 20708–20714 (2015)

    CAS  Google Scholar 

  299. Huang, W., Zhou, J., Li, B., et al.: A new route toward improved sodium ion batteries: a multifunctional fluffy Na0.67FePO4/CNT nanocactus. Small 11, 2170–2176 (2015)

    CAS  PubMed  Google Scholar 

  300. Sheng, J., Zang, H., Tang, C., et al.: Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 24, 130–138 (2016)

    CAS  Google Scholar 

  301. Qian, J., Zhou, M., Cao, Y., et al.: Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv. Energy Mater. 2, 410–414 (2012)

    CAS  Google Scholar 

  302. Yamada, Y., Doi, T., Tanaka, I., et al.: Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries. J. Power Sources 196, 4837–4841 (2011)

    CAS  Google Scholar 

  303. Wang, Y., Su, D., Wang, C., et al.: SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 29, 8–11 (2013)

    CAS  Google Scholar 

  304. Jian, Z., Zhao, B., Liu, P., et al.: Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 50, 1215–1217 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank financial support by the National Key Research Program of China (No. 2016YFB0901500), National Natural Science Foundation of China (Nos. 21673165 and 21373155) and the Fundamental Research Funds for the Central Universities (2042018kf0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Xiao, L., Chen, Z. et al. Recent Advances in Sodium-Ion Battery Materials. Electrochem. Energ. Rev. 1, 294–323 (2018). https://doi.org/10.1007/s41918-018-0008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0008-x

Keywords

PACS

Navigation