Abstract
Silicon (Si) is a representative anode material for next-generation lithium-ion batteries due to properties such as a high theoretical capacity, suitable working voltage, and high natural abundance. However, due to inherently large volume expansions (~ 400%) during insertion/deinsertion processes as well as poor electrical conductivity and unstable solid electrolyte interfaces (SEI) films, Si-based anodes possess serious stability problems, greatly hindering practical application. To resolve these issues, the modification of Si anodes with carbon (C) is a promising method which has been demonstrated to enhance electrical conductivity and material plasticity. In this review, recent researches into Si/C anodes are grouped into categories based on the structural dimension of Si materials, including nanoparticles, nanowires and nanotubes, nanosheets, and porous Si-based materials, and the structural and electrochemical performance of various Si/C composites based on carbon materials with varying structures will be discussed. In addition, the progress and limitations of the design of existing Si/C composite anodes are summarized, and future research perspectives in this field are presented.
Graphical Abstract
Similar content being viewed by others
References
Yu, H., Duan, J., Du, W., et al.: China’s energy storage industry: develop status, existing problems and countermeasures. Renew. Sustain. Energy Rev. 71, 767–784 (2017)
Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)
Srivastava, M., Singh, J., Kuila, T., et al.: Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7, 4820–4868 (2015)
Ellis, B.L., Knauth, P., Djenizian, T.: Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 26, 3368–3397 (2014)
Hoffert, M.I., Caldeira, K., Benford, G., et al.: Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298, 981–987 (2002)
Midilli, A., Dincer, I., Ay, M.: Green energy strategies for sustainable development. Energy Policy 34, 3623–3633 (2006)
Wu, X.L., Guo, Y.G., Wan, L.J.: Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. Chem. Asian J. 8, 1948–1958 (2013)
Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012)
Solangi, K.H., Islam, M.R., Saidur, R., et al.: A review on global solar energy policy. Renew. Sustain. Energy Rev. 15, 2149–2163 (2011)
Herbert, G.M.J., Iniyan, S., Sreevalsan, E., et al.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11, 1117–1145 (2007)
Liu, J., Zhang, J.G., Yang, Z., et al.: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929–946 (2013)
Deng, Y., Wan, L., Xie, Y., et al.: Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4, 23914–23935 (2014)
Xia, X., Zhang, Y., Chao, D., et al.: Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008–5048 (2014)
Goodenough, J.B., Manthiram, A.: A perspective on electrical energy storage. MRS Commun. 4, 135–142 (2014)
Goodenough, J.B.: Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013)
Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)
Ko, M., Oh, P., Chae, S., et al.: Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 11, 4058–4073 (2015)
Vlad, A., Singh, N., Galande, C., et al.: Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 1402115 (2015)
Yu, S.H., Lee, S.H., Lee, D.J., et al.: Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016)
Scrosati, B., Hassoun, J., Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011)
Deng, D.: Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3, 385–418 (2015)
Yu, H.C., Ling, C., Bhattacharya, J., et al.: Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760 (2014)
Marom, R., Amalraj, S.F., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011)
Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)
Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)
Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)
Roy, P., Srivastava, S.K.: Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3, 2454–2484 (2015)
Wang, Z., Zhou, L., Lou, X.W.: Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903–1911 (2012)
Zhang, K., Hu, Z., Tao, Z., et al.: Inorganic and organic materials for rechargeable Li batteries with multi-electron reaction. Sci. China Mater. 57, 42–58 (2014)
Zhang, L., Wu, H.B., Lou, X.W.: Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 4, 1300958 (2014)
Obrovac, M.N.: Si-alloy negative electrodes for Li-ion batteries. Curr. Opin. Electrochem. 9, 8–17 (2018)
Nitta, N., Yushin, G.: High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Charact. 31, 317–336 (2014)
Goriparti, S., Miele, E., De Angelis, F., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)
An, J., Shi, L., Chen, G., et al.: Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 5, 19738–19744 (2017)
Shu, Z.X., Mcmillan, R.S., Murray, J.J.: Electrochemical intercalation of lithium into graphite. J. Electrochem. Soc. 140, 922–927 (1993)
Scrosati, B.: Recent advances in lithium ion battery materials. Electrochim. Acta 45, 2461–2466 (2000)
Jiang, H., Zhang, H., Fu, Y., et al.: Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage. ACS Nano 10, 1648–1654 (2016)
Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)
Abraham, K.M.: Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6, 830–844 (2015)
Guo, X., Sun, B., Su, D., et al.: Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Sci. Bull. 62, 442–452 (2017)
Dou, F., Shi, L., Song, P., et al.: Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem. Eng. J. 338, 488–495 (2018)
Han, J., Chen, G., Yan, T., et al.: Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem. Eng. J. 347, 273–279 (2018)
McDowell, M.T., Lee, S.W., Nix, W.D., et al.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)
Wang, X., Lv, L., Cheng, Z., et al.: High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6, 1502100 (2016)
Deng, J., Ji, H., Yan, C., et al.: Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew. Chem. Int. Ed. 52, 2326–2330 (2013)
Ko, M., Chae, S., Cho, J.: Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2, 1645–1651 (2015)
Key, B., Bhattacharyya, R., Morcrette, M., et al.: Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131, 9239–9249 (2009)
Key, B., Morcrette, M., Tarascon, J.M., et al.: Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J. Am. Chem. Soc. 133, 503–512 (2011)
Boukamp, B.A.: All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725 (1981)
Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007)
Liu, X.H., Huang, S., Picraux, S.T., et al.: Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011)
Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)
Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)
Zhuang, X., Song, P., Chen, G., et al.: Coralloid-like nanostructured c-nSi/SiOx@Cy anodes for high performance lithium ion battery. ACS Appl. Mater. Interfaces 9, 28464–28472 (2017)
Maruyama, H., Nakano, H., Ogawa, M., et al.: Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes. Sci. Rep. 5, 13219 (2015)
Su, X., Wu, Q., Li, J., et al.: Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014)
Liang, B., Liu, Y., Xu, Y.: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469–490 (2014)
Rahman, M.A., Song, G., Bhatt, A.I., et al.: Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26, 647–678 (2016)
Luo, W., Chen, X., Xia, Y., et al.: Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7, 1701083 (2017)
Ashuri, M., He, Q., Shaw, L.L.: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8, 74–103 (2016)
Kobayashi, N., Inden, Y., Endo, M.: Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. J. Power Sources 326, 235–241 (2016)
Ling, M., Xu, Y., Zhao, H., et al.: Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12, 178–185 (2015)
Wen, C.J.: Electrochemical investigation of the lithium-gallium system. J. Electrochem. Soc. 128, 1636 (1981)
Pan, L., Wang, H., Gao, D., et al.: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 50, 5878–5880 (2014)
Obrovac, M.N., Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93 (2004)
Ryu, J.H., Kim, J.W., Sung, Y.E., et al.: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306 (2004)
Wang, J.: Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J. Electrochem. Soc. 133, 457 (1986)
Du, F.H., Wang, K.X., Chen, J.S.: Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 4, 32–50 (2016)
Liu, X.H., Fan, F., Yang, H., et al.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495–1503 (2013)
Chang, J., Huang, X., Zhou, G., et al.: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater. 26, 758–764 (2014)
Zhou, X., Wan, L.J., Guo, Y.G.: Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9, 2684–2688 (2013)
Verbrugge, M.W., Baker, D.R., Xiao, X., et al.: Experimental and theoretical characterization of electrode materials that undergo large volume changes and application to the lithium–silicon system. J. Phys. Chem. C 119, 5341–5349 (2015)
Beaulieu, L.Y., Eberman, K.W., Turner, R.L., et al.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137 (2001)
Takamura, T., Ohara, S., Uehara, M., et al.: A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources 129, 96–100 (2004)
Li, W., Tang, Y., Kang, W., et al.: Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 11, 1345–1351 (2015)
Yu, W.J., Liu, C., Hou, P.X., et al.: Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9, 5063–5071 (2015)
Liu, X.H., Liu, Y., Kushima, A., et al.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012)
Kim, H., Seo, M., Park, M.H., et al.: A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010)
Graetz, J., Ahn, C.C., Yazami, R., et al.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid State Lett. 6, A194 (2003)
Becker, C.R., Strawhecker, K.E., McAllister, Q.P., et al.: In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries. ACS Nano 7, 9173–9182 (2013)
Ng, S.H., Wang, J., Wexler, D., et al.: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45, 6896–6899 (2006)
Oumellal, Y., Delpuech, N., Mazouzi, D., et al.: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 6201 (2011)
Chan, C.K., Ruffo, R., Hong, S.S., et al.: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009)
Tokranov, A., Kumar, R., Li, C., et al.: Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv. Energy Mater. 6, 1502302 (2016)
Shkrob, I.A., Wishart, J.F., Abraham, D.P.: What makes fluoroethylene carbonate different? J. Phys. Chem. C 119, 14954–14964 (2015)
Hou, G.L., Cheng, B.L., Cao, Y.B., et al.: Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24, 111–120 (2016)
Holzapfel, M., Buqa, H., Hardwick, L.J., et al.: Nano silicon for lithium-ion batteries. Electrochim. Acta 52, 973–978 (2006)
Liu, H.K., Guo, Z.P., Wang, J.Z., et al.: Si-based anode materials for lithium rechargeable batteries. J. Mater. Chem. 20, 10055 (2010)
Beattie, S.D., Larcher, D., Morcrette, M., et al.: Si electrodes for Li-ion batteries: a new way to look at an old problem. J. Electrochem. Soc. 155, A158 (2008)
Luo, F., Liu, B., Zheng, J., et al.: Review: nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 162, A2509–A2528 (2015)
Nadimpalli, S.P.V., Sethuraman, V.A., Dalavi, S., et al.: Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J. Power Sources 215, 145–151 (2012)
Aurbach, D., Markovsky, B., Salitra, G., et al.: Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 165, 491–499 (2007)
Chen, L., Yan, B., Xu, J., et al.: Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries. ACS Appl. Mater. Interfaces 7, 13934–13943 (2015)
Wei, Q., An, Q., Chen, D., et al.: One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 14, 1042–1048 (2014)
Liu, N., Wu, H., McDowell, M.T., et al.: A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)
Liu, N., Lu, Z., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)
Yang, L.Y., Li, H.Z., Liu, J., et al.: Dual yolk–shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 5, 10908 (2015)
Park, M.H., Kim, M.G., Joo, J., et al.: Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009)
Ruffo, R., Hong, S.S., Chan, C.K., et al.: Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009)
Peng, K., Jie, J., Zhang, W., et al.: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008)
Wen, Z., Lu, G., Mao, S., et al.: Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)
Maranchi, J.P., Hepp, A.F., Kumta, P.N.: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State Lett. 6, A198 (2003)
Biserni, E., Xie, M., Brescia, R., et al.: Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. J. Power Sources 274, 252–259 (2015)
Demirkan, M.T., Trahey, L., Karabacak, T.: Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J. Power Sources 273, 52–61 (2015)
Pal, S., Damle, S.S., Patel, S.H., et al.: Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. J. Power Sources 246, 149–159 (2014)
Hwang, G., Park, H., Bok, T., et al.: A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem. Commun. 51, 4429–4432 (2015)
Song, J., Chen, S., Zhou, M., et al.: Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2, 1257–1262 (2014)
Yi, R., Dai, F., Gordin, M.L., et al.: Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013)
Liu, N., Huo, K., McDowell, M.T., et al.: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 3, 1919 (2013)
Kim, H., Han, B., Choo, J., et al.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008)
Zhao, Y., Liu, X., Li, H., et al.: Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun. 48, 5079–5081 (2012)
Shen, L., Guo, X., Fang, X., et al.: Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. J. Power Sources 213, 229–232 (2012)
Cheng, H., Xiao, R., Bian, H., et al.: Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater. Chem. Phys. 144, 25–30 (2014)
Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)
Jiao, F., Bruce, P.G.: Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007)
Liu, D., Liu, Z.J., Li, X., et al.: Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 13, 1702000 (2017)
Tang, J., Dysart, A.D., Kim, D.H., et al.: Fabrication of carbon/silicon composite as lithium-ion anode with enhanced cycling stability. Electrochim. Acta 247, 626–633 (2017)
Li, Z., Wang, W., Li, Z., et al.: Bridging porous Si–C composites with conducting agents for improving battery cycle life. J. Power Sources 286, 534–539 (2015)
Sohn, H., Kim, D.H., Yi, R., et al.: Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries. J. Power Sources 334, 128–136 (2016)
Sourice, J., Bordes, A., Boulineau, A., et al.: Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries. J. Power Sources 328, 527–535 (2016)
Chen, Y., Xu, M., Zhang, Y., et al.: All-aqueous directed assembly strategy for forming high-capacity, stable silicon/carbon anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 21391–21397 (2015)
Sourice, J., Quinsac, A., Leconte, Y., et al.: One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 6637–6644 (2015)
Zhang, L., Rajagopalan, R., Guo, H., et al.: A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv. Funct. Mater. 26, 440–446 (2016)
Chen, S., Shen, L., van Aken, P.A., et al.: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 29, 21 (2017)
Huang, S., Cheong, L.Z., Wang, D., et al.: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 23672–23678 (2017)
Li, H.: A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2, 547 (1999)
Kim, J.S., Pfleging, W., Kohler, R., et al.: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13–20 (2015)
Xiao, X., Zhou, W., Kim, Y., et al.: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-ion battery. Adv. Funct. Mater. 25, 1426–1433 (2015)
Su, H., Barragan, A.A., Geng, L., et al.: Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 10780–10785 (2017)
Li, W., Sun, X., Yu, Y.: Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods 1, 1600037 (2017)
Nava, R., Cremar, L., Agubra, V., et al.: Centrifugal spinning: an alternative for large scale production of silicon–carbon composite nanofibers for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 29365–29372 (2016)
Han, Y., Zou, J., Li, Z., et al.: Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 12, 4835–4843 (2018)
Zhu, J., Wang, T., Fan, F., et al.: Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10, 8243–8251 (2016)
Wu, J., Qin, X., Miao, C., et al.: A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98, 582–591 (2016)
Pandey, G.P., Klankowski, S.A., Li, Y., et al.: Effective infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers as anodes for solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 20909–20918 (2015)
Sun, C.F., Zhu, H., Okada, M., et al.: Interfacial oxygen stabilizes composite silicon anodes. Nano Lett. 15, 703–708 (2015)
Chen, C., Lee, S.H., Cho, M., et al.: Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces 8, 2658–2665 (2016)
Shen, C., Fang, X., Ge, M., et al.: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries. ACS Nano 12, 6280–6291 (2018)
Zhou, M., Li, X., Wang, B., et al.: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015)
Botas, C., Carriazo, D., Zhang, W., et al.: Silicon-reduced graphene oxide self-standing composites suitable as binder-free anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 28800–28808 (2016)
Chang, P., Liu, X., Zhao, Q., et al.: Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 9, 31879–31886 (2017)
Wang, B., Li, X., Luo, B., et al.: Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv. Mater. 27, 1526–1532 (2015)
Son, I.H., Park, J.H., Kwon, S., et al.: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015)
Yan, L., Liu, J., Wang, Q., et al.: In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 38159–38164 (2017)
Shan, C., Wu, K., Yen, H.J., et al.: Graphene oxides used as a new “dual role” binder for stabilizing silicon nanoparticles in lithium-ion battery. ACS Appl. Mater. Interfaces 10, 15665–15672 (2018)
Li, Y., Yan, K., Lee, H.W., et al.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016)
Li, L., Zuo, Z., Shang, H., et al.: In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy 53, 135–143 (2018)
Shang, H., Zuo, Z.C., Yu, L., et al.: Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 30, 1801459 (2018)
Qi, W., Shapter, J.G., Wu, Q., et al.: Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5, 19521–19540 (2017)
Ren, W., Zhang, Z., Wang, Y., et al.: Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J. Mater. Chem. A 3, 5859–5865 (2015)
Chou, S.L., Wang, J.Z., Choucair, M., et al.: Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010)
Ma, Y., Younesi, R., Pan, R., et al.: Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ storage and flexible integrated configuration. Adv. Funct. Mater. 26, 6797–6806 (2016)
Hassan, F.M., Batmaz, R., Li, J., et al.: Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 6, 8597 (2015)
Jeong, M.G., Du, H.L., Islam, M., et al.: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett. 17, 5600–5606 (2017)
Li, B., Yang, S., Li, S., et al.: From commercial sponge toward 3D graphene-silicon networks for superior lithium storage. Adv. Energy Mater. 5, 1500289 (2015)
Shi, L., Wang, W., Wang, A., et al.: Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J. Mater. Chem. A3, 18190–18197 (2015)
Song, Y., Li, X., Wei, C., et al.: A green strategy to prepare metal oxide superstructure from metal–organic frameworks. Sci. Rep. 5, 8401 (2015)
Song, Y., Li, X., Sun, L., et al.: Metal/metal oxide nanostructures derived from metal–organic frameworks. RSC Adv. 5, 7267–7279 (2015)
Song, Y., Zuo, L., Chen, S., et al.: Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015)
Roy, A.K., Zhong, M., Schwab, M.G., et al.: Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 7343–7348 (2016)
Zhuang, X., Zhang, Y., He, L., et al.: Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim. Acta 249, 166–172 (2017)
Shen, T., Xia, X.H., Xie, D., et al.: Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 5, 11197–11203 (2017)
Yun, Q., Qin, X., Lv, W., et al.: “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 93, 59–67 (2015)
Zhang, Y., Pan, Y., Chen, Y., et al.: Towards reducing carbon content in silicon/carbon anodes for lithium ion batteries. Carbon 112, 72–78 (2017)
Kim, J.M., Guccini, V., Seong, K.D., et al.: Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon 118, 8–17 (2017)
Liang, G., Qin, X., Zou, J., et al.: Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127, 424–431 (2018)
Li, Q., Chen, D., Li, K., et al.: Electrostatic self-assembly bmSi@C/rGO composite as anode material for lithium ion battery. Electrochim. Acta 202, 140–146 (2016)
Chen, Y., Hu, Y., Shen, Z., et al.: Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochim. Acta 210, 53–60 (2016)
Yun, Q., Qin, X., He, Y.B., et al.: Micron-sized spherical Si/C hybrids assembled via water/oil system for high-performance lithium ion battery. Electrochim. Acta 211, 982–988 (2016)
Jung, H., Kim, K.S., Park, S.E., et al.: The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery. Electrochim. Acta 245, 791–795 (2017)
Chen, H., Wang, Z., Hou, X., et al.: Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 249, 113–121 (2017)
Chen, Y., Hu, Y., Shao, J., et al.: Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. J. Power Sources 298, 130–137 (2015)
Sun, W., Hu, R., Zhang, M., et al.: Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries. J. Power Sources 318, 113–120 (2016)
Kim, Y.S., Shoorideh, G., Zhmayev, Y., et al.: The critical contribution of unzipped graphene nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries. Nano Energy 16, 446–457 (2015)
Fei, L., Williams, B.P., Yoo, S.H., et al.: Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-ion battery anodes. ACS Appl. Mater. Interfaces 8, 5243–5250 (2016)
Kim, S.Y., Lee, J., Kim, B.H., et al.: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 12109–12117 (2016)
Sun, Z., Wang, X., Ying, H., et al.: Facial synthesis of three-dimensional cross-linked cage for high-performance lithium storage. ACS Appl. Mater. Interfaces 8, 15279–15287 (2016)
Lyu, F., Sun, Z., Nan, B., et al.: Low-cost and novel Si-based gel for Li-ion batteries. ACS Appl. Mater. Interfaces 9, 10699–10707 (2017)
Zhang, H., Qin, X., Wu, J., et al.: Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J. Mater. Chem. A 3, 7112–7120 (2015)
Park, S.H., Ahn, D., Choi, Y.M., et al.: High-coulombic-efficiency Si-based hybrid microspheres synthesized by the combination of graphene and IL-derived carbon. J. Mater. Chem. A 3, 20935–20943 (2015)
Chen, Y., Hu, Y., Shen, Z., et al.: Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J. Power Sources 342, 467–475 (2017)
Agyeman, D.A., Song, K., Lee, G.H., et al.: Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 6, 1600904 (2016)
Jing, S., Jiang, H., Hu, Y., et al.: Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 25, 5395–5401 (2015)
An, G.H., Kim, H., Ahn, H.J.: Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage. ACS Appl. Mater. Interfaces 10, 6235–6244 (2018)
Liu, H., Shan, Z., Huang, W., et al.: Self-assembly of silicon@oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 4715–4725 (2018)
Xu, Q., Li, J.Y., Sun, J.K., et al.: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017)
Zhang, Y.C., You, Y., Xin, S., et al.: Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25, 120–127 (2016)
Park, B.H., Jeong, J.H., Lee, G.W., et al.: Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J. Power Sources 394, 94–101 (2018)
Kim, J., Oh, C., Chae, C., et al.: 3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries. J. Mater. Chem. A 3, 18684–18695 (2015)
Ko, M., Chae, S., Ma, J., et al.: Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016)
Song, T., Xia, J., Lee, J.H., et al.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010)
Huang, R., Fan, X., Shen, W., et al.: Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95, 133119 (2009)
Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core–shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008)
Chockla, A.M., Harris, J.T., Akhavan, V.A., et al.: Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133, 20914–20921 (2011)
Wang, C., Luo, F., Lu, H., et al.: A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 2806–2814 (2017)
Wang, B., Qiu, T., Li, X., et al.: Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J. Mater. Chem. A 3, 494–498 (2015)
Xia, F., Kwon, S., Lee, W.W., et al.: Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett. 15, 6658–6664 (2015)
Salvatierra, R.V., Raji, A.R.O., Lee, S.K., et al.: Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv. Energy Mater. 6, 1600918 (2016)
Wang, X., Li, G., Seo, M.H., et al.: Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 9551–9558 (2017)
Liu, J., Li, N., Goodman, M.D., et al.: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 9, 1985–1994 (2015)
Chen, S., Chen, Z., Xu, X., et al.: Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, 1703361 (2018)
Suresh, S., Wu, Z.P., Bartolucci, S.F., et al.: Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape. ACS Nano 11, 5051–5061 (2017)
Han, X., Chen, H., Liu, J., et al.: A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta 156, 11–19 (2015)
Zhang, Y., Du, N., Zhu, S., et al.: Porous silicon in carbon cages as high-performance lithium-ion battery anode materials. Electrochim. Acta 252, 438–445 (2017)
Ren, W., Wang, Y., Tan, Q., et al.: Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: a high performing anode material in lithium ion battery. J. Power Sources 332, 88–95 (2016)
Ren, W., Wang, Y., Zhang, Z., et al.: Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J. Mater. Chem. A 4, 552–560 (2016)
Fang, S., Tong, Z., Nie, P., et al.: Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 18766–18773 (2017)
Lu, B., Ma, B., Deng, X., et al.: Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery. ACS Appl. Mater. Interfaces 9, 32829–32839 (2017)
Guo, S., Hu, X., Hou, Y., et al.: Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 42084–42092 (2017)
Liu, J., Kopold, P., van Aken, P.A., et al.: Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 9632–9636 (2015)
Du, F.H., Ni, Y., Wang, Y., et al.: Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries. ACS Nano 11, 8628–8635 (2017)
Jia, H., Zheng, J., Song, J., et al.: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50, 589–597 (2018)
Vrankovic, D., Graczyk-Zajac, M., Kalcher, C., et al.: Highly porous silicon embedded in a ceramic matrix: a stable high-capacity electrode for Li-ion batteries. ACS Nano 11, 11409–11416 (2017)
Lu, Z., Liu, N., Lee, H.W., et al.: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015)
Yue, X., Sun, W., Zhang, J., et al.: Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. J. Power Sources 329, 422–427 (2016)
Gao, X., Li, J., Xie, Y., et al.: A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 7855–7862 (2015)
Jin, Y., Zhang, S., Zhu, B., et al.: Simultaneous purification and perforation of low-grade Si sources for lithium-ion battery anode. Nano Lett. 15, 7742–7747 (2015)
Li, X., Yan, P., Xiao, X., et al.: Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 10, 1427–1434 (2017)
Zhou, X., Han, K., Jiang, H., et al.: High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim. Acta 245, 14–24 (2017)
Wang, J., Liu, D.H., Wang, Y.Y., et al.: Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. J. Power Sources 307, 738–745 (2016)
Yang, Y., Yang, X., Chen, S., et al.: Rational design of hierarchical carbon/mesoporous silicon composite sponges as high-performance flexible energy storage electrodes. ACS Appl. Mater. Interfaces 9, 22819–22825 (2017)
Wang, W., Favors, Z., Li, C., et al.: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci. Rep. 7, 44838 (2017)
Acknowledgements
The authors would like to acknowledge the support from the National Key R&D Program of China (Grant No. 2017YFB0102200), the Shanghai Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials (Grant No. 16DZ2292100), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 16JC1401700, 15DZ1170100 and 16DZ1204300).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Dou, F., Shi, L., Chen, G. et al. Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energ. Rev. 2, 149–198 (2019). https://doi.org/10.1007/s41918-018-00028-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41918-018-00028-w