Yang, Z., Zhang, J., Kintner-Meyer, M., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)
CAS
PubMed
Google Scholar
Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)
CAS
PubMed
Google Scholar
Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)
CAS
PubMed
Google Scholar
Scrosati, B.: Challenge of portable power. Nature 373, 557–558 (1995)
CAS
Google Scholar
Aricò, A.S., Bruce, P., Scrosati, B., et al.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)
PubMed
Google Scholar
Sun, Y.K., Myung, S.T., Park, B.C., et al.: High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009)
CAS
PubMed
Google Scholar
Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)
CAS
PubMed
Google Scholar
Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014)
CAS
PubMed
Google Scholar
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)
CAS
PubMed
Google Scholar
Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)
CAS
PubMed
Google Scholar
Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)
CAS
Google Scholar
Cabana, J., Monconduit, L., Larcher, D., et al.: Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)
CAS
PubMed
Google Scholar
David, J.: Nickel–cadmium battery recycling evolution in Europe. J. Power Sources 57, 71–73 (1995)
CAS
Google Scholar
Kanda, M., Yamamoto, K., Kanno, Y., et al.: Cyclic behaviour of metal hydride electrodes and the cell characteristics of nickel-metal hydride batteries. J. Less Common Met. 172–174, 1227–1235 (1991)
Google Scholar
Amine, K., Kanno, R., Tzeng, Y.H.: Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014)
CAS
Google Scholar
Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)
CAS
Google Scholar
Armstrong, A.R., Bruce, P.G.: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996)
CAS
Google Scholar
Kang, K.S., Meng, Y.S., Breger, J., et al.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006)
CAS
PubMed
Google Scholar
Yabuuchi, N., Ohzuku, T.: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 119, 171–174 (2003)
Google Scholar
Okubo, M., Hosono, E., Kim, J., et al.: Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)
CAS
PubMed
Google Scholar
Guerard, D., Herold, A.: Intercalation of lithium into graphite and other carbons. Carbon 13, 337–345 (1975)
CAS
Google Scholar
Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)
CAS
Google Scholar
Cho, J., Kim, Y.J., Park, B.: Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000)
CAS
Google Scholar
Song, S.W., Zhuang, G.V., Ross, P.N.: Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J. Electrochem. Soc. 151, A1162–A1167 (2004)
CAS
Google Scholar
Tran, H.Y., Greco, G., Täubert, C., et al.: Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries. J. Power Sources 210, 276–285 (2012)
CAS
Google Scholar
Wang, Z.X., Sun, Y.C., Chen, L.Q., et al.: Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries. J. Electrochem. Soc. 151, A914–A921 (2004)
CAS
Google Scholar
Rao, C.V., Reddy, A.L.M., Ishikawa, Y., et al.: LiNi1/3Co1/3Mn1/3O2-Graphene composite as a promising cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 3, 2966–2972 (2011)
CAS
Google Scholar
Tarascon, J.M., McKinnon, W.R., Coowar, F., et al.: Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc. 141, 1421–1431 (1994)
CAS
Google Scholar
Chung, S.Y., Bloking, J.T., Chiang, Y.M.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)
CAS
PubMed
Google Scholar
Thackeray, M.M., Kang, S.H., Johnson, C., et al.: Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007)
CAS
Google Scholar
Yabuuchi, N., Yoshii, K., Myung, S.T., et al.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)
CAS
PubMed
Google Scholar
Zheng, J.M., Gu, M., Xiao, J., et al.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013)
CAS
PubMed
Google Scholar
Zheng, J.M., Gu, M., Genc, A., et al.: Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628–2635 (2014)
CAS
PubMed
Google Scholar
Zhu, Z., Kushima, A., Yin, Z., et al.: Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016)
CAS
Google Scholar
Lu, J., Lee, Y. J., Luo, X., et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016)
CAS
PubMed
Google Scholar
Tan, G., Xu, R., Xing, Z., et al. Burning lithium in CS2 for high-performing compact Li2 S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017)
CAS
Google Scholar
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)
CAS
PubMed
Google Scholar
Grey, C.P., Dupre, N.: NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493–4512 (2004)
CAS
PubMed
Google Scholar
Ellis, B.L., Lee, K.T., Nazar, L.F.: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010)
CAS
Google Scholar
Luntz, A.C., McCloskey, B.D.: Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014)
CAS
PubMed
Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)
CAS
Google Scholar
Chen, J., Cheng, F.Y.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713–723 (2009)
CAS
PubMed
Google Scholar
Yang, Y., Zheng, G., Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)
CAS
PubMed
Google Scholar
Long, J.W., Dunn, B., Rolison, D.R., et al.: Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004)
CAS
PubMed
Google Scholar
Goriparti, S., Miele, E., Angelis, F.D., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)
CAS
Google Scholar
Hassoun, J., Scrosati, B.: Review-advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J. Electrochem. Soc. 162, A2582–A2588 (2015)
CAS
Google Scholar
Landi, B.J., Ganter, M.J., Cress, C.D., et al.: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638–654 (2009)
CAS
Google Scholar
Lee, S.W., Yabuuchi, N., Gallant, B.M., et al.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010)
CAS
PubMed
Google Scholar
Qie, L., Chen, W.M., Wang, Z.H., et al.: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24, 2047–2050 (2012)
PubMed
Google Scholar
Su, F.Y., He, Y.B., Li, B.H., et al.: Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1, 429–439 (2012)
CAS
Google Scholar
Ambrosi, A., Chua, C.K., Bonanni, A., et al.: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014)
CAS
PubMed
Google Scholar
Fang, Y., Lv, Y.Y., Che, R.C., et al.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524–1530 (2013)
CAS
PubMed
Google Scholar
Stein, A., Wang, Z.Y., Fierke, M.A.: Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21, 265–293 (2009)
CAS
Google Scholar
Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012)
CAS
PubMed
Google Scholar
Park, C.M., Kim, J.H., Kim, H., et al.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010)
CAS
PubMed
Google Scholar
Miyachi, M., Yamamoto, H., Kawai, H., et al.: Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 152, A2089–A2091 (2005)
CAS
Google Scholar
Xue, D.J., Xin, S., Yan, Y., et al.: Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J. Am. Chem. Soc. 134, 2512–2515 (2012)
CAS
PubMed
Google Scholar
Seo, M.H., Park, M., Lee, K.T., et al.: High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 4, 425–428 (2011)
CAS
Google Scholar
Idota, Y., Kubota, T., Matsufuji, A., et al.: Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997)
CAS
Google Scholar
Lee, K.T., Jung, Y.S., Oh, S.M.: Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 125, 5652–5653 (2003)
CAS
PubMed
Google Scholar
Lee, K., Mazare, A., Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014)
CAS
PubMed
Google Scholar
Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)
CAS
PubMed
Google Scholar
Ji, L.W., Lin, Z., Alcoutlabi, M., et al.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011)
CAS
Google Scholar
Rowsell, J.L.C., Pralong, V., Nazar, L.F.: Layered lithium iron nitride: a promising anode material for Li-ion batteries. J. Am. Chem. Soc. 123, 8598–8599 (2001)
CAS
PubMed
Google Scholar
Sun, Y., Zhao, L., Pan, H.L., et al.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)
PubMed
Google Scholar
Wagemaker, M., Simon, D.R., Kelder, E.M., et al.: A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv. Mater. 18, 3169–3173 (2006)
CAS
Google Scholar
Lu, X., Gu, L., Hu, Y.S., et al.: New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12anode. J. Am. Chem. Soc. 137, 1581–1586 (2015)
CAS
PubMed
Google Scholar
Wang, Y.Q., Gu, L., Guo, Y.G., et al.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012)
CAS
PubMed
Google Scholar
Dahl, M., Liu, Y., Yin, Y.: Composite titanium dioxide nanomaterials. Chem. Rev. 114, 9853–9889 (2014)
CAS
PubMed
Google Scholar
De Angelis, F., Di Valentin, C., Fantacci, S., et al.: Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014)
PubMed
Google Scholar
Liu, L., Chen, X.: Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014)
CAS
PubMed
Google Scholar
Dreyer, D.R., Park, S., Bielawski, C.W., et al.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)
CAS
PubMed
Google Scholar
Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)
CAS
PubMed
Google Scholar
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)
CAS
PubMed
Google Scholar
Yoo, E., Kim, J., Hosono, E., et al.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)
CAS
PubMed
Google Scholar
Dahn, J.R., Zheng, T., Liu, Y.H., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)
CAS
Google Scholar
Van der Ven, A., Bhattacharya, J., Belak, A.A.: Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013)
PubMed
Google Scholar
Kaskhedikar, N.A., Maier, J.: Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2009)
CAS
Google Scholar
Wang, G.X., Shen, X.P., Yao, J., et al.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009)
CAS
Google Scholar
Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)
CAS
PubMed
Google Scholar
Xu, Y.X., Lin, Z., Zhong, X., et al.: Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 5345–5350 (2015)
CAS
Google Scholar
David, L., Singh, G.: Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C 118, 28401–28408 (2014)
CAS
Google Scholar
Pan, D.Y., Wang, S., Zhao, B., et al.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)
CAS
Google Scholar
Zhou, L.J., Hou, Z.F., Wu, L.M.: First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116, 21780–21787 (2012)
CAS
Google Scholar
Zheng, T., Xing, W., Dahn, J.R.: Carbons prepared from coals for anodes of lithium-ion cells. Carbon 34, 1501–1507 (1996)
CAS
Google Scholar
Xue, J.S., Dahn, J.R.: Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc. 142, 3668–3677 (1995)
CAS
Google Scholar
Mapasha, R.E., Chetty, N.: Ab initio studies of staggered Li adatoms on graphene. Comput. Mater. Sci. 49, 787–791 (2010)
CAS
Google Scholar
Yang, C.K.: A metallic graphene layer adsorbed with lithium. Appl. Phys. Lett. 94, 163115 (2009)
Google Scholar
Medeiros, P.V.C., Mota, F.D., Mascarenhas, A.J.S., et al.: Adsorption of monovalent metal atoms on graphene: a theoretical approach. Nanotechnology 21, 11 (2010)
Google Scholar
Fan, X.F., Zheng, W., Kuo, J.L., et al.: Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 7793–7797 (2013)
CAS
PubMed
Google Scholar
Zhou, J., Sun, Q., Wang, Q., et al.: Tailoring Li adsorption on graphene. Phys. Rev. B 90, 205427 (2014)
Google Scholar
Takamura, T., Endo, K., Fu, L., et al.: Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim. Acta 53, 1055–1061 (2007)
CAS
Google Scholar
Wang, C.Y., Li, D., Too, C.O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604–2606 (2009)
CAS
Google Scholar
Abouimrane, A., Compton, O.C., Amine, K., et al.: Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 114, 12800–12804 (2010)
CAS
Google Scholar
Liu, X., Hu, Y.S., Muller, J.O., et al.: Composites of molecular-anchored graphene and nanotubes with multitubular structure: a new type of carbon electrode. Chemsuschem 3, 261–265 (2010)
CAS
PubMed
Google Scholar
Wu, Z.S., Ren, W.C., Xu, L., et al.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011)
CAS
PubMed
Google Scholar
Li, X.F., Geng, D.S., Zhang, Y., et al.: Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun. 13, 822–825 (2011)
CAS
Google Scholar
Reddy, A.L.M., Srivastava, A., Gowda, S.R., et al.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010)
CAS
PubMed
Google Scholar
Wang, H.B., Zhang, C., Liu, Z., et al.: Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21, 5430–5434 (2011)
CAS
Google Scholar
Wang, Z.L., Xu, D., Wang, H.G., et al.: In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7, 2422–2430 (2013)
CAS
PubMed
Google Scholar
Huang, X., Qi, X.Y., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)
CAS
PubMed
Google Scholar
Guo, S.J., Dong, S.J.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011)
CAS
PubMed
Google Scholar
Xu, C.H., Xu, B.H., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013)
CAS
Google Scholar
Jiang, Y., Jiang, Z.J., Cheng, S., et al.: Fabrication of 3-dimensional porous graphene materials for lithium ion batteries. Electrochim. Acta 146, 437–446 (2014)
CAS
Google Scholar
Fan, Z.J., Yan, J., Ning, G., et al.: Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013)
CAS
Google Scholar
Zhang, L.L., Zhao, X., Stoller, M.D., et al.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)
CAS
PubMed
Google Scholar
Lv, W., Tang, D.M., He, Y.B., et al.: Low-Temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3, 3730–3736 (2009)
CAS
PubMed
Google Scholar
Vargas, O., Caballero, A., Morales, J., et al.: Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 6, 3290–3298 (2014)
CAS
PubMed
Google Scholar
Vargas, O.A., Caballero, A., Morales, J.: Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4, 2083–2092 (2012)
Google Scholar
Winter, M., Besenhard, J.O., Spahr, M.E., et al.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)
CAS
Google Scholar
Wang, H., Cui, L.F., Yang, Y., et al.: Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010)
CAS
PubMed
Google Scholar
Wu, Z.S., Ren, W., Wen, L., et al.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187–3194 (2010)
CAS
PubMed
Google Scholar
Yang, S.B., Cui, G., Pang, S., et al.: Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. Chemsuschem 3, 236–239 (2010)
CAS
PubMed
Google Scholar
Wang, D.H., Choi, D., Li, J., et al.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)
CAS
PubMed
Google Scholar
Wang, G.X., Wang, B., Wang, X., et al.: Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19, 8378–8384 (2009)
CAS
Google Scholar
Chou, S.L., Wang, J.Z., Choucair, M., et al.: Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010)
CAS
Google Scholar
Lee, J.K., Smith, K.B., Hayner, C.M., et al.: Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025–2027 (2010)
CAS
Google Scholar
Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011)
CAS
Google Scholar
Yi, T.F., Yang, S.Y., Xie, Y.: Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 3, 5750–5777 (2015)
CAS
Google Scholar
Kitta, M., Akita, T., Maeda, Y., et al.: Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28, 12384–12392 (2012)
CAS
PubMed
Google Scholar
Borghols, W.J.H., Wagemaker, M., Lafont, U., et al.: Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009)
CAS
PubMed
Google Scholar
Du Pasquier, A., Laforgue, A., Simon, P., et al.: A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device. J. Electrochem. Soc. 149, A302–A306 (2002)
Google Scholar
Abouimrane, A., Abu-Lebdeb, Y., Alarco, P.J., et al.: Plastic crystal-lithium batteries: an effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 151, A1028–A1031 (2004)
CAS
Google Scholar
Du Pasquier, A., Laforgue, A., Simon, P.: Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J. Power Sources 125, 95–102 (2004)
Google Scholar
Sha, Y.J., Zhao, B.T., Ran, R., et al.: Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A 1, 13233–13243 (2013)
CAS
Google Scholar
Xiao, L.L., Chen, G., Sun, J., et al.: Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A 1, 14618–14626 (2013)
CAS
Google Scholar
Chen, Z., Belharouak, I., Sun, Y.K., et al.: Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 23, 959–969 (2013)
CAS
Google Scholar
Shen, L.F., Yan, C., Luo, H., et al.: Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 20, 6998–7004 (2010)
CAS
Google Scholar
Sorensen, E.M., Barry, S.J., Jung, H.K., et al.: Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater. 18, 482–489 (2006)
CAS
Google Scholar
Xu, W., Chen, X., Wang, W., et al.: Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. J. Power Sources 236, 169–174 (2013)
CAS
Google Scholar
Li, W., Li, X., Chen, M., et al.: AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim. Acta 139, 104–110 (2014)
CAS
Google Scholar
Dambournet, D., Belharouak, I., Amine, K.: Tailored preparation methods of TiO2anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem. Mater. 22, 1173–1179 (2010)
CAS
Google Scholar
Dambournet, D., Chapman, K.W., Koudriachova, M.V., et al.: Combining the pair distribution function and computational methods to understand lithium insertion in brookite (TiO2). Inorg. Chem. 50, 5855–5857 (2011)
CAS
PubMed
Google Scholar
Amine, K., Belharouak, I., Chen, Z., et al.: Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 22, 3052–3057 (2010)
CAS
PubMed
Google Scholar
Armstrong, A.R., Armstrong, G., Canales, J., et al.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862–865 (2005)
CAS
Google Scholar
Obrovac, M.N., Chevrier, V.L.: Alloy negative electrodes for li-ion batteries. Chem. Rev. 114, 11444–11502 (2014)
CAS
PubMed
Google Scholar
Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)
CAS
Google Scholar
Simon, G.K., Goswami, T.: Improving anodes for lithium ion batteries. Metall. Mater. Trans. A 42a, 231–238 (2011)
Google Scholar
Huggins, R.A.: Lithium alloy negative electrodes. J. Power Sources 81, 13–19 (1999)
Google Scholar
Beaulieu, L.Y., Eberman, K.W., Turner, R.L., et al.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001)
CAS
Google Scholar
Ruffo, R., Hong, S.S., Chan, C.K., et al.: Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009)
CAS
Google Scholar
Chan, C.K., Ruffo, R., Hong, S.S., et al.: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009)
CAS
Google Scholar
Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)
CAS
PubMed
Google Scholar
Ryu, I., Choi, J.W., Cui, Y., et al.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011)
CAS
Google Scholar
Hatchard, T.D., Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)
CAS
Google Scholar
Bang, B.M., Kim, H., Lee, J.P., et al.: Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 4, 3395–3399 (2011)
CAS
Google Scholar
Chen, X.L., Gerasopoulos, K., Guo, J., et al.: A patterned 3d silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv. Funct. Mater. 21, 380–387 (2011)
CAS
Google Scholar
Foll, H., Hartz, H., Ossei-Wusu, E., et al.: Si nanowire arrays as anodes in Li ion batteries. Phys. Status Solidi 4, 4–6 (2010)
Google Scholar
Peng, K.Q., Wang, X., Li, L., et al.: Silicon nanowires for advanced energy conversion and storage. Nano Today 8, 75–97 (2013)
CAS
Google Scholar
Chakrapani, V., Rusli, F., Filler, M.A., et al.: Silicon nanowire anode: improved battery life with capacity-limited cycling. J. Power Sources 205, 433–438 (2012)
CAS
Google Scholar
Du, N., Zhang, H., Fan, X., et al.: Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. J. Alloys Compd. 526, 53–58 (2012)
CAS
Google Scholar
Chockla, A.M., Harris, J.T., Akhavan, V.A., et al.: Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133, 20914–20921 (2011)
CAS
PubMed
Google Scholar
Nguyen, H.T., Yao, H., Zamfir, M.R., et al.: Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 1, 1154–1161 (2011)
CAS
Google Scholar
Cui, L.F., Ruffo, R., Chan, C.K., et al.: Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009)
CAS
PubMed
Google Scholar
Liao, H.W., Karki, K., Zhang, Y., et al.: Interfacial mechanics of carbon nanotube@ amorphous-si coaxial nanostructures. Adv. Mater. 23, 4318–4322 (2011)
CAS
PubMed
Google Scholar
Wang, W., Kumta, P.N.: Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233–2241 (2010)
CAS
PubMed
Google Scholar
Liu, W.R., Wu, N.L., Shieh, D.T., et al.: Synthesis and characterization of nanoporous NiSi–Si composite anode for lithium-ion batteries. J. Electrochem. Soc. 154, A97–A102 (2007)
CAS
Google Scholar
Yao, Y., Huo, K., Hu, L., et al.: Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 5, 8346–8351 (2011)
CAS
PubMed
Google Scholar
Ma, H., Cheng, F., Chen, J.Y., et al.: Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 19, 4067–4070 (2007)
CAS
Google Scholar
Li, X., Gu, M., Hu, S., et al.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014)
CAS
PubMed
Google Scholar
Yao, Y., McDowell, M.T., Ryu, I., et al.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)
CAS
PubMed
Google Scholar
Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 309–314 (2012)
Google Scholar
Luo, L.L., Zhao, P., Yang, H., et al.: Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett. 15, 7016–7022 (2015)
CAS
PubMed
Google Scholar
Liu, N., Wu, H., McDowell, M.T., et al.: A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)
CAS
PubMed
Google Scholar
Liu, N., Lu, Z., Zhao, J.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)
CAS
PubMed
Google Scholar
Wu, H., Yu, G.H., Liu, N., et al.: Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)
PubMed
Google Scholar
Wang, C., Wu, H., Chen, Z., et al.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013)
CAS
PubMed
Google Scholar
Yu, S.H., Lee, S.H., Lee, D.J., et al.: Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 16, 2146–2172 (2015)
Google Scholar
Yuan, C.Z., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)
CAS
Google Scholar
Wang, F., Rober, R., Chernova, N.A., et al.: Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011)
CAS
PubMed
Google Scholar
Li, L.S., Meng, F., Jin, S.: High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett. 12, 6030–6037 (2012)
CAS
PubMed
Google Scholar
Yu, D.Y.W., Hoster, H.E., Batabyal, S.K.: Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 4, 4562 (2014)
PubMed
PubMed Central
Google Scholar
Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)
CAS
PubMed
Google Scholar
Mukherjee, R., Krishnan, R., Lu, T.M., et al.: Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1, 518–533 (2012)
CAS
Google Scholar
Taberna, L., Mitra, S., Poizot, P., et al.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)
CAS
PubMed
Google Scholar
Zhang, H., Zhou, L., Noonan, O., et al.: Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342 (2014)
CAS
Google Scholar
Xu, W., Wang, J., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014)
CAS
Google Scholar
Aurbach, D., Zinigrad, E., Cohen, Y., et al.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148, 405–416 (2002)
CAS
Google Scholar
Huang, J.Y., Zhong, L., Wang, C.M., et al.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)
CAS
PubMed
Google Scholar
Harry, K.J., Hallinan, D.T., Parkinson, D.Y., et al.: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)
CAS
PubMed
Google Scholar
Bhattacharyya, R., Key, B., Chen, H., et al.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010)
CAS
PubMed
Google Scholar
Qian, J., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015)
CAS
PubMed
PubMed Central
Google Scholar
Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)
CAS
PubMed
Google Scholar
Li, W.Y., Yao, H.B., Yan, K., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015)
PubMed
Google Scholar
Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)
CAS
PubMed
Google Scholar
Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)
CAS
Google Scholar
Zheng, G., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)
CAS
PubMed
Google Scholar
Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014)
CAS
PubMed
Google Scholar
Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015)
CAS
PubMed
Google Scholar