Skip to main content

High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries

Abstract

Transformational changes in battery technologies are critically needed to enable the effective use of renewable energy sources, such as solar and wind, and to allow for the expansion of the electrification of vehicles. Developing high-performance batteries is critical to meet these requirements, which certainly relies on material breakthroughs. This review article presents the recent progresses and challenges in discovery of high-performance anode materials for Li-ion batteries related to their applications in future electrical vehicles and grid energy storage. The advantages and disadvantages of a series of anode materials are highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

a, b Adapted with permission from Ref. [134]. c, d Adapted with permission from Ref. [5]

Fig. 6

a Adapted with permission from Ref. [143]. b Adapted with permission from Ref. [154]. c Adapted with permission from Ref. [161]. d Adapted with permission from Ref. [160]. e, f Adapted with permission from Ref. [163]. g, h Adapted with permission from Ref. [164]. i, j Adapted with permission from Ref. [165]. k Adapted with permission from Ref. [167]

Fig. 7

b Adapted with permission from Ref. [62]. cf Adapted with permission from Ref. [111]

Fig. 8

a, b Adapted with permission from Ref. [187]. ce Adapted with permission from Ref. [180]. f Adapted with permission from Ref. [181]. g Adapted with permission from Ref. [183]. hj Adapted with permission from Ref. [187]. k Adapted with permission from Ref. [188]

References

  1. Yang, Z., Zhang, J., Kintner-Meyer, M., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    CAS  PubMed  Google Scholar 

  2. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    CAS  PubMed  Google Scholar 

  3. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  PubMed  Google Scholar 

  4. Scrosati, B.: Challenge of portable power. Nature 373, 557–558 (1995)

    CAS  Google Scholar 

  5. Aricò, A.S., Bruce, P., Scrosati, B., et al.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    PubMed  Google Scholar 

  6. Sun, Y.K., Myung, S.T., Park, B.C., et al.: High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009)

    CAS  PubMed  Google Scholar 

  7. Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    CAS  PubMed  Google Scholar 

  8. Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014)

    CAS  PubMed  Google Scholar 

  9. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)

    CAS  PubMed  Google Scholar 

  10. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)

    CAS  PubMed  Google Scholar 

  11. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    CAS  Google Scholar 

  12. Cabana, J., Monconduit, L., Larcher, D., et al.: Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)

    CAS  PubMed  Google Scholar 

  13. David, J.: Nickel–cadmium battery recycling evolution in Europe. J. Power Sources 57, 71–73 (1995)

    CAS  Google Scholar 

  14. Kanda, M., Yamamoto, K., Kanno, Y., et al.: Cyclic behaviour of metal hydride electrodes and the cell characteristics of nickel-metal hydride batteries. J. Less Common Met. 172–174, 1227–1235 (1991)

    Google Scholar 

  15. Amine, K., Kanno, R., Tzeng, Y.H.: Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014)

    CAS  Google Scholar 

  16. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    CAS  Google Scholar 

  17. Armstrong, A.R., Bruce, P.G.: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996)

    CAS  Google Scholar 

  18. Kang, K.S., Meng, Y.S., Breger, J., et al.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006)

    CAS  PubMed  Google Scholar 

  19. Yabuuchi, N., Ohzuku, T.: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 119, 171–174 (2003)

    Google Scholar 

  20. Okubo, M., Hosono, E., Kim, J., et al.: Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)

    CAS  PubMed  Google Scholar 

  21. Guerard, D., Herold, A.: Intercalation of lithium into graphite and other carbons. Carbon 13, 337–345 (1975)

    CAS  Google Scholar 

  22. Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)

    CAS  Google Scholar 

  23. Cho, J., Kim, Y.J., Park, B.: Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000)

    CAS  Google Scholar 

  24. Song, S.W., Zhuang, G.V., Ross, P.N.: Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J. Electrochem. Soc. 151, A1162–A1167 (2004)

    CAS  Google Scholar 

  25. Tran, H.Y., Greco, G., Täubert, C., et al.: Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries. J. Power Sources 210, 276–285 (2012)

    CAS  Google Scholar 

  26. Wang, Z.X., Sun, Y.C., Chen, L.Q., et al.: Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries. J. Electrochem. Soc. 151, A914–A921 (2004)

    CAS  Google Scholar 

  27. Rao, C.V., Reddy, A.L.M., Ishikawa, Y., et al.: LiNi1/3Co1/3Mn1/3O2-Graphene composite as a promising cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 3, 2966–2972 (2011)

    CAS  Google Scholar 

  28. Tarascon, J.M., McKinnon, W.R., Coowar, F., et al.: Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc. 141, 1421–1431 (1994)

    CAS  Google Scholar 

  29. Chung, S.Y., Bloking, J.T., Chiang, Y.M.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)

    CAS  PubMed  Google Scholar 

  30. Thackeray, M.M., Kang, S.H., Johnson, C., et al.: Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007)

    CAS  Google Scholar 

  31. Yabuuchi, N., Yoshii, K., Myung, S.T., et al.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)

    CAS  PubMed  Google Scholar 

  32. Zheng, J.M., Gu, M., Xiao, J., et al.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013)

    CAS  PubMed  Google Scholar 

  33. Zheng, J.M., Gu, M., Genc, A., et al.: Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628–2635 (2014)

    CAS  PubMed  Google Scholar 

  34. Zhu, Z., Kushima, A., Yin, Z., et al.: Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016)

    CAS  Google Scholar 

  35. Lu, J., Lee, Y. J., Luo, X., et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016)

    CAS  PubMed  Google Scholar 

  36. Tan, G., Xu, R., Xing, Z., et al. Burning lithium in CS2 for high-performing compact Li2 S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017)

    CAS  Google Scholar 

  37. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    CAS  PubMed  Google Scholar 

  38. Grey, C.P., Dupre, N.: NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493–4512 (2004)

    CAS  PubMed  Google Scholar 

  39. Ellis, B.L., Lee, K.T., Nazar, L.F.: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010)

    CAS  Google Scholar 

  40. Luntz, A.C., McCloskey, B.D.: Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014)

    CAS  PubMed  Google Scholar 

  41. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    CAS  Google Scholar 

  42. Chen, J., Cheng, F.Y.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713–723 (2009)

    CAS  PubMed  Google Scholar 

  43. Yang, Y., Zheng, G., Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)

    CAS  PubMed  Google Scholar 

  44. Long, J.W., Dunn, B., Rolison, D.R., et al.: Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004)

    CAS  PubMed  Google Scholar 

  45. Goriparti, S., Miele, E., Angelis, F.D., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    CAS  Google Scholar 

  46. Hassoun, J., Scrosati, B.: Review-advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J. Electrochem. Soc. 162, A2582–A2588 (2015)

    CAS  Google Scholar 

  47. Landi, B.J., Ganter, M.J., Cress, C.D., et al.: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638–654 (2009)

    CAS  Google Scholar 

  48. Lee, S.W., Yabuuchi, N., Gallant, B.M., et al.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010)

    CAS  PubMed  Google Scholar 

  49. Qie, L., Chen, W.M., Wang, Z.H., et al.: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24, 2047–2050 (2012)

    PubMed  Google Scholar 

  50. Su, F.Y., He, Y.B., Li, B.H., et al.: Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1, 429–439 (2012)

    CAS  Google Scholar 

  51. Ambrosi, A., Chua, C.K., Bonanni, A., et al.: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014)

    CAS  PubMed  Google Scholar 

  52. Fang, Y., Lv, Y.Y., Che, R.C., et al.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524–1530 (2013)

    CAS  PubMed  Google Scholar 

  53. Stein, A., Wang, Z.Y., Fierke, M.A.: Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21, 265–293 (2009)

    CAS  Google Scholar 

  54. Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012)

    CAS  PubMed  Google Scholar 

  55. Park, C.M., Kim, J.H., Kim, H., et al.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010)

    CAS  PubMed  Google Scholar 

  56. Miyachi, M., Yamamoto, H., Kawai, H., et al.: Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 152, A2089–A2091 (2005)

    CAS  Google Scholar 

  57. Xue, D.J., Xin, S., Yan, Y., et al.: Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J. Am. Chem. Soc. 134, 2512–2515 (2012)

    CAS  PubMed  Google Scholar 

  58. Seo, M.H., Park, M., Lee, K.T., et al.: High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 4, 425–428 (2011)

    CAS  Google Scholar 

  59. Idota, Y., Kubota, T., Matsufuji, A., et al.: Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997)

    CAS  Google Scholar 

  60. Lee, K.T., Jung, Y.S., Oh, S.M.: Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 125, 5652–5653 (2003)

    CAS  PubMed  Google Scholar 

  61. Lee, K., Mazare, A., Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014)

    CAS  PubMed  Google Scholar 

  62. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    CAS  PubMed  Google Scholar 

  63. Ji, L.W., Lin, Z., Alcoutlabi, M., et al.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011)

    CAS  Google Scholar 

  64. Rowsell, J.L.C., Pralong, V., Nazar, L.F.: Layered lithium iron nitride: a promising anode material for Li-ion batteries. J. Am. Chem. Soc. 123, 8598–8599 (2001)

    CAS  PubMed  Google Scholar 

  65. Sun, Y., Zhao, L., Pan, H.L., et al.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)

    PubMed  Google Scholar 

  66. Wagemaker, M., Simon, D.R., Kelder, E.M., et al.: A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv. Mater. 18, 3169–3173 (2006)

    CAS  Google Scholar 

  67. Lu, X., Gu, L., Hu, Y.S., et al.: New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12anode. J. Am. Chem. Soc. 137, 1581–1586 (2015)

    CAS  PubMed  Google Scholar 

  68. Wang, Y.Q., Gu, L., Guo, Y.G., et al.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012)

    CAS  PubMed  Google Scholar 

  69. Dahl, M., Liu, Y., Yin, Y.: Composite titanium dioxide nanomaterials. Chem. Rev. 114, 9853–9889 (2014)

    CAS  PubMed  Google Scholar 

  70. De Angelis, F., Di Valentin, C., Fantacci, S., et al.: Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014)

    PubMed  Google Scholar 

  71. Liu, L., Chen, X.: Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014)

    CAS  PubMed  Google Scholar 

  72. Dreyer, D.R., Park, S., Bielawski, C.W., et al.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    CAS  PubMed  Google Scholar 

  73. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    CAS  PubMed  Google Scholar 

  74. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    CAS  PubMed  Google Scholar 

  75. Yoo, E., Kim, J., Hosono, E., et al.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    CAS  PubMed  Google Scholar 

  76. Dahn, J.R., Zheng, T., Liu, Y.H., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)

    CAS  Google Scholar 

  77. Van der Ven, A., Bhattacharya, J., Belak, A.A.: Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013)

    PubMed  Google Scholar 

  78. Kaskhedikar, N.A., Maier, J.: Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2009)

    CAS  Google Scholar 

  79. Wang, G.X., Shen, X.P., Yao, J., et al.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009)

    CAS  Google Scholar 

  80. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    CAS  PubMed  Google Scholar 

  81. Xu, Y.X., Lin, Z., Zhong, X., et al.: Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 5345–5350 (2015)

    CAS  Google Scholar 

  82. David, L., Singh, G.: Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C 118, 28401–28408 (2014)

    CAS  Google Scholar 

  83. Pan, D.Y., Wang, S., Zhao, B., et al.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)

    CAS  Google Scholar 

  84. Zhou, L.J., Hou, Z.F., Wu, L.M.: First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116, 21780–21787 (2012)

    CAS  Google Scholar 

  85. Zheng, T., Xing, W., Dahn, J.R.: Carbons prepared from coals for anodes of lithium-ion cells. Carbon 34, 1501–1507 (1996)

    CAS  Google Scholar 

  86. Xue, J.S., Dahn, J.R.: Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc. 142, 3668–3677 (1995)

    CAS  Google Scholar 

  87. Mapasha, R.E., Chetty, N.: Ab initio studies of staggered Li adatoms on graphene. Comput. Mater. Sci. 49, 787–791 (2010)

    CAS  Google Scholar 

  88. Yang, C.K.: A metallic graphene layer adsorbed with lithium. Appl. Phys. Lett. 94, 163115 (2009)

    Google Scholar 

  89. Medeiros, P.V.C., Mota, F.D., Mascarenhas, A.J.S., et al.: Adsorption of monovalent metal atoms on graphene: a theoretical approach. Nanotechnology 21, 11 (2010)

    Google Scholar 

  90. Fan, X.F., Zheng, W., Kuo, J.L., et al.: Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 7793–7797 (2013)

    CAS  PubMed  Google Scholar 

  91. Zhou, J., Sun, Q., Wang, Q., et al.: Tailoring Li adsorption on graphene. Phys. Rev. B 90, 205427 (2014)

    Google Scholar 

  92. Takamura, T., Endo, K., Fu, L., et al.: Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim. Acta 53, 1055–1061 (2007)

    CAS  Google Scholar 

  93. Wang, C.Y., Li, D., Too, C.O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604–2606 (2009)

    CAS  Google Scholar 

  94. Abouimrane, A., Compton, O.C., Amine, K., et al.: Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 114, 12800–12804 (2010)

    CAS  Google Scholar 

  95. Liu, X., Hu, Y.S., Muller, J.O., et al.: Composites of molecular-anchored graphene and nanotubes with multitubular structure: a new type of carbon electrode. Chemsuschem 3, 261–265 (2010)

    CAS  PubMed  Google Scholar 

  96. Wu, Z.S., Ren, W.C., Xu, L., et al.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011)

    CAS  PubMed  Google Scholar 

  97. Li, X.F., Geng, D.S., Zhang, Y., et al.: Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun. 13, 822–825 (2011)

    CAS  Google Scholar 

  98. Reddy, A.L.M., Srivastava, A., Gowda, S.R., et al.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010)

    CAS  PubMed  Google Scholar 

  99. Wang, H.B., Zhang, C., Liu, Z., et al.: Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21, 5430–5434 (2011)

    CAS  Google Scholar 

  100. Wang, Z.L., Xu, D., Wang, H.G., et al.: In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7, 2422–2430 (2013)

    CAS  PubMed  Google Scholar 

  101. Huang, X., Qi, X.Y., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    CAS  PubMed  Google Scholar 

  102. Guo, S.J., Dong, S.J.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011)

    CAS  PubMed  Google Scholar 

  103. Xu, C.H., Xu, B.H., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013)

    CAS  Google Scholar 

  104. Jiang, Y., Jiang, Z.J., Cheng, S., et al.: Fabrication of 3-dimensional porous graphene materials for lithium ion batteries. Electrochim. Acta 146, 437–446 (2014)

    CAS  Google Scholar 

  105. Fan, Z.J., Yan, J., Ning, G., et al.: Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013)

    CAS  Google Scholar 

  106. Zhang, L.L., Zhao, X., Stoller, M.D., et al.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)

    CAS  PubMed  Google Scholar 

  107. Lv, W., Tang, D.M., He, Y.B., et al.: Low-Temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3, 3730–3736 (2009)

    CAS  PubMed  Google Scholar 

  108. Vargas, O., Caballero, A., Morales, J., et al.: Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 6, 3290–3298 (2014)

    CAS  PubMed  Google Scholar 

  109. Vargas, O.A., Caballero, A., Morales, J.: Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4, 2083–2092 (2012)

    Google Scholar 

  110. Winter, M., Besenhard, J.O., Spahr, M.E., et al.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)

    CAS  Google Scholar 

  111. Wang, H., Cui, L.F., Yang, Y., et al.: Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010)

    CAS  PubMed  Google Scholar 

  112. Wu, Z.S., Ren, W., Wen, L., et al.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187–3194 (2010)

    CAS  PubMed  Google Scholar 

  113. Yang, S.B., Cui, G., Pang, S., et al.: Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. Chemsuschem 3, 236–239 (2010)

    CAS  PubMed  Google Scholar 

  114. Wang, D.H., Choi, D., Li, J., et al.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)

    CAS  PubMed  Google Scholar 

  115. Wang, G.X., Wang, B., Wang, X., et al.: Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19, 8378–8384 (2009)

    CAS  Google Scholar 

  116. Chou, S.L., Wang, J.Z., Choucair, M., et al.: Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010)

    CAS  Google Scholar 

  117. Lee, J.K., Smith, K.B., Hayner, C.M., et al.: Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025–2027 (2010)

    CAS  Google Scholar 

  118. Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011)

    CAS  Google Scholar 

  119. Yi, T.F., Yang, S.Y., Xie, Y.: Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 3, 5750–5777 (2015)

    CAS  Google Scholar 

  120. Kitta, M., Akita, T., Maeda, Y., et al.: Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28, 12384–12392 (2012)

    CAS  PubMed  Google Scholar 

  121. Borghols, W.J.H., Wagemaker, M., Lafont, U., et al.: Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009)

    CAS  PubMed  Google Scholar 

  122. Du Pasquier, A., Laforgue, A., Simon, P., et al.: A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device. J. Electrochem. Soc. 149, A302–A306 (2002)

    Google Scholar 

  123. Abouimrane, A., Abu-Lebdeb, Y., Alarco, P.J., et al.: Plastic crystal-lithium batteries: an effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 151, A1028–A1031 (2004)

    CAS  Google Scholar 

  124. Du Pasquier, A., Laforgue, A., Simon, P.: Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J. Power Sources 125, 95–102 (2004)

    Google Scholar 

  125. Sha, Y.J., Zhao, B.T., Ran, R., et al.: Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A 1, 13233–13243 (2013)

    CAS  Google Scholar 

  126. Xiao, L.L., Chen, G., Sun, J., et al.: Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A 1, 14618–14626 (2013)

    CAS  Google Scholar 

  127. Chen, Z., Belharouak, I., Sun, Y.K., et al.: Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 23, 959–969 (2013)

    CAS  Google Scholar 

  128. Shen, L.F., Yan, C., Luo, H., et al.: Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 20, 6998–7004 (2010)

    CAS  Google Scholar 

  129. Sorensen, E.M., Barry, S.J., Jung, H.K., et al.: Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater. 18, 482–489 (2006)

    CAS  Google Scholar 

  130. Xu, W., Chen, X., Wang, W., et al.: Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. J. Power Sources 236, 169–174 (2013)

    CAS  Google Scholar 

  131. Li, W., Li, X., Chen, M., et al.: AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim. Acta 139, 104–110 (2014)

    CAS  Google Scholar 

  132. Dambournet, D., Belharouak, I., Amine, K.: Tailored preparation methods of TiO2anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem. Mater. 22, 1173–1179 (2010)

    CAS  Google Scholar 

  133. Dambournet, D., Chapman, K.W., Koudriachova, M.V., et al.: Combining the pair distribution function and computational methods to understand lithium insertion in brookite (TiO2). Inorg. Chem. 50, 5855–5857 (2011)

    CAS  PubMed  Google Scholar 

  134. Amine, K., Belharouak, I., Chen, Z., et al.: Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 22, 3052–3057 (2010)

    CAS  PubMed  Google Scholar 

  135. Armstrong, A.R., Armstrong, G., Canales, J., et al.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862–865 (2005)

    CAS  Google Scholar 

  136. Obrovac, M.N., Chevrier, V.L.: Alloy negative electrodes for li-ion batteries. Chem. Rev. 114, 11444–11502 (2014)

    CAS  PubMed  Google Scholar 

  137. Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    CAS  Google Scholar 

  138. Simon, G.K., Goswami, T.: Improving anodes for lithium ion batteries. Metall. Mater. Trans. A 42a, 231–238 (2011)

    Google Scholar 

  139. Huggins, R.A.: Lithium alloy negative electrodes. J. Power Sources 81, 13–19 (1999)

    Google Scholar 

  140. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., et al.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001)

    CAS  Google Scholar 

  141. Ruffo, R., Hong, S.S., Chan, C.K., et al.: Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009)

    CAS  Google Scholar 

  142. Chan, C.K., Ruffo, R., Hong, S.S., et al.: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009)

    CAS  Google Scholar 

  143. Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)

    CAS  PubMed  Google Scholar 

  144. Ryu, I., Choi, J.W., Cui, Y., et al.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011)

    CAS  Google Scholar 

  145. Hatchard, T.D., Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)

    CAS  Google Scholar 

  146. Bang, B.M., Kim, H., Lee, J.P., et al.: Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 4, 3395–3399 (2011)

    CAS  Google Scholar 

  147. Chen, X.L., Gerasopoulos, K., Guo, J., et al.: A patterned 3d silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv. Funct. Mater. 21, 380–387 (2011)

    CAS  Google Scholar 

  148. Foll, H., Hartz, H., Ossei-Wusu, E., et al.: Si nanowire arrays as anodes in Li ion batteries. Phys. Status Solidi 4, 4–6 (2010)

    Google Scholar 

  149. Peng, K.Q., Wang, X., Li, L., et al.: Silicon nanowires for advanced energy conversion and storage. Nano Today 8, 75–97 (2013)

    CAS  Google Scholar 

  150. Chakrapani, V., Rusli, F., Filler, M.A., et al.: Silicon nanowire anode: improved battery life with capacity-limited cycling. J. Power Sources 205, 433–438 (2012)

    CAS  Google Scholar 

  151. Du, N., Zhang, H., Fan, X., et al.: Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. J. Alloys Compd. 526, 53–58 (2012)

    CAS  Google Scholar 

  152. Chockla, A.M., Harris, J.T., Akhavan, V.A., et al.: Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133, 20914–20921 (2011)

    CAS  PubMed  Google Scholar 

  153. Nguyen, H.T., Yao, H., Zamfir, M.R., et al.: Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 1, 1154–1161 (2011)

    CAS  Google Scholar 

  154. Cui, L.F., Ruffo, R., Chan, C.K., et al.: Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009)

    CAS  PubMed  Google Scholar 

  155. Liao, H.W., Karki, K., Zhang, Y., et al.: Interfacial mechanics of carbon nanotube@ amorphous-si coaxial nanostructures. Adv. Mater. 23, 4318–4322 (2011)

    CAS  PubMed  Google Scholar 

  156. Wang, W., Kumta, P.N.: Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233–2241 (2010)

    CAS  PubMed  Google Scholar 

  157. Liu, W.R., Wu, N.L., Shieh, D.T., et al.: Synthesis and characterization of nanoporous NiSi–Si composite anode for lithium-ion batteries. J. Electrochem. Soc. 154, A97–A102 (2007)

    CAS  Google Scholar 

  158. Yao, Y., Huo, K., Hu, L., et al.: Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 5, 8346–8351 (2011)

    CAS  PubMed  Google Scholar 

  159. Ma, H., Cheng, F., Chen, J.Y., et al.: Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 19, 4067–4070 (2007)

    CAS  Google Scholar 

  160. Li, X., Gu, M., Hu, S., et al.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014)

    CAS  PubMed  Google Scholar 

  161. Yao, Y., McDowell, M.T., Ryu, I., et al.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    CAS  PubMed  Google Scholar 

  162. Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 309–314 (2012)

    Google Scholar 

  163. Luo, L.L., Zhao, P., Yang, H., et al.: Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett. 15, 7016–7022 (2015)

    CAS  PubMed  Google Scholar 

  164. Liu, N., Wu, H., McDowell, M.T., et al.: A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)

    CAS  PubMed  Google Scholar 

  165. Liu, N., Lu, Z., Zhao, J.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)

    CAS  PubMed  Google Scholar 

  166. Wu, H., Yu, G.H., Liu, N., et al.: Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    PubMed  Google Scholar 

  167. Wang, C., Wu, H., Chen, Z., et al.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013)

    CAS  PubMed  Google Scholar 

  168. Yu, S.H., Lee, S.H., Lee, D.J., et al.: Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 16, 2146–2172 (2015)

    Google Scholar 

  169. Yuan, C.Z., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    CAS  Google Scholar 

  170. Wang, F., Rober, R., Chernova, N.A., et al.: Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011)

    CAS  PubMed  Google Scholar 

  171. Li, L.S., Meng, F., Jin, S.: High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett. 12, 6030–6037 (2012)

    CAS  PubMed  Google Scholar 

  172. Yu, D.Y.W., Hoster, H.E., Batabyal, S.K.: Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 4, 4562 (2014)

    PubMed  PubMed Central  Google Scholar 

  173. Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    CAS  PubMed  Google Scholar 

  174. Mukherjee, R., Krishnan, R., Lu, T.M., et al.: Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1, 518–533 (2012)

    CAS  Google Scholar 

  175. Taberna, L., Mitra, S., Poizot, P., et al.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)

    CAS  PubMed  Google Scholar 

  176. Zhang, H., Zhou, L., Noonan, O., et al.: Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342 (2014)

    CAS  Google Scholar 

  177. Xu, W., Wang, J., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014)

    CAS  Google Scholar 

  178. Aurbach, D., Zinigrad, E., Cohen, Y., et al.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148, 405–416 (2002)

    CAS  Google Scholar 

  179. Huang, J.Y., Zhong, L., Wang, C.M., et al.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)

    CAS  PubMed  Google Scholar 

  180. Harry, K.J., Hallinan, D.T., Parkinson, D.Y., et al.: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)

    CAS  PubMed  Google Scholar 

  181. Bhattacharyya, R., Key, B., Chen, H., et al.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010)

    CAS  PubMed  Google Scholar 

  182. Qian, J., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)

    CAS  PubMed  Google Scholar 

  184. Li, W.Y., Yao, H.B., Yan, K., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015)

    PubMed  Google Scholar 

  185. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    CAS  PubMed  Google Scholar 

  186. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)

    CAS  Google Scholar 

  187. Zheng, G., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    CAS  PubMed  Google Scholar 

  188. Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014)

    CAS  PubMed  Google Scholar 

  189. Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Pan, Yi Cui or Khalil Amine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Chen, Z., Pan, F. et al. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energ. Rev. 1, 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0001-4

Keywords

  • Li-ion battery
  • Anode materials
  • Graphite
  • Silicon
  • Lithium metal
  • Metal oxides
  • TiO2

PACS

  • 81
  • 84