Skip to main content
Log in

Numerical simulation of Burger’s equation using a particle swarm optimization

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

The process of optimization implies maximizing the advantages of a mathematical function or system while minimizing its shortcomings. Optimizing the parameters associated with a mathematical model has a critical role to play in finding the solution in many aspects. Among the nature-inspired algorithms, particle swarm optimization (PSO) is one such algorithm that offers the potential for global optimization. In this paper, a novel approach is proposed to optimize the solution of the Burger’s equation by implementing the particle swarm optimization along the exponential B-spline basis function with the differential quadrature method (PSO-EDQ). The unknown parameter of exponential basis functions plays an important role in the error calculation. The manuscript is focused on the application of PSO in minimizing the error and thus obtaining the value of the optimal parameter. The numerical results are presented as figures and tables along with comparison with the current studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kate V, Shukla P (2022) Breast tissue density classification based on gravitational search algorithm and deep learning: a novel approach. Int J Inf Technol 14:3481–3493

    Google Scholar 

  2. Sharma M (2022) Categorization of self care problem for children with disabilities using partial swarm optimization approach. Int J Inf Technol 14:1835–1843

    Google Scholar 

  3. Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(03):297–321

    Article  Google Scholar 

  4. Bana S, Saini RP (2017) Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints. Renewable Energy 101:1299–1310

    Article  Google Scholar 

  5. Cui Z, Zhang J, Wu D, Cai X, Wang H, Zhang W, Chen J (2020) Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf Sci 518:256–271

    Article  MathSciNet  Google Scholar 

  6. Shaheen MA, Yousri D, Fathy A, Hasanien HM, Alkuhayli A, Muyeen SM (2020) A novel application of improved marine predators algorithm and particle swarm optimization for solving the ORPD problem. Energies 13(21):5679

    Article  Google Scholar 

  7. Koupaei JA, Firouznia M, Hosseini SMM (2018) Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm. Alex Eng J 57(4):3641–3652

    Article  Google Scholar 

  8. Zhong XC, Chen JY, Fan ZY (2019) A particle swarm optimization-based method for numerically solving ordinary differential equations. Math Prob Eng. https://doi.org/10.1155/2019/9071236

    Article  MathSciNet  MATH  Google Scholar 

  9. Abed AT, Aladool AS (2022) Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Num Algebra Control Optim 12(2):321

    Article  MATH  Google Scholar 

  10. Kumar R, Srivastava S, Dass A, Srivastava S (2021) A novel approach to predict stock market price using radial basis function network. Int J Inf Technol 13:2277–2285

    Google Scholar 

  11. Kumar PS, Sivamani S (2021) Numerical analysis and implementation of artificial neural network algorithm for nonlinear function. Int J Inf Technol 13:2059–2068

    Google Scholar 

  12. Arora G, Chauhan P, Asjad MI, Joshi V, Emadifar H, Jarad F (2023) Particle swarm optimization for solving sine-gordan equation. Comput Syst Sci Eng 45(3):2647–2658

    Article  Google Scholar 

  13. Arora G, Singh BK (2013) Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method. Appl Math Comput 224:166–177

    MathSciNet  MATH  Google Scholar 

  14. Korkmaz A, Dağ İ (2013) Cubic B-spline differential quadrature methods and stability for Burgers’ equation. Eng Comput. https://doi.org/10.1108/02644401311314312

    Article  MATH  Google Scholar 

  15. Arora G, Joshi V (2018) A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one and two dimensions. Alex Eng J 57(2):1087–1098

    Article  Google Scholar 

  16. Tamsir M, Srivastava VK, Jiwari R (2016) An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation. Appl Math Comput 290:111–124

    MathSciNet  MATH  Google Scholar 

  17. Öziş T, Aksan EN, Özdeş A (2003) A finite element approach for solution of Burgers’ equation. Appl Math Comput 139(2–3):417–428

    MathSciNet  MATH  Google Scholar 

  18. Dogan A (2004) A Galerkin finite element approach to Burgers’ equation. Appl Math Comput 157(2):331–346

    MathSciNet  MATH  Google Scholar 

  19. Dag I, Irk D, Sahin A (2005) B-spline collocation methods for numerical solutions of the Burgers’ equation. Math Probl Eng 2005(5):521–538

    Article  MathSciNet  MATH  Google Scholar 

  20. Saka B, Dağ İ (2007) Quartic B-spline collocation method to the numerical solutions of the Burgers’ equation. Chaos, Solitons Fractals 32(3):1125–1137

    Article  MathSciNet  MATH  Google Scholar 

  21. Mittal RC, Arora G (2011) Numerical solution of the coupled viscous Burgers’ equation. Commun Nonlinear Sci Numer Simul 16(3):1304–1313

    Article  MathSciNet  MATH  Google Scholar 

  22. Mittal RC, Jain RK (2012) Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl Math Comput 218(15):7839–7855

    MathSciNet  MATH  Google Scholar 

  23. Kutluay S, Bahadir AR, Özdeş A (1999) Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods. J Comput Appl Math 103(2):251–261

    Article  MathSciNet  MATH  Google Scholar 

  24. Kadalbajoo MK, Sharma KK, Awasthi A (2005) A parameter-uniform implicit difference scheme for solving time-dependent Burgers’ equations. Appl Math Comput 170(2):1365–1393

    MathSciNet  MATH  Google Scholar 

  25. Hassanien IA, Salama AA, Hosham HA (2005) Fourth-order finite difference method for solving Burgers’ equation. Appl Math Comput 170(2):781–800

    MathSciNet  MATH  Google Scholar 

  26. Liao W (2008) An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl Math Comput 206(2):755–764

    MathSciNet  MATH  Google Scholar 

  27. Inan B, Bahadir AR (2013) Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods. Pramana 81(4):547–556

    Article  Google Scholar 

  28. Bateman H (1915) Some recent researches on the motion of fluids. Mon Weather Rev 43(4):163–170

    Article  Google Scholar 

  29. Burgers JM (1995) Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. In Selected Papers of JM Burgers, Springer, Netherlands, Dordrech

    Book  MATH  Google Scholar 

  30. Singh BK, Arora G (2014) A numerical scheme to solve Fisher-type reaction-diffusion equations. Nonlin Studies/Mesa-Math Eng, Sci Aerospace 5(2):153–164

    MATH  Google Scholar 

  31. Arora G, Joshi V (2016) Comparison of numerical solution of 1D hyperbolic telegraph equation using B-spline and trigonometric B-spline by differential quadrature method. Indian J Sci Technol 9(45):1–8

    Article  Google Scholar 

  32. Mishra S, Arora G, Emadifar H, Sahoo SK, Ghanizadeh A (2022) Differential quadrature method to examine the dynamical behavior of soliton solutions to the korteweg-de vries equation. Adv in Math Phys. https://doi.org/10.1155/2022/8479433

    Article  MathSciNet  MATH  Google Scholar 

  33. Arora, G., Rani, R., & Emadifar, H. (2022) Numerical solutions of nonlinear Schrodinger equation with applications in optical fiber communication. Optik, 169661.

  34. Arora, G. & Pratiksha (2020). Solution of inverse fractional Fisher’s equation by differential quadrature method. In Journal of Physics: Conference Series (Vol. 1531, No. 1, p. 012088). IOP Publishing.

  35. Hepson OE, Korkmaz A, Dag I (2020) Exponential B-spline collocation solutions to the Gardner equation. Int J Comput Math 97(4):837–850

    Article  MathSciNet  MATH  Google Scholar 

  36. Khater MM, Ahmed AES (2021) Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes. AIMS Math 6(6):5896–5908

    Article  MathSciNet  MATH  Google Scholar 

  37. Dag I, Ersoy O (2016) The exponential cubic B-spline algorithm for Fisher equation. Chaos, Solitons Fractals 86:101–106

    Article  MathSciNet  MATH  Google Scholar 

  38. Arora, G., & Vaid, M. K. (2021). Numerical Simulation of Singularly Perturbed Differential Equation with Large Delay Using Exponential B-Spline Collocation Method. In Differential Equations in Engineering. CRC Press, Florida.

  39. Kennedy, J, & Eberhart, R, C, (1995) Particles warm optimization. In Proceedings of IEEE International Conference on Neural Networks (Perth, Australia) IEEE Service Center Piscataway NJ pp.1942–1948

  40. Eberhart, R. C., & Shi, Y. (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 84–88). IEEE.

  41. Clerc, M. (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (3: 1951–1957). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Homan Emadifar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, G., Chauhan, P., Emadifar, H. et al. Numerical simulation of Burger’s equation using a particle swarm optimization. Int. j. inf. tecnol. 15, 2551–2558 (2023). https://doi.org/10.1007/s41870-023-01309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-023-01309-4

Keywords

Navigation