Skip to main content

Advertisement

Log in

Land use and land cover detection system using an intelligent framework

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Remote Sensing is an interesting topic for many applications to recognize the complete land resource through satellite images. However, the key drawback behind this remote sensing paradigm is analyzing the feature. Because the presence of noisy content has maximized the risk of identifying the features present in the satellite images. So, the current article has planned to invent the novel Vulture-based Convolutional Land behavior Prediction (VbCLBP) by extracting the land features from the satellite images and collecting the land resource information by tracking land-use area. Moreover, the resources such as water, forest, crop, barren and urban regions are considered. The region obtained to track the estimated resources is the Andhra Pradesh-Chittoor location. Here, satellite images from the year 2017 to 2021 were utilized. Furthermore, the planned method is elaborated in the Google-Earth-Engine platform, written in java language. Also, the proficient measure of the developed novel VbCLBP was estimated with some significant metrics like kappa score and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kumar S, Arya S, Jain K (2022) A SWIR-based vegetation index for change detection in land cover using multi-temporal Landsat satellite dataset. Int J Inf Tecnol 14:2035–2048. https://doi.org/10.1007/s41870-021-00797-6

    Article  Google Scholar 

  2. Sungheetha A, Rajesh Sharma R (2021) Classification of remote sensing image scenes using double feature extraction hybrid deep learning approach. J Inf Technol Digit World 3(02):133–149

    Article  Google Scholar 

  3. Upadhyay SK (2022) Kumar A (2022) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Tecnol 14(1):185–199

    Article  Google Scholar 

  4. Shidnal S, Latte MV, Kapoor A (2021) Crop yield prediction: two-tiered machine learning model approach. Int J Inf Tecnol 13(5):1983–1991

    Article  Google Scholar 

  5. Jadhav SB, Udupi VR, Patil SB (2021) Identification of plant diseases using convolutional neural networks. Int J Inf Tecnol 13(6):2461–2470

    Article  Google Scholar 

  6. Kutser T, Hedley J, Giardino C et al (2020) Remote Sensing of shallow waters—a 50 year retrospective and future directions. Remote Sens Environ 240:111619. https://doi.org/10.1016/j.rse.2019.111619

    Article  Google Scholar 

  7. Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010

    Article  Google Scholar 

  8. Hong D, Gao L, Yokoya N et al (2020) More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans Geosci Remote Sens 59(5):4340–4354. https://doi.org/10.1109/TGRS.2020.3016820

    Article  Google Scholar 

  9. Lechner AM, Foody GM, Boyd DS (2020) Applications in remote sensing to forest ecology and management. One Earth 2(5):405–412. https://doi.org/10.1016/j.oneear.2020.05.001

    Article  Google Scholar 

  10. Jung J, Maeda M, Chang A, Bhandari M et al (2021) The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol 70:15–22. https://doi.org/10.1016/j.copbio.2020.09.003

    Article  Google Scholar 

  11. Woodcock CE, Loveland TR, Herold M et al (2020) Transitioning from change detection to monitoring with remote sensing: a paradigm shift. Remote Sens Environ 238:111558. https://doi.org/10.1016/j.rse.2019.111558

    Article  Google Scholar 

  12. Huylenbroeck L, Laslier M, Dufour S, Georges B et al (2020) Using remote sensing to characterize riparian vegetation: a review of available tools and perspectives for managers. J Environ Manage 267:110652. https://doi.org/10.1016/j.jenvman.2020.110652

    Article  Google Scholar 

  13. Cai W, Wei Z (2020) Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2020.3026587

    Article  Google Scholar 

  14. Shao Z, Zhou W, Deng X, Zhang M et al (2020) Multilabel remote sensing image retrieval based on fully convolutional network. IEEE J Sel Top Appl Earth Obs Remote Sens 13:318–328. https://doi.org/10.1109/JSTARS.2019.2961634

    Article  Google Scholar 

  15. Marei SS (2020) A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environ Sci Pollut Res Int 27(27):33503–33515. https://doi.org/10.1007/s11356-020-09517-2

    Article  Google Scholar 

  16. Dong Y, Liang T, Zhang Y, Du B (2020) Spectral-spatial weighted kernel manifold embedded distribution alignment for remote sensing image classification. IEEE Trans Cybern 51(6):3185–3197. https://doi.org/10.1109/TCYB.2020.3004263

    Article  Google Scholar 

  17. Wang L, Diao C, Xian G, Yin D et al (2020) A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens Environ. https://doi.org/10.1016/j.rse.2020.112002

    Article  Google Scholar 

  18. Sheykhmousa M, Mahdianpari M et al (2020) Support vector machine vs. random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J Sel Top Appl Earth Obs Remote Sens 13:6308–6325. https://doi.org/10.1109/JSTARS.2020.3026724

    Article  Google Scholar 

  19. Amani M, Ghorbanian A, Ahmadi SA et al (2020) Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J Sel Top Appl Earth Obs Remote Sens 13:5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052

    Article  Google Scholar 

  20. Frery AC, Gomez L, Medeiros AC (2020) A badging system for reproducibility and replicability in remote sensing research. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4988–4995. https://doi.org/10.1109/JSTARS.2020.3019418

    Article  Google Scholar 

  21. Liaqat MU, Mohamed MM, Chowdhury R et al (2021) Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundw Sustain Dev 14:100587. https://doi.org/10.1016/j.gsd.2021.100587

    Article  Google Scholar 

  22. Islam MS (2021) Assessing the dynamics of land cover and shoreline changes of NijhumDwip (Island) of Bangladesh using remote sensing and GIS techniques. Reg Stud Mar Sci 41:101578. https://doi.org/10.1016/j.rsma.2020.101578

    Article  Google Scholar 

  23. Arunbose S, Srinivas Y, Rajkuma S et al (2021) Remote sensing, GIS and AHP techniques based investigation of groundwater potential zones in the Karumeniyar river basin, Tamil Nadu, southern India. Groundw Sustain Dev 14:100586. https://doi.org/10.1016/j.gsd.2021.100586

    Article  Google Scholar 

  24. Rani NNVS, Satyanarayana ANV, Bhaskaran PK et al (2021) Assessment of groundwater vulnerability using integrated remote sensing and GIS techniques for the West Bengal coast, India. J Contam Hydrol 238:103760. https://doi.org/10.1016/j.jconhyd.2020.103760

    Article  Google Scholar 

  25. Tunçay T, Kılıç Ş, Dedeoğlu M, Dengiz O et al (2021) Assessing soil fertility index based on remote sensing and GIS techniques with field validation in a semiarid agricultural ecosystem. J Arid Environ 190:104525. https://doi.org/10.1016/j.jaridenv.2021.104525

    Article  Google Scholar 

  26. Guo H, Shi Q, Du B, Zhang L et al (2020) Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images. IEEE Trans Geosci Remote Sens 59(5):4287–4306. https://doi.org/10.1109/TGRS.2020.3014312

    Article  Google Scholar 

  27. Chen F, Chen X, Van de Voorde T et al (2020) Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sens Environ 242:111706. https://doi.org/10.1016/j.rse.2020.111706

    Article  Google Scholar 

  28. Guo H, Shi Q, Marinoni A, Du B, Zhang L (2021) Deep building footprint update network: a semi-supervised method for updating existing building footprint from bi-temporal remote sensing images. Remote Sens Environ 264:112589. https://doi.org/10.1016/j.rse.2021.112589

    Article  Google Scholar 

  29. Liu X, Zhai H, Shen Y et al (2020) Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE J Sel Top Appl Earth Obs Remote Sens 13:414–427. https://doi.org/10.1109/JSTARS.2019.2963539

    Article  Google Scholar 

  30. Brovelli MA, Sun Y, Yordanov V (2020) Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int J Geo-Inf 9(10):580. https://doi.org/10.3390/ijgi9100580

    Article  Google Scholar 

  31. Tu Y, Lang W, Yu L et al (2020) Improved mapping results of 10 m resolution land cover classification in Guangdong, China using multisource remote sensing data with google Earth engine. IEEE J Sel Top Appl Earth Obs Remote Sens 13:5384–5397. https://doi.org/10.1109/JSTARS.2020.3022210

    Article  Google Scholar 

  32. Tayeb AS, Bouzeboudja H (2019) Application of a new meta-heuristic algorithm using egyptian vulture optimization for economic. Przegląd Elektrotechniczny 39:8234–8307. https://doi.org/10.15199/48.2019.06.11

    Article  Google Scholar 

  33. Tang S, Yuan S, Zhu Y (2020) Convolutional neural network in intelligent fault diagnosis toward rotatory machinery. IEEE Access 8:86510–86519. https://doi.org/10.1109/ACCESS.2020.2992692

    Article  Google Scholar 

  34. Hamedianfar A, Gibril MBA, Hosseinpoor M, Pellikka PKE (2022) Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images. Geocarto Int 37(3):773–791. https://doi.org/10.1080/10106049.2020.1737974

    Article  Google Scholar 

  35. Zhang P, Ma W, Wen F, Liu L, Yang L, Song J, Wang N, Liu Q (2021) Estimating PM2.5 concentration using the machine learning GA-SVM method to improve the land use regression model in Shaanxi, China. Ecotoxicol Environ Saf 225:112772. https://doi.org/10.1016/j.ecoenv.2021.112772

    Article  Google Scholar 

  36. Nguyen HD (2022) Flood susceptibility assessment using hybrid machine learning and remote sensing in Quang Tri province, Vietnam. Transact GIS 26:1–26

    Article  Google Scholar 

  37. Theres BL, Selvakumar R (2022) Comparison of landuse/landcover classifier for monitoring urban dynamics using spatially enhanced landsat dataset. Environ Earth Sci 81:142. https://doi.org/10.1007/s12665-022-10242-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rohini.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis formal consent is not needed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohini, S., Reddy, S.N. Land use and land cover detection system using an intelligent framework. Int. j. inf. tecnol. 15, 1661–1677 (2023). https://doi.org/10.1007/s41870-023-01200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-023-01200-2

Keywords

Navigation