Skip to main content

Opportunities for utilizing consumer grade 3D capture tools for insurance documentation

Abstract

Recent advances in consumer technology have enabled a new means for 3D capture of real world environments and objects through the adoption of depth sensors within tablets and mobile phones. While traditional methods to capture 3D objects are often cost-prohibitive, the ability to have commodity grade scanning technologies readily available creates new opportunities for 3D documentation. This paper showcases the opportunities for the utilization of 3D capture and AR technologies for insurance documentation. The benefits and challenges of using 3D capture given these emerging technologies are discussed. Finally, the paper introduces prototype applications for the full 3D modeling of a vehicle, detection of vehicle damage both from vehicular collisions and from hail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Fidera A, Chapman MA, Hong J (2004) Terrestrial lidar for industrial metrology applications: modelling, enhancement and reconstruction. In: XXth ISPRS Congress, vol 5, pp 880– 886

  2. Spring AP (2020) History of laser scanning, part 2: the later phase of industrial and heritage applications. Photogram Eng Remote Sens 86(8):479–501

    Article  Google Scholar 

  3. Tredinnick R, Smith S, Ponto K (2019) A cost-benefit analysis of 3d scanning technology for crime scene investigation. Forensic Sci Int Rep 1:100025

    Article  Google Scholar 

  4. Furht B (2011) Handbook of augmented reality. Springer, Berlin

    Book  Google Scholar 

  5. Rauschnabel PA, Rossmann A, tom Dieck MC (2017) An adoption framework for mobile augmented reality games: the case of pokémon go. Comput Hum Behav 76:276–286

    Article  Google Scholar 

  6. Mekni M, Lemieux A (2014) Augmented reality: applications, challenges and future trends. Appl Comput Sci 20:205–214

    Google Scholar 

  7. Waqas U, Akram N, Kim S, Lee D, Jeon J (2020) Vehicle damage classification and fraudulent image detection including moiré effect using deep learning. In: 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp 1–5

  8. Ghorbani A, Farzai S (2018) Fraud detection in automobile insurance using a data mining based approach. Int J Mech Electr Comput Technol (IJMEC) 8(27):3764–3771 (2018)

  9. Li Y, Dorai C (2007) Applying image analysis to auto insurance triage: a novel application. In: 2007 IEEE 9th Workshop on Multimedia Signal Processing, pp 280–283

  10. Masingha MT (2021) Image processing based auto insurance claims fraud detections. PhD thesis (2021)

  11. Thonglek K, Urailertprasert N, Pattiyathanee P, Chantrapornchai C (2021) Vehicle part damage analysis platform for autoinsurance application. ECTI Transactions on Computer and Information Technology (ECTI-CIT) 15(3):313–323

  12. Barrett T (1986) Teaching about photography: Photographs and contexts. Art Education 39(4):33–36

    Article  Google Scholar 

  13. Huetter, J.: Insurers testing ccc’s a.i. smart estimate; product goes on sale early next year. Repairer Driven Communications (2018)

  14. Rohacz, A., Strassburger, S.: Augmented reality in intralogistics planning of the automotive industry: state of the art and practical recommendations for applications. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), pp. 203– 208 ( 2019). IEEE

  15. Fu, W.-T., Gasper, J., Kim, S.-W.: Effects of an in-car augmented reality system on improving safety of younger and older drivers. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 59– 66 ( 2013). IEEE

  16. Froehlich, P., Schatz, R., Leitner, P., Mantler, S., Baldauf, M.: Evaluating realistic visualizations for safety-related in-car information systems. In: CHI’10 Extended Abstracts on Human Factors in Computing Systems, pp. 3847– 3852 ( 2010)

  17. Wiegand, G., Mai, C., Holländer, K., Hussmann, H.: Incarar: A design space towards 3d augmented reality applications in vehicles. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 1– 13 ( 2019)

  18. Nolle, S., Klinker, G.: Augmented reality as a comparison tool in automotive industry. In: 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 249– 250 ( 2006). IEEE

  19. Lima JP, Roberto R, Simões F, Almeida M, Figueiredo L, Teixeira JM, Teichrieb V (2017) Markerless tracking system for augmented reality in the automotive industry. Expert Syst Appl 82:100–114

    Article  Google Scholar 

  20. Boboc RG, Gîrbacia F, Butilă EV (2020) The application of augmented reality in the automotive industry: A systematic literature review. Appl Sci 10(12):4259

    Article  Google Scholar 

  21. Pagounis, V., Tsakiri, M., Palaskas, S., Biza, B., Zaloumi, E.: 3d laser scanning for road safety and accident reconstruction. In: Proceedings of the XXIIIth International FIG Congress, vol. 8, p. 13 ( 2006)

  22. Tandy DF, Coleman C, Colborn J, Hoover T, Bae J (2012) Benefits and methodology for dimensioning a vehicle using a 3d scanner for accident reconstruction purposes. Technical report, SAE Technical Paper

    Google Scholar 

  23. Lyu N, Huang G, Wu C, Duan Z, Li P (2017) Modeling vehicle collision angle in traffic crashes based on three-dimensional laser scanning data. Sensors 17(3):482

    Article  Google Scholar 

  24. Desai J, Liu J, Hainje R, Oleksy R, Habib A, Bullock D (2021) Assessing vehicle profiling accuracy of handheld lidar compared to terrestrial laser scanning for crash scene reconstruction. Sensors 21(23):8076

    Article  Google Scholar 

  25. Ramasubramaniam, K.S., Bhat, R.: Lcar-low cost augmented reality for the automotive industry. In: 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1– 3 ( 2018). IEEE

  26. Lilienblum, T., Albrecht, P., Calow, R., Michaelis, B.: Dent detection in car bodies. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 4, pp. 775– 778 ( 2000). IEEE

  27. Chen, H.: Automatic dent detection on car bodies. PhD thesis (2008)

  28. Arnal L, Solanes JE, Molina J, Tornero J (2017) Detecting dings and dents on specular car body surfaces based on optical flow. J Manuf Syst 45:306–321

    Article  Google Scholar 

  29. Zhou Q, Chen R, Huang B, Liu C, Yu J, Yu X (2019) An automatic surface defect inspection system for automobiles using machine vision methods. Sensors 19(3):644

    Article  Google Scholar 

  30. Park SH, Tjolleng A, Chang J, Cha M, Park J, Jung K (2020) Detecting and localizing dents on vehicle bodies using region-based convolutional neural network. Appl Sci 10(4):1250

    Article  Google Scholar 

  31. Marchand E, Uchiyama H, Spindler F (2015) Pose estimation for augmented reality: a hands-on survey. IEEE Trans Visual Comput Graphics 22(12):2633–2651

    Article  Google Scholar 

  32. Belghit, H., Bellarbi, A., Zenati, N., Otmane, S.: Vision-based pose estimation for augmented reality: a comparison study. arXiv preprint arXiv:1806.09316 (2018)

  33. Thrun, S.: Simultaneous localization and mapping. In: Robotics and Cognitive Approaches to Spatial Mapping, pp. 13– 41. Springer, New York, NY ( 2007)

  34. Nowacki, P., Woda, M.: Capabilities of arcore and arkit platforms for ar/vr applications. In: International Conference on Dependability and Complex Systems, pp. 358– 370 ( 2019). Springer

  35. Chen C, Zhu H, Li M, You S (2018) A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives. Robotics 7(3):45

    Article  Google Scholar 

  36. Barnard ST, Fischler MA (1982) Computational stereo. ACM Computing Surveys (CSUR) 14(4):553–572

    Article  Google Scholar 

  37. Murray D, Little JJ ( 2000) Using real-time stereo vision for mobile robot navigation. autonomous robots 8( 2), 161– 171

  38. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1):7–42

    Article  Google Scholar 

  39. Wang Y, Lai Z, Huang G, Wang BH, Van Der Maaten L, Campbell M, Weinberger KQ ( 2019) Anytime stereo image depth estimation on mobile devices. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5893– 5900. IEEE

  40. Chen Y, Tang J, Jiang C, Zhu L, Lehtomäki M, Kaartinen H, Kaijaluoto R, Wang Y, Hyyppä J, Hyyppä H et al (2018) The accuracy comparison of three simultaneous localization and mapping (slam)-based indoor mapping technologies. Sensors 18(10):3228

    Article  Google Scholar 

  41. You S, Neumann U, Azuma R (1999) Orientation tracking for outdoor augmented reality registration. IEEE Comput Graphics Appl 19(6):36–42

    Article  Google Scholar 

  42. Vassallo R, Rankin A, Chen EC, Peters TM ( 2017) Hologram stability evaluation for microsoft hololens. In: Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, vol. 10136, pp. 295– 300 . SPIE

  43. Scargill T, Chen J, Gorlatova M (2021) Here to stay: Measuring hologram stability in markerless smartphone augmented reality. arXiv preprint arXiv:2109.14757

  44. Schöps T, Sattler T, Häne C, Pollefeys M ( 2015) 3d modeling on the go: Interactive 3d reconstruction of large-scale scenes on mobile devices. 3DV 1( 2), 3– 2

  45. Brennan PF, Ponto K, Casper G, Tredinnick R, Broecker M (2015) Virtualizing living and working spaces: Proof of concept for a biomedical space-replication methodology. J Biomed Inform 57:53–61

    Article  Google Scholar 

  46. Ponto K, Tredinnick R, Casper G ( 2017). Simulating the experience of home environments. In: 2017 International Conference on Virtual Rehabilitation (ICVR), pp. 1– 9 IEEE

  47. Segal A, Haehnel D, Thrun S ( 2009) Generalized-icp. In: Robotics: Science and Systems, vol. 2, p. 435 . Seattle, WA

  48. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking and 3d reconstruction using signed distance functions. In: Robotics: Science and Systems, vol. 2, p. 2 ( 2013)

  49. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohi P, Shotton J, Hodges S, Fitzgibbon A ( 2011) Kinectfusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127– 136 . IEEE

  50. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3d surface construction algorithm. ACM siggraph computer graphics 21(4):163–169

    Article  Google Scholar 

  51. Ho KL, Newman P (2007) Detecting loop closure with scene sequences. Int J Comput Vision 74(3):261–286

    Article  Google Scholar 

  52. Nießner M, Zollhöfer M, Izadi S, Stamminger M (2013) Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics (ToG) 32(6):1–11

    Article  Google Scholar 

  53. Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R ( 2020) Nerf: Representing scenes as neural radiance fields for view synthesis. In: European Conference on Computer Vision, pp. 405– 421 . Springer

  54. Martin-Brualla R, Radwan N, Sajjadi MS, Barron JT, Dosovitskiy A, Duckworth D ( 2021)Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210– 7219

  55. Pumarola A, Corona E, Pons-Moll G, Moreno-Noguer F ( 2021) D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318– 10327

  56. Tretschk E, Tewari A, Golyanik,V, Zollhöfer M, Lassner C, Theobalt C ( 2021) Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959– 12970

  57. Wang Z, Wu S, Xie W, Chen M, Prisacariu VA (2021) Nerf–: Neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064

  58. Goh GD, Sing SL, Yeong WY (2021) A review on machine learning in 3d printing: applications, potential, and challenges. Artif Intell Rev 54(1):63–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Ponto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponto, K., Tredinnick, R. Opportunities for utilizing consumer grade 3D capture tools for insurance documentation. Int. j. inf. tecnol. (2022). https://doi.org/10.1007/s41870-022-01040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41870-022-01040-6

Keywords

  • 3D capture
  • 3D Scanning
  • Insurance documentation
  • Consumer technologies