Skip to main content

Advertisement

Log in

Segmentation of composite signal into harmonic Fourier expansion using genetic algorithm

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

A composite signal is generally composed of multiple signals with various frequencies and amplitudes. Fourier series expansion is one of the examples of such decomposition in sine and cosine components. The finding of coefficients value is a tedious job. Approximate decomposition of composite signal with greater accuracy is possible using optimization. In this paper, a genetic algorithm-based optimization is proposed for such decomposition. Genetic algorithm is devised to mimic the natural selection process of evolution and provides an elegant way to arrive at an optimal solution. The problem that is dealt with in this paper is to find the coefficients of a Fourier expansion for best fitting after iteration of multiple generations. Different combinations of various crossovers and mutations are implemented. The results of the different combinations are analysed with different selection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Forrest S (1996) Genetic algorithms. ACM Comput Surveys (CSUR) 28(1):77–80

    Article  Google Scholar 

  2. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  3. Mathew TV (2012) Genetic algorithm. Report submitted at IIT Bombay

  4. Torrecilla-Pinero F, Torrecilla-Pinero JA, Gómez-Pulido JA, Vega-Rodríguez MA, Sánchez-Pérez JM (2010) Parametric approximation of functions using genetic algorithms: an example with a logistic curve. In: International conference on numerical methods and applications. Springer, pp 313–320

  5. Hauser JW, Purdy CN (2006) Designing a genetic algorithm for function approximation for embedded and asic applications. In: 2006 49th IEEE international midwest symposium on circuits and systems, IEEE, vol 2, pp 555–559

  6. Mitra S, Mitra A, Kundu D (2011) Genetic algorithm and m-estimator based robust sequential estimation of parameters of nonlinear sinusoidal signals. Commun Nonlinear Sci Numer Simul 16(7):2796–2809

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabis AB, Meraihi Y, Mirjalili S, Ramdane-Cherif A (2021) A comprehensive survey of sine cosine algorithm: variants and applications. Artif Intell Rev 1–72

  8. Wu Z, Zhao C, Liu B (2020) Polygonal approximation based on coarse-grained parallel genetic algorithm. J Vis Commun Image Represent 71:102717

    Article  Google Scholar 

  9. Jensen A, Rengarajan SR (2006) Genetic algorithm optimization of a traveling wave array of longitudinal slots in a rectangular waveguide. Appl Comput Electromagn Soc J 21(3):337

    Google Scholar 

  10. Baqais A (2016) Genetic algorithm for function approximation: an experimental investigation. Int J Artif Intell Appl (IJAIA) 7(3)

  11. Salman M, Haq IU, Ahmad T, Ali H, Qamar A, Basit A, Khan M, Iqbal J (2020) Minimization of total harmonic distortions of cascaded h-bridge multilevel inverter by utilizing bio inspired ai algorithm. EURASIP J Wirel Commun Netw 2020(1):1–12

    Article  Google Scholar 

  12. Yoshimoto F, Harada T, Yoshimoto Y (2003) Data fitting with a spline using a real-coded genetic algorithm. Comput Aided Des 35(8):751–760

    Article  Google Scholar 

  13. Yao L, Sethares WA (1994) Nonlinear parameter estimation via the genetic algorithm. IEEE Trans Signal Process 42(4):927–935

    Article  Google Scholar 

  14. Jiang C, Serrao P, Liu M, Cho C (2020) An enhanced genetic algorithm for parameter estimation of sinusoidal signals. Appl Sci 10(15):5110

    Article  Google Scholar 

  15. Deep K, Das KN (2008) Quadratic approximation based hybrid genetic algorithm for function optimization. Appl Math Comput 203(1):86–98

    Article  MATH  Google Scholar 

  16. Lee Z-J (2008) A novel hybrid algorithm for function approximation. Expert Syst Appl 34(1):384–390

    Article  Google Scholar 

  17. Vasconcelos J, Ramirez JA, Takahashi R, Saldanha R (2001) Improvements in genetic algorithms. IEEE Trans Magn 37(5):3414–3417

    Article  Google Scholar 

  18. Bruderer E, Singh JV (1996) Organizational evolution, learning, and selection: a genetic-algorithm-based model. Acad Manage J 39(5):1322–1349

    Article  Google Scholar 

  19. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126

    Article  Google Scholar 

  20. Wang Q (1997) Using genetic algorithms to optimise model parameters. Environ Modell Softw 12(1):27–34

    Article  Google Scholar 

  21. McCall J (2005) Genetic algorithms for modelling and optimisation. J Comput Appl Math 184(1):205–222

    Article  MathSciNet  MATH  Google Scholar 

  22. Alajmi A, Wright J (2014) Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int J Sustain Built Environ 3(1):18–26

    Article  Google Scholar 

  23. Hwang S-F, He R-S (2006) Improving real-parameter genetic algorithm with simulated annealing for engineering problems. Adv Eng Softw 37(6):406–418

    Article  Google Scholar 

  24. Wright AH (1991) Genetic algorithms for real parameter optimization. In: Foundations of genetic algorithms, vol 1. Elsevier, pp 205–218

  25. Smith J, Fogarty TC (1996) Self adaptation of mutation rates in a steady state genetic algorithm. In: Proceedings of IEEE international conference on evolutionary computation. IEEE, pp 318–323

  26. Piszcz A, Soule T (2006) Genetic programming: analysis of optimal mutation rates in a problem with varying difficulty. In: FLAIRS conference, pp 451–456

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Kumar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachuau, J.L., Kashyap, P., Kumar, A. et al. Segmentation of composite signal into harmonic Fourier expansion using genetic algorithm. Int. j. inf. tecnol. 14, 3507–3515 (2022). https://doi.org/10.1007/s41870-022-00944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-00944-7

Keywords

Navigation