Skip to main content
Log in

Motor imagery EEG signal classification using long short-term memory deep network and neighbourhood component analysis

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Brain Computer Interface is a technique used to measure brain activity in terms of electrical signals. The recorded Electroencephalograph (EEG) signal is highly sensitive to human activity. Therefore EEG pre-processing is necessary before important information can be extracted for EEG signal, after pre-processing important features can be easily extracted. For the purpose of minimizing the features data, Principal component analysis could be a better option. Finally, EEG classification is completed with the application of deep neural network while considering both mean square and cross entropy. The use of wrapper method for important features selections is vital as it reduces processing time and also avoid over fitting of deep neural networks (DNN), as over fitting of DNN leads to decrease in accuracy. In this work alpha and beta waves are considered. To view the usefulness of long short term memory (LSTM) DNN, for pre-processing and feature extractions of EEG basic methods are considered. LSTM DNN accuracy of more than 95 percent is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn Brain Res 25(3):668–677

    Article  Google Scholar 

  2. Mohammadi G, Shoushtari P, MolaeeArdekani B, Shamsollahi MB (2006) Person identification by using AR model for EEG signals. Proc World Acad Sci Eng Technol 11:281–285

    Google Scholar 

  3. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8(2):164–173

    Article  Google Scholar 

  4. Allison BZ, Wolpaw EW, Wolpaw JR (2007) Brain–computer interface systems: progress and prospects. Expert Rev Med Devices 4(4):463–474

    Article  Google Scholar 

  5. Zander TO, Kothe C (2011) Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng 8(2):025005

    Article  Google Scholar 

  6. De Waele S, Broersen PM (2000) The Burg algorithm for segments. IEEE Trans Signal Process 48(10):2876–2880

    Article  MathSciNet  Google Scholar 

  7. Bajaj V, Pachori RB (2012) Separation of rhythms of EEG signals based on Hilbert-Huang transformation with application to seizure detection. In:Z International Conference on Hybrid Information Technology. Springer, Heidelberg, p 493–500

  8. Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 12(3):031001

    Article  Google Scholar 

  9. Lakshmi MR, Prasad TV, Chandra Prakash V (2014) Survey on EEG signal processing methods. Int J Adv Res Comput Sci Softw Eng 4(1):91

    Google Scholar 

  10. Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38(8):10499–10505

    Article  Google Scholar 

  11. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A et al (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):31005

    Article  Google Scholar 

  12. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2017) A review ofclassification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13

    Article  Google Scholar 

  13. Dai M, Zheng D, Na R, Wang S, Zhang S (2019) EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3):551

    Article  Google Scholar 

  14. Gune S, Polat K, Dursun M, Yosunkaya S (2009) Examining the relevancewith sleep stages of time domain features of EEG, EOG, and chinEMG signals. In: 2009 14th national biomedical engineering meeting. Turkey: Izmir, p 1–4

  15. Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Koh JEW, Oh SL et al (2019) Characterization of focal EEG signals: a review. Future Generat Comput System 91:290–299

    Article  Google Scholar 

  16. Sharma R, Pachori RB, Acharya UR (2015) Application of entropymeasures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17:669–691

    Article  Google Scholar 

  17. Xiao D, Mu Z, Hu J (2009) linear discrimination method used in motorimagery EEG classification. In: 2009 fifth international conference on natural computation. TianJian: IEEE 2:94–98.

  18. Hauk O, Davis MH, Ford M, Pulvermüller F, Marslen-Wilson WD (2006) The time course of visual word recognition as revealed by linearregression analysis of ERP data. Neuroimage 30:1383–1400

    Article  Google Scholar 

  19. Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison oflinear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11(2):141–144

    Article  Google Scholar 

  20. Lajnef T, Chaibi S, Ruby P, Aguera P-E, Eichenlaub J-B, Samet M, Kachouri A (2015) Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J Neurosci Methods 250:94–105

    Article  Google Scholar 

  21. Aboalayon KAI, Faezipour M, Almuhammadi WS (2016) Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation”. Entropy 18:272

    Article  Google Scholar 

  22. Ma Y, Ding X, She Q, Luo Z, Potter T, Zhang Y (2016) Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput Math Methods Med 2016:8

    MathSciNet  MATH  Google Scholar 

  23. Maksimenko VA, Kurkin SA, Pitsik EN, Musatov VY, Runnova AE, Efremova TY, Hramov AE, Pisarchik AN (2018) Artificial neural network classification of motor-related eeg: an increase in classification accuracy by reducing signal complexity. Complexity. https://doi.org/10.1155/2018/9385947

    Article  Google Scholar 

  24. Chatterjee R, Bandyopadhyay T, Sanyal DK (2016) Effects of wavelets on quality of features in motor-imagery EEG signal classification. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, p 1346–1350

  25. Yang P, Wang J, Zhao H, Li R (2020) Mlp with riemannian covariance for motor imagery based eeg analysis. IEEE Access 8:139974–139982

    Article  Google Scholar 

  26. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Shamim HM (2019) Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst 101:542–554

    Article  Google Scholar 

  27. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Netw Learn Syst 29(11):5619–5629

    Article  MathSciNet  Google Scholar 

  28. Kumar S, Sharma A, Tsunoda T (2019) Brain wave classification using long short-term memory network based OPTICAL predictor. Sci Rep 9:9153

    Article  Google Scholar 

  29. Zhou J, Meng M, Gao Y, Ma Y, Zhang Q (2018) Classification of motor imagery EEG using wavelet envelope analysis and LSTM networks. In proceedings of the chinese control and decision conference (CCDC), Shenyang, China, p 9–11

  30. Fadel W, Kollod C, Wahdow M, Ibrahim Y, Ulbert I (2020) Multi-class classification of motor imagery EEG signals using image-based deep recurrent convolutional neural network. In: 8th International Winter Conference on Brain-Computer Interface (BCI)

  31. Cui Z, Zheng X, Shao X, Cui L (2018) Automatic sleep stage classification based on convolutional neural network and finegrained segments. Hindawi Complex 2018:9248410

    Google Scholar 

  32. Sharma LD, Chhabra H, Chauhan U, Saraswat RK, Sunkaria RK (2021) Mental arithmetic task load recognition using EEG signal and Bayesian optimized K-nearest neighbor. Int J Inf Technol 13(6):2363–2369

    Google Scholar 

  33. Shi M, Wang C, Li XZ, Li MQ, Wang L, Xie NG (2021) EEG signal classification based on SVM with improved squirrel search algorithm. Biomed Eng/Biomed Tech 66(2):137–152

    Article  Google Scholar 

  34. Bhateja V, Singh G, Srivastava A, Singh J (2014) Speckle reduction in ultrasound images using an improved conductance function based on anisotropic diffusion. In: 2014 International Conference on Computing for Sustainable Global Development (INDIACom), p 619–624. IEEE

  35. Khan AT, Khan YU (2021) Time domain based seizure onset analysis of brain signatures in pediatric EEG. Int J Inf Technol 13(2):453–458

    Google Scholar 

  36. Xu B-G, Song A-G (2008) Pattern recognition of motor imagery EEG using wavelet transform. J Biomed Sci Eng 1(1):64

    Article  Google Scholar 

  37. Goldberger J, Roweis S, Hinton GE, Salakhutdinov RR (2005) Neigh-borhood components analysis. Proc Adv Neural Inf Process Syst 17:513–520

    Google Scholar 

  38. Yang W, Wang K, Zuo W (2012) Neighborhood component feature selec-tion for high-dimensional data. J Comput 7(1):161–168

    Google Scholar 

  39. http://www.bbci.de/competition/iii/desc_IVa.html. Accessed 2 Aug 2021

  40. Zhuozheng W, Zhuo M, Xiuwen D, Yingjie D, Wei L (2019) Research on the key technologies of motor imagery EEG signal based on deep learning. J Auton Intell 2:1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilasha Nakra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakra, A., Duhan, M. Motor imagery EEG signal classification using long short-term memory deep network and neighbourhood component analysis. Int. j. inf. tecnol. 14, 1771–1779 (2022). https://doi.org/10.1007/s41870-022-00866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-00866-4

Keywords

Navigation