Skip to main content
Log in

Switching and frequency response of ITO-gated GaAs OPFET models for VLC applications

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Visible-Light Communication (VLC) application such as traffic lighting requires high-speed data transmission wherein at the receiving end, a fast response and wide bandwidth photodetector should decode the sent data. High-speed detection is achievable through a photoFET such as Optical Field Effect Transistor (OPFET) while maintaining tremendously large photocurrent gain or sensitivity. In this paper, we investigate the switching and frequency responses of GaAs OPFET models (buried-gate front-illuminated, and generalized, models) with Indium-Tin-Oxide (ITO) gate. These responses have been contrasted to that with gold (Au) gate investigated in the previous work showing a considerable enhancement in the 3-dB bandwidth and an almost constant switching/amplification response. The effect of structural parameters on the switching and frequency responses of the buried-gate models has been studied. The switching parameters and the bandwidth-dependence upon the optical power have been analyzed. The attained responses suggest that the devices will serve good purpose in high-speed applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

References

  1. Ergul O, Ergin D, Akan O (2015) Communicate to illuminate: State-of-the-art and research challenges for visible light communications. Phys Commun 17:72–85. https://doi.org/10.1016/j.phycom.2015.08.003

    Article  Google Scholar 

  2. Khan L, Ullah L (2017) Visible light communication: applications, architecture, standardization and research challenges. Digital Commun Netw 3:78–88. https://doi.org/10.1016/j.dcan.2016.07.004

    Article  Google Scholar 

  3. Ndjiongue A, Ferreira H (2018) An overview of outdoor visible light communications. Transact Emerg Telecommun Technol 29:e3448. https://doi.org/10.1002/ett.3448

    Article  Google Scholar 

  4. Lee I, Sim M, Kung F (2009) Performance enhancement of outdoor visible-light communication system using selective combining receiver. IET Optoelect 3:30–39. https://doi.org/10.1049/iet-opt:20070014

    Article  Google Scholar 

  5. Takai I, Harada T, Andoh M, Yasutomi K, Kagawa K, Kawahito S (2014) Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver. IEEE Photonics J 6:1–14. https://doi.org/10.1109/JPHOT.2014.2352620

    Article  Google Scholar 

  6. Fahs B, Romanowicz M, Hella M (2017) A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes. IEEE Photonics J 9:1–9. https://doi.org/10.1109/JPHOT.2017.2765499

    Article  Google Scholar 

  7. Ayyash M, Elgala H, Khreishah A, Jungnickel V, Little T, Shao S, Rahaim M, Schulz D, Hilt J, Freund R (2016) Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges. IEEE Commun Mag 54:64–71. https://doi.org/10.1109/MCOM.2016.7402263

    Article  Google Scholar 

  8. Wang Z, Tsonev D, Videv S, Haas H (2015) On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting. IEEE J Sel Areas Commun 33:1612–1623. https://doi.org/10.1109/JSAC.2015.2391811

    Article  Google Scholar 

  9. Ji R, Wang S, Liu Q, Lu W (2018) High-speed visible light communications: Enabling technologies and state of the art. Appl Sci 8:589. https://doi.org/10.3390/app8040589

    Article  Google Scholar 

  10. Karunatilaka D, Zafar F, Kalavally V, Parthiban R (2015) LED based indoor visible light communications: State of the art. IEEE Commun Surveys Tutor 17:1649–1678. https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  11. Wang Y, Tao L, Wang Y, Chi N (2014) High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization. IEEE Commun Lett 18:1719–1722. https://doi.org/10.1109/LCOMM.2014.2349990

    Article  Google Scholar 

  12. Wang S, Chen F, Liang L, He S, Wang Y, Chen X, Lu W (2015) A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel Commun 22:61–67. https://doi.org/10.1109/MWC.2015.7096286

    Article  Google Scholar 

  13. Tsonev D, Videv S, Haas H (2015) Towards a 100 Gb/s visible light wireless access network. Opt Express 23:1627–1637. https://doi.org/10.1364/OE.23.001627

    Article  Google Scholar 

  14. Dahri F, Ali S, Jawaid M (2018) A review of modulation schemes for visible light communication. Int J Comput Sci Netw Secur 18:117

    Google Scholar 

  15. Cseh T, Rajbhandari S, Fekete G, Udvary E (2017) Modulation Schemes. In: Ghassemlooy Z, Alves L, Zvanovec S, Khalighi M (eds) Visible Light Communications: Theory and Applications, Taylor & Francis Group. CRC Press, LLC, Boca Raton, pp 97–144

    Chapter  Google Scholar 

  16. Haruyama S, Yamazato T (2015) Image sensor based visible light communication. In: Shlomi A (ed) Visible light communication. Cambridge University Press, United Kingdom, pp 181–205

    Chapter  Google Scholar 

  17. Oregon GH et al (2019) Performance analysis of V2V and V2I LiFi communication systems in traffic lights. Wirel Commun Mob Comput. https://doi.org/10.1155/2019/4279683

    Article  Google Scholar 

  18. Milovancev D, Jukić T, Steindl B, Brandl P, Zimmermann H (2017) Optical wireless communication using a fully integrated 400 um diameter APD receiver. J Eng 2017(506–511):2017. https://doi.org/10.1049/joe.2017.0247

    Article  Google Scholar 

  19. Rajbhandari S et al (2017) Multigigabit per second integrated multiple-input multiple-output VLC demonstrator. J Lightwave Technol 35:4358–4365. https://doi.org/10.1109/JLT.2017.2694486

    Article  Google Scholar 

  20. Pedrotti KD, Pierson RL, Nubling RB, Farley CW, Sovero EA, Chang MF (1991) Ultra-high speed pin/HBT monolithic OEIC photoreceiver. IEEE Trans Electron Devices 38:2713–2714. https://doi.org/10.1109/16.158745

    Article  Google Scholar 

  21. Shih CG, Chang WH, Wang J, Barlage DW, Teng CC, Feng M (1996) Design and fabrication of a 1 Gb/s OEIC receiver for fiber-optic data link applications. J Lightwave Technol 14:1480–1487. https://doi.org/10.1109/50.511677

    Article  Google Scholar 

  22. Alkhazragi O, Kang C, Kong M, Liu G, Lee C, Li K, Zhang H et al (2020) 7.4-Gbit/s visible-light communication utilizing wavelength-selective semipolar micro-photodetector. IEEE Photonics Technol Lett 32:767–770. https://doi.org/10.1109/LPT.2020.2995110

    Article  Google Scholar 

  23. Liu Y, Cen G, Wang G, Huang J, Zhou S, Zheng J, Fu Y, Zhao C, Mai W (2019) High performance MoO3−x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application. J Mater Chem C 7:917–925. https://doi.org/10.1039/C8TC05850D

    Article  Google Scholar 

  24. Hu W, Cong H, Huang W, Huang Y, Chen L, Pan A, Xue C (2019) Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci Appl 8:1–10. https://doi.org/10.1038/s41377-019-0218-y

    Article  Google Scholar 

  25. Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H et al (2020) Light-Driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Adv Sci 7:1901637. https://doi.org/10.1002/advs.201901637

    Article  Google Scholar 

  26. Milovančev D, Brandl P, Jukić T, Steindl B, Vokić N, Zimmermann H (2019) Optical wireless APD receivers in 0.35 µm HV CMOS technology with large detection area. Opt Express 27:11930–11945. https://doi.org/10.1364/OE.27.011930

    Article  Google Scholar 

  27. Baack C, Elze G, Walf G (1977) GaAs MESFET: a high-speed optical detector. Electron Lett 13:193–193. https://doi.org/10.1049/el:19770141

    Article  Google Scholar 

  28. De Salles AAA (1983) Optical control of GaAs MESFET’s. IEEE Trans Microwave Theory Techniq 31:812–820. https://doi.org/10.1109/TMTT.1983.1131611

    Article  Google Scholar 

  29. Verma MK, Pal BB (2001) Analysis of buried gate MESFET under dark and illumination. IEEE Trans on Electron Devices 48:2138–2142. https://doi.org/10.1109/16.944207

    Article  Google Scholar 

  30. Gaitonde JV, Lohani RB (2019) Analysis of wide-bandgap material OPFET UV detectors for high dynamic range imaging and communication applications. Commun Netw 11:83–117. https://doi.org/10.4236/cn.2019.114007

    Article  Google Scholar 

  31. Gaitonde JV, Rawat SPS, and Lohani RB. (2018) Comparative Analysis of Buried-Gate GaN OPFET Models for UV Photodetector Applications. Presented at the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). https://doi.org/https://doi.org/10.1109/UPCON.2018.8596854

  32. Gaitonde JV, Lohani RB (2019) Material, structural optimization and analysis of visible-range back-illuminated OPFET photodetector. Adv Sci Technol Eng Syst J 4:485–502. https://doi.org/10.25046/aj040459

    Article  Google Scholar 

  33. Gaitonde JV, Lohani RB (2019) Visible range characterization of Au/Graphene-GaAs schottky junctions in MESFET. IETE J Res. https://doi.org/10.1080/03772063.2019.1676666

    Article  Google Scholar 

  34. Gaitonde JV, Lohani RB (2020) Structural optimization and analysis of GaAs buried-gate OPFET for visible-light communication. Opt Quant Electron 52:1–37. https://doi.org/10.1007/s11082-020-02627-8

    Article  Google Scholar 

  35. Gaitonde JV, and Lohani RB (2020) Characterization of GaAs OPFET Models for Switching Applications. Proc. of the 11th International Conference and Workshop (MULTICON-W 2020), International Conference on Trends in Electronics and Communications (TELCON), Mumbai

  36. Chen T, Shur MS (1985) Analytical models of ion-implanted GaAs FET’s. IEEE Trans Electron Devices 32:18–28. https://doi.org/10.1109/T-ED.1985.21903

    Article  Google Scholar 

  37. Byun YH, Shur MS, Peczalski A, Schuermeyer FL (1988) Gate-voltage dependence of source and drain series resistances and effective gate length in GaAs MESFETs. IEEE Trans Electron Devices 35:1241–1246. https://doi.org/10.1109/16.2543

    Article  Google Scholar 

  38. Golio JM (1988) Ultimate scaling limits for high-frequency GaAs MESFETs. IEEE Trans Electron Devices 35:839–848. https://doi.org/10.1109/16.3334

    Article  Google Scholar 

  39. Gaitonde JV, and Lohani RB (2019) Proposed High Performance Subtle Light Intensity Variation UV Photodetectors. Proc. of the 10th International Conference and Workshop (MULTICON-W 2019), International Conference on Trends in Electronics and Communications (TELCON), Mumbai, India. ISBN-13: 978-93-5316-754-7, ISBN-10: 93-5316-754-X.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya V. Gaitonde.

Ethics declarations

Conflicts of interests

Not Applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaitonde, J.V., Lohani, R.B. Switching and frequency response of ITO-gated GaAs OPFET models for VLC applications. Int. j. inf. tecnol. 13, 1005–1017 (2021). https://doi.org/10.1007/s41870-021-00665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-021-00665-3

Keywords

Navigation