Skip to main content
Log in

VLSI implementation of residue number system based efficient digital signal processor architecture for wireless sensor nodes

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Residue number system (RNS) in computer arithmetic is an efficient parallel computation number system that employs forward conversion, residue arithmetic based arithmetic manipulation and reverses conversion, which all together increases the speed of computation in various digital signal processing applications. Nevertheless power requirement for the wireless sensor node is more important, hence this work focuses on the design and implementation of power efficient RNS based digital signal processor architecture using folded tree based parallel prefix adder by employing Chinese Remainder Theorem—I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Navi K, Molahosseini AS, Esmaeildous M (2011) How to teach residue number system to computer scientists and engineers. IEEE Trans Educ 54(1):156–163

    Article  Google Scholar 

  2. Piestrak SJ (1995) A high-speed realization of residue to binary system converter. IEEE Trans Circ Syst II Analog Digit Signal Process 42(10):661–663

    Article  Google Scholar 

  3. Dhurkadas A (1998) Comments on: a high-speed realization of a residue to binary number system converter. IEEE Trans Circ Syst II Analog Digit Signal Process 45(3):446–447

    Article  Google Scholar 

  4. Bharadwaj M, Premkumar AB, Srikanthan T (1998) Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the \( \{ 2^{n } - 1, 2^{n} ,2^{n} + 1\} \)-moduli set. IEEE Trans Circ Syst I Fundam Theory Appl 45(9):998–1002

    Article  Google Scholar 

  5. Wang Y, Song X, Aboulhamid M, Shen H (2002) Adder based residue to binary number converters for {2n− 1, 2n, 2n+ 1}. IEEE Trans Signal Process 50(7):1772–1779

    Article  MathSciNet  Google Scholar 

  6. Wang W, Swamy MNS, Ahmad MO, Wang Y (2003) A study of the residue-to-binary converters for the three-moduli sets. IEEE Trans Circ Syst I Fundam Theory Appl 50(2):235–243

    Article  MathSciNet  Google Scholar 

  7. Hiasat AA, Abdel-Aty-Zohdy HS (1998) Residue to binary arithmetic converter for the moduli set \( \{ 2^{k } , 2^{k} - 1,2^{k - 1} - 1\} \). IEEE Trans Circ Syst II Analog Digit Signal Process 45(2):204–209

    Article  Google Scholar 

  8. Wang W, Swamy MNS, Ahmad MO, Wang Y (2000) A high-speed residue-to-binary converter for three-moduli \( \{ 2^{k } , 2^{k} - 1,2^{k - 1} - 1\} \), RNS and a scheme for its VLSI implementation. IEEE Trans Circ Syst II Analog Digit Signal Process 47(12):1576–1581

    Article  Google Scholar 

  9. Phalguna PS, Kamat Dattaguru V, Ananda Mohan PV (2018) RNS-to-binary converters for new three-moduli sets 2k–3, 2k–2, 2k–1 and {2k + 1, 2k + 2, 2k + 3}. J Circ Syst Comput 27(14):1850224

    Article  Google Scholar 

  10. Hiasat A (2018) A residue-to-binary converter with an adjustable structure for an extended RNS three-moduli set. J Circ Syst Comput. https://doi.org/10.1142/s0218126619501263

    Article  Google Scholar 

  11. Habibi N, Salehnamadi MR (2016) An improved RNS reverse converter in three-moduli set. J Comput Robot 9(2):27–32

    Google Scholar 

  12. Dimitrakopoulos G, Nikolos D (2005) High-speed parallel-prefix VLSI ling adders. IEEE Trans Comput 54(2):225–231

    Article  Google Scholar 

  13. Zarandi AAE, Molahosseini AS, Hosseinzadeh M, Sorouri S, Antão S, Sousa L (2015) Reverse converter design via parallel-prefix adders: novel components, methodology, and implementations. IEEE Trans Very Large Scale Integr (VLSI) Syst 23(2):374–378

    Article  Google Scholar 

  14. Hemapriya K, Karthikeyan R, Dr S, Kumar Raj (2014) A high performance energy-efficient architecture for portable wireless devices based on folded tree and multi-bit flip-flop merging technique. Int J Eng Res Technol (IJERT) 3(2):998–1003

    Google Scholar 

  15. Walravens C, Dehaene W (2014) Low-power digital signal processor architecture for wireless sensor nodes. IEEE Trans Very Large Scale Integr (VLSI) Syst 22(2):313–320

    Article  Google Scholar 

  16. Ladner RE, Fischer MJ (1980) Parallel prefix computation. J Assoc Comput Mach 27(4):831–838

    Article  MathSciNet  Google Scholar 

  17. Tay TF, Chang C-H, Low JYS (2013) Efficient VLSI implementation of 2n scaling of signed integer in RNS {2n − 1, 2n, 2n + 1}. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(10):1936–1940

    Article  Google Scholar 

  18. Prakash G, Jagadeeswaran A, Prakash M (2017) An effective FPGA design of a high speed reverse converter for the unrestricted moduli set. Asian J Appl Sci Technol (AJAST) 1(1):255–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ananthalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthalakshmi, A.V., Rajagopalan, P. VLSI implementation of residue number system based efficient digital signal processor architecture for wireless sensor nodes. Int. j. inf. tecnol. 11, 829–840 (2019). https://doi.org/10.1007/s41870-019-00297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-019-00297-8

Keywords

Navigation