Advertisement

Cryptographic one-way hash function generation using twelve-terms 4D nonlinear system

  • Musheer Ahmad
  • Sushmita Singh
  • Shruti Khurana
Original Research
  • 15 Downloads

Abstract

In this paper, a hash generation scheme by exploring the complex dynamics of nonlinear system is proposed. The security of anticipated hashing scheme has been complemented by exploring the complex dynamics of 4D bounded nonlinear system exhibiting hyperchaotic nature, the strength of generated hashes is proven using statistical analysis. The proposed scheme is testified to possess characteristics of a hash function such as sensitivity to initial parameters and message, one-way property, uniform distribution of hashes, and resistance to attacks. The scheme is robust, flexible and efficient for usages in real world cryptographic scenarios. Although, performance tests have been performed for 128-bit hash but the scheme can practically be employed in any standard network security protocols for generating hashes of any desired length.

Keywords

Hash function 4D nonlinear system Security Confusion and diffusion 

References

  1. 1.
    Puniya P (2007) New design criteria for hash functions and block ciphers, Doctoral dissertation, New York UniversityGoogle Scholar
  2. 2.
    Menezes AJ, Oorschot PCV, Vanstone SA (1997) Handbook of applied cryptography. CRC Press, Boca RatonzbMATHGoogle Scholar
  3. 3.
    Wang X, Feng D, Lai X, Yu H (2004) Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, report 2004/199Google Scholar
  4. 4.
    Liang J, Lai XJ (2007) Improved collision attack on hash function MD5. J Comput Sci Technol 22(1):79–87MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biham E, Chen R, Joux A, Carribault P, Lemuet C, Jalby W (2005) Collisions of SHA-0 and reduced SHA-1. Lect Notes Comput Sci 3494:36–57MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang XY, Yin YQ, Yu HB (2005) Finding collisions in the full SHA-1. Lect Notes Comput Sci 3621:17–36MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Xiao D, Liao X, Deng S (2011) Chaos based hash function: chaos-based cryptography. Springer, BerlinCrossRefzbMATHGoogle Scholar
  8. 8.
    Ahmad M, Khurana S, Singh S, AlSharari HD (2017) A simple secure hash function scheme using multiple chaotic maps. 3D Res 8(2):1–13CrossRefGoogle Scholar
  9. 9.
    Chen G, Mao Y, Chui CK. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 21:749–761Google Scholar
  10. 10.
    Wong KW (2003) A combined chaotic cryptographic and hashing scheme. Phys Lett A 307:292–298MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kanso A, Ghebleh M (2013) A fast and efficient chaos-based keyed hash function. Commun Nonlinear Sci Numer Simul 18:109–123MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang Y, Liao X, Xiao D, Wong K (2008) One-way hash function construction based on 2D coupled map lattices. Inf Sci 178(5):1391–1406CrossRefzbMATHGoogle Scholar
  13. 13.
    Li Y, Xiao D, Deng S, Zhou G (2013) Improvement and performance analysis of a novel hash function based on chaotic neural network. Neural Comput Appl 22(2):391–402CrossRefGoogle Scholar
  14. 14.
    Lian S, Sun J, Wang Z (2006) Secure hash function based on neural network. Neurocomputing 69(16):2346–2350CrossRefGoogle Scholar
  15. 15.
    Chain K, Kuo WC (2013) A new digital signature scheme based on chaotic maps. Nonlinear Dyn 74(4):1003–1012MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kwok HS, Tang WK (2005) A chaos-based cryptographic hash function for message authentication. Int J Bifurcation Chaos 15(12):4043–4050CrossRefzbMATHGoogle Scholar
  17. 17.
    Satish K, Jayakar T, Tobin C, Madhavi K, Murali K (2004) Chaos based spread spectrum image steganography. IEEE Trans Consum Electron 50(2):587–590CrossRefGoogle Scholar
  18. 18.
    Wu X, Guan ZH (2007) A novel digital watermark algorithm based on chaotic maps. Phys Lett A 365(5):403–406CrossRefGoogle Scholar
  19. 19.
    Rawat S, Raman B (2011) A chaotic system based fragile watermarking scheme for image tamper detection. AEU Int J Electron Commun 65(10):840–847CrossRefGoogle Scholar
  20. 20.
    Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circuits Syst Mag 1(3):6–21CrossRefGoogle Scholar
  21. 21.
    Kocarev L, Galias Z, Lian S (eds) (2009) Intelligent computing based on chaos, vol 184. Springer, BerlinGoogle Scholar
  22. 22.
    Lian S, Sun J, Wang Z (2006) Secure hash function based on neural network. Neurocomputing 69(16):2346–2350CrossRefGoogle Scholar
  23. 23.
    Li Y, Xiao D, Deng S (2012) Secure hash function based on chaotic tent map with changeable parameter. High Technol Lett 18(1):7–12Google Scholar
  24. 24.
    Maqableh M, Samsudin AB, Alia MA (2008) New hash function based on chaos theory (CHA-1). Int J Comput Sci Netw Secur 8(2):20–26Google Scholar
  25. 25.
    Deng S, Li Y, Xiao D (2010) Analysis and improvement of a chaos-based Hash function construction. Commun Nonlinear Sci Numer Simul 15:1338–1347MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang H, Wang X, Li Z, Liu D (2005) One way hash function construction based on spatiotemporal chaos. Acta Phys Sin 54:4006–4011Google Scholar
  27. 27.
    Ren H, Wang Y, Xie Q, Yang H (2009) A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos, Solit Fract 42(4):2014–2022CrossRefGoogle Scholar
  28. 28.
    Akhavan A, Samsudin A, Akhshani A (2013) A novel parallel hash function based on 3D chaotic map. EURASIP J Adv Signal Process 126:1–12zbMATHGoogle Scholar
  29. 29.
    Merkle R (1989) One way hash functions and DES. In: Proceedings of CRYPTO’89, vol 435, pp 428–446Google Scholar
  30. 30.
    Damgård I (1989) A design principle for hash functions. In: CRYPTO, pp 416–427Google Scholar
  31. 31.
    Joux A (2004) Multicollisions in iterated hash functions: application to cascaded constructions. Lect Notes Comput Sci 3152:306–316MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kelsey J, Schneier B (2005) Second preimages on n-bit hash functions for much less than 2n work. Lect Notes Comput Sci 3494:474–490CrossRefzbMATHGoogle Scholar
  33. 33.
    Lucks S (2004) Design principles for iterated hash functions. Cryptol Print Archive. http://eprint.iacr.org/2004/253
  34. 34.
    Yang N (2013) A novel fractional-order hyperchaotic system stabilization viafractional sliding-mode control. Nonlinear Dyn 74:721–732CrossRefzbMATHGoogle Scholar
  35. 35.
    Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Techn J 28:656–715MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang J, Tang W (2012) A novel bounded 4D chaotic system. Nonlinear Dyn 67:2455–2465Google Scholar
  37. 37.
    Akhavan A, Samsudin A, Akhshani A (2009) Hash function based on piecewise nonlinear chaotic map. Chaos Solit Fract 42(2):1046–1053CrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang J, Wang X, Zhang W (2007) Chaotic keyed hash function based on feedforward-feedback nonlinear digital filter. Phys Lett A 362:439–448CrossRefzbMATHGoogle Scholar
  39. 39.
    Akhshani A, Behnia S, Akhavan A, Jafarizadeh MA, Hassan HA, Hassan Z (2009) Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps. Chaos Solit Fract 42(4):2405–2412CrossRefGoogle Scholar
  40. 40.
    Xiao D, Liao X, Deng S (2005) One-way Hash function construction based on the chaotic map with changeable-parameter. Chaos Solit Fract 24(1):65–71MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lin Z, Guyeux C, Yu S, Wang Q, Cai S (2017) On the use of chaotic iterations to design keyed hash function. Cluster Comput.  https://doi.org/10.1007/s10586-017-1062-6 Google Scholar
  42. 42.
    Li Y, Li X, Liu X (2016) A fast and efficient hash function based on generalized chaotic mapping with variable parameters. Neural Comput and Appl.  https://doi.org/10.1007/s00521-015-2158-7 Google Scholar
  43. 43.
    Teh JS, Samsudin A, Akhavan A (2015) Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dyn 81(3):1067–1079CrossRefGoogle Scholar
  44. 44.
    Kanso A, Yahyaoui H, Almulla M (2012) Keyed hash function based on a chaotic map. Inf Sci 186(1):249–264MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Khurana S, Ahmad M (2016) Designing chaotic chirikov map-based secure hash function. In: Innovations in computer science and engineering. Springer, Singapore, pp 267–274Google Scholar
  46. 46.
    Wadhwa S, Ahmad M, Vijay H (2016) Chaotic hash function based plain-image dependent block ciphering technique. In International conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 633–637Google Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringJamia Millia IslamiaNew DelhiIndia
  2. 2.Donald Bren School of Information and Computer SciencesUniversity of CaliforniaIrvineUSA

Personalised recommendations