Classification of Protein Kinase B using discrete wavelet transform

Abstract

In this paper a CAD system was designed for the classification of Protein Kinase B (PKB) using ten different discrete wavelet transforms and SSVM and SVM classifier. A set of different images has been collected from which data is divided into training and testing data set. The PKB is categorized into two classes called absent or present. The highest overall classification accuracy of 80% was obtained with biorthogonal: bior 4.4 wavelet transforms and daubechies: db6 wavelet transforms using SSVM classifier.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Jain S, Chauhan DS (2015) Linear and non linear modeling of Protein Kinase B/AkT. In: Proceeding of the international conference on information and communication technology for sustainable development, Ahmedabad, India. pp 81–88

  2. 2.

    Jain S (2012) Communication of signals and responses leading to cell survival/cell death using Engineered Regulatory Networks. PhD Dissertation, Jaypee University of Information Technology, Solan, Himachal Pradesh, India

  3. 3.

    Weiss R (2001) Cellular computation and communications using engineered genetic regulatory networks. PhD Dissertation, MIT

  4. 4.

    Libermann TA, Razon TA, Bartal AD et al (1984) Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44:753–760

    Google Scholar 

  5. 5.

    Normanno N, De Luca A, Bianco C et al (2006) Epidermal growth factor receptor (EGFR) signaling. Cancer Gene 366:2–16

    Google Scholar 

  6. 6.

    Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–211

    Article  Google Scholar 

  7. 7.

    Jain S, Chauhan DS (2015) mathematical analysis of receptors for survival proteins. Int J Pharma Bio Sci 6(3):164–176

    Google Scholar 

  8. 8.

    Lizcano JM, Alessi DR (2002) The insulin signalling pathway. Curr Biol 12:236–238

    Article  Google Scholar 

  9. 9.

    White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711

    Article  Google Scholar 

  10. 10.

    Jain S, Naik PK, Bhooshan SV (2011) Mathematical modeling deciphering balance between cell survival and cell death using insulin. Netw Biol 1(1):46–58

    Google Scholar 

  11. 11.

    Jain S, Naik PK, Bhooshan SV (2010) A system model for cell death/survival using SPICE and ladder logic. Digest J Nanomater Biostruct 5(1):57–66

    Google Scholar 

  12. 12.

    Jain S, Naik PK (2012) System modeling of cell survival and cell death: a deterministic model using Fuzzy System. Int J Pharma BioSci 3(4):358–373

    Google Scholar 

  13. 13.

    Jain S (2015) Mathematical analysis and probability density function of FKHR pathway for cell survival/death. In: Proceedings of the control system and power electronics—CSPE, Bangalore. pp 84–93

  14. 14.

    Gaudet S, Kevin JA, John AG et al (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Manuscript M500158-MCP200, 2005

  15. 15.

    Kevin JA, John AG, Suzanne G et al (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653

    Article  Google Scholar 

  16. 16.

    Thoma B, Grell M, Pfizenmaier K, Scheurich P (1990) Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 172:1019–1023

    Article  Google Scholar 

  17. 17.

    Jain S, Naik PK, Bhooshan SV (2011) Mathematical modeling deciphering balance between cell survival and cell death using tumor necrosis factor α. Res J Pharm Biol Chem Sci 2(3):574–583

    Google Scholar 

  18. 18.

    Raja BK, Madheswaran M, Thyagarajah K (2010) Texture pattern analysis of kidney tissues for disorder identification and classification using dominant Gabor wavelet. Mach Vision Appl 21(3):287–300

    Article  Google Scholar 

  19. 19.

    Rana S, Jain S, Virmani J (2016) Classification of kidney Lesions using gabor wavelet texture features. In: Proceeding of the 10th INDIACom 3rd 2016 international conference on computing for sustainable global development. pp 2528–2532

  20. 20.

    Bhusri S, Jain S, Virmani J (2016) Classification of breast Lesions based on Laws’ feature extraction techniques. In: Proceeding of the 10th INDIACom 3rd 2016 international conference on computing for sustainable global development. pp 2523–2527

  21. 21.

    Subramanya MB, Kumar V, Mukherjee S, Saini M (2014) SVM-Based CAC system for B-mode kidney ultrasound images. J Digit Imaging Soc Imaging Inf Med 28(4):448–458

  22. 22.

    Bhusri S, Jain S, Virmani J (2016) Breast Lesions classification using the amalagation of morphological and texture features. Int J Pharma BioSci 7(2):617–624

    Google Scholar 

  23. 23.

    Rana S, Jain S, Virmani J (2016) SVM-based characterization of focal kidney Lesions from B-mode ultrasound images. Res J Pharm Biol Chem Sci 7(4):837–846

    Google Scholar 

  24. 24.

    Bhusri S, Jain S, Virmani J (2016) Classification of breast lesions using the difference of statistical features. Res J Pharm Biol Chem Sci 7(4):1365–1372

    Google Scholar 

  25. 25.

    Jain S, Naik PK, Bhooshan SV (2011) Nonlinear modeling of cell survival/death using artificial neural network. 2011. In: The proceedings of international conference on computational intelligence and communication networks, Gwalior, India. pp 565–568

  26. 26.

    Jain S, Naik PK, Bhooshan SV (2010) Petri net implementation of cell signaling for cell death. Int J Pharma Bio Sci 1(2):1–18

    Google Scholar 

  27. 27.

    Virmani J, Kumar V, Kalra N, Khandelwal N (2011) Prediction of cirrhosis from liver ultrasound B-mode images based on Laws’ masks analysis. In: The proceedings of IEEE international conference on image information processing, ICIIP-2011, Waknaghat, HP, India. pp 1–5

  28. 28.

    Virmani J, Kumar V, Kalra N, Khandelwal N (2013) SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J Digit Imaging 26:530–543

    Article  Google Scholar 

  29. 29.

    LIBSVM (2016) http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 15 Jan 2016

  30. 30.

    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:1–43

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shruti Jain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, S. Classification of Protein Kinase B using discrete wavelet transform. Int. j. inf. tecnol. 10, 211–216 (2018). https://doi.org/10.1007/s41870-018-0090-7

Download citation

Keywords

  • CAD design
  • Protein Kinase B
  • Discrete wavelet texture transform
  • Overall classification accuracy