Skip to main content

Advertisement

Log in

UV Erythemal Radiation and Its Sensitivity to Changes in Total Column Ozone and Aerosols

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Ultraviolet erythemal radiation (UVER) measurements made at the Nowrosjee Wadia College (NWC) campus, Pune (India) were analysed to investigate temporal variability of UVER, to quantify effects of total column ozone (TCO) and aerosols on surface reaching UVER and to inter-compare ground-based and satellite retrieved UVER data. Diurnal variability in UVER exhibits a significant change with respect to local noon time followed by a month-to-month cyclical trend. The rate of ascent/descent of UVER during morning/evening time in winter is seen to be 0.43 minimum erythemal dose per hour (MED/hr) while during pre-monsoon season it is 0.63 MED/hr. Overall, the average value of the UVER for study period comes out to be 2.93 ± 0.8 MED/hr which is ~ 1.5 times higher than the threshold limit at which the Indian skin gets affected. There exists a quasi-anti-phase relationship between UVER and aerosol/TCO data pairs highlighting their influence on surface reaching UVER. Analysis reveals an inverse relationship between UV index (UV-I) (hence UVER) and aerosol index (AI) yielding Pearson correlation coefficient (r) in the range − 0.21 to − 0.88 for the period 2012–2013 and 2014–2015. The study further elucidates that the observed overall rate of decrement in UVER as a function of TCO is found to be 2.8 ± 1.5%. The Ozone Monitoring Instrument (OMI) retrieved UVER overestimates the UV-Biometer measured UVER by about 30%. The reason for overestimations being the non-inclusion of absorbing aerosols in the UVER retrieval algorithm employed in OMI estimations as well as prevalent atmospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aher GR, Ningombam SS, Agashe VV (2002) Optical determination of atmospheric ozone. Advances in atmospheric chemistry. In: Devara PCS, Ernest Raj P (eds) Proceeding of National Workshop on Atmospheric Chemistry (NWAC-99), pp 206–209, 2002. (ISBN 81–7525–355-X)

  • Alexandris D, Varotsos C, Kondratyev KY, Chronopoulos G (1999) On the altitude dependence of solar effective UV. Phys Chem Earth Part C 24:515–517

    Google Scholar 

  • Antón M, Gil J, Fernández-Gálvez J, Lyamani H, Valenzuela A, Foyo-Moreno I, Olmo F, Alados-Arboledas L (2011) Evaluation of the aerosol forcing efficiency in the UV erythemal range at Granada, Spain. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016112

    Article  Google Scholar 

  • Arola A, Kazadzis S, Krotkov N, Bais A, Gröbner J, Herman JR (2005) Assessment of TOMS UV bias due to absorbing aerosols. J Geophys Res Atmos. https://doi.org/10.1029/2005JD005913

    Article  Google Scholar 

  • Badarinath K, Kharol SK, Kaskaoutis D, Kambezidis H (2007) Influence of atmospheric aerosols on solar spectral irradiance in an urban area. J Atmos Sol Terr Phys 69:589–599

    Article  Google Scholar 

  • Bais AF, Bernhard G, McKenzie RL, Aucamp P, Young PJ, Ilyas M, Jöckel P, Deushi M (2019) Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem Photobiol Sci 18:602–640

    Article  Google Scholar 

  • Buntoung S, Webb A (2010) Comparison of erythemal UV irradiances from Ozone Monitoring Instrument (OMI) and ground-based data at four Thai stations. J Geophys Res Atmos. https://doi.org/10.1029/2009JD013567

    Article  Google Scholar 

  • Chipperfield M, Bekki S, Dhomse S, Harris NRP, Hassler B, Hossaini R, Steinbrecht W, Thiéblemont R, Weber M (2017) Detecting recovery of the stratospheric ozone layer. Nature 549:211–218. https://doi.org/10.1038/nature23681

    Article  Google Scholar 

  • Diaz JP, Expósito FJ, Torres CJ, Carreño V, Redondas A (2000) Simulation of mineral dust effects on UV radiation levels. J Geophys Res Atmos 105:4979–4991

    Article  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClO x/NO x interaction. Nature 315:207–210

    Article  Google Scholar 

  • Fioletov V, McArthur L, Mathews T, Marrett L (2009) On the relationship between erythemal and vitamin D action spectrum weighted ultraviolet radiation. J Photochem Photobiol, B 95:9–16

    Article  Google Scholar 

  • Gupta GP, Kumar B, Singh S, Kulshrestha UC (2016) Deposition and impact of urban atmospheric dust on two medicinal plants during different seasons in NCR Delhi. Aerosol Air Qual Res 16:2920–2932

    Article  Google Scholar 

  • Herman J, Krotkov N, Celarier E, Larko D, Labow G (1999) Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances. J Geophys Res Atmos 104:12059–12076

    Article  Google Scholar 

  • Hu L, Gong H, Jun YuD, Gao Q, Gao N, Wang M, Yan Y, Wang Y, Yu J, Liu Y (2010) Diurnal variations in solar ultraviolet radiation on horizontal and vertical plane. Iran J Public Health 39(3):70–81

    Google Scholar 

  • Ialongo I, Casale G, Siani A (2008) Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmos Chem Phys 8:3283–3289

    Article  Google Scholar 

  • Kazadzis S, Kouremeti N, Bais A, Kazantzidis A, Meleti C (2009) Aerosol forcing efficiency in the UVA region from spectral solar irradiance measurements at an urban environment. Ann Geophys. https://doi.org/10.5194/angeo-27-2515-2009

    Article  Google Scholar 

  • Kinney JP, Long CS, Geller AC (2000) The Ultraviolet Index: a useful tool. Dermatol Online J. https://doi.org/10.5070/D35925W4HQ

    Article  Google Scholar 

  • Koepke P, Reuder J, Schwander H (2002) Solar UV radiation and its variability due to the atmospheric components. Recent Res Dev Photochem. Photobiol 6:e34

    Google Scholar 

  • Kolhe AR, Pawar GV, Varpe SR, Kumar PP, Devara PC, Aher GR (2016) Multi-year analysis of aerosol properties retrieved from the Ångström parameters for different spectral ranges over Pune. Aerosol Air Qual Res 16:3266–3280

    Article  Google Scholar 

  • Kroon M, Veefkind J, Sneep M, McPeters R, Bhartia P, Levelt P (2008) Comparing OMI-TOMS and OMI-DOAS total ozone column data. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008798

    Article  Google Scholar 

  • Krotkov NA, Herman JR, Bhartia PK, Seftor CJ, Arola A, Kaurola J, Koskinen L, Kalliskota S, Taalas P, Geogdzhaev IV (2002) Version 2 TOMS UV algorithm: problems and enhancements. In: Ultraviolet Ground-and Space-based Measurements, Models, and Effects, International Society for Optics and Photonics, pp 82–93

  • Kujanpää J, Kalakoski N (2015) Operational surface UV radiation product from GOME-2 and AVHRR/3 data. Atmos Measure Techniques 8:4399–4414

    Article  Google Scholar 

  • Kulkarni PS, Ghude SD, Bortoli D (2010) Tropospheric ozone (TOR) trend over three major inland Indian cities: Delhi, Hyderabad and Bangalore. Ann Geophys 28(10):1879–1885

    Article  Google Scholar 

  • Kutal G, Kolhe A, Varpe S, Aher G (2017) An investigation of temporal variability of the total column ozone over tropical urban, high altitude, and coastal stations in Western Maharashtra, India. Int J Remote Sens 38:1197–1223

    Article  Google Scholar 

  • Lal S, Peshin S, Naja M, Venkataramani S (2017) Variability of ozone and related trace gases over India. Observed climate variability and change over the Indian Region. Springer, pp 249–269

    Book  Google Scholar 

  • Lee J, Choi WJ, Kim DR, Kim S-Y, Song C-K, Hong JS, Hong Y, Lee S (2013) The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements. Asia-Pac J Atmos Sci 49:271–278

    Article  Google Scholar 

  • Levelt PF, Hilsenrath E, Leppelmeier GW, van den Oord GH, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006) Science objectives of the ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44:1199–1208

    Article  Google Scholar 

  • Liu S, McKeen S, Madronich S (1991) Effect of anthropogenic aerosols on biologically active ultraviolet radiation. Geophys Res Lett 18:2265–2268

    Article  Google Scholar 

  • McKenzie R, Matthews W, Johnston P (1991) The relationship between erythemal UV and ozone, derived from spectral irradiance measurements. Geophys Res Lett 18:2269–2272

    Article  Google Scholar 

  • McKinlay F, Diffey B (1987) A reference spectrum for ultraviolet induced erythema in human skin 83–87. Human Exposure to Ultraviolet Radiation

  • Mehta RV, Shenoi S, Balachandran C, Pai S (2004) Minimal erythema response (MED) to solar simulated irradiation in normal Indian skin. Indian J Dermatol Venereol Leprol 70(5):277–279

    Google Scholar 

  • Morys M, Mims FM III, Hagerup S, Anderson SE, Baker A, Kia J, Walkup T (2001) Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J Geophys Res Atmos 106:14573–14582

    Article  Google Scholar 

  • Ningombam SS, Vemareddy P, Song HJ (2018) The recent signs of total column ozone recovery over mid-latitudes: the effects of the Montreal protocol mandate. J Atmos Solar-Terr Phys 178:32

    Article  Google Scholar 

  • Ningombam SS, Vemareddy P, Song HJ (2020) Effect of lower stratospheric temperature on total ozone column (TOC) during the ozone depletion and recovery phases. Atmos Res 232:104686

    Article  Google Scholar 

  • Palancar GG, Olcese LE, Achad M, López ML, Toselli BM (2017) A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina. J Quant Spectrosc Radiat Transfer 198:40–47

    Article  Google Scholar 

  • Panicker A, Pandithurai G, Takamura T, Pinker R (2009) Aerosol effects in the UV-B spectral region over Pune, an urban site in India. Geophys Res Lett. https://doi.org/10.1029/2009GL037632

    Article  Google Scholar 

  • Panicker A, Pandithurai G, Beig G, Kim D, Lee DI (2014) Aerosol modulation of ultraviolet radiation dose over four metro cities in India. Adv Meteorol. https://doi.org/10.1155/2014/202868

    Article  Google Scholar 

  • Pathakoti M, Asuri LK, Dangeti Venkata M, Peethani S, Gaddamidi S, Soni VK, Peshin SK (2018) Assessment of total columnar ozone climatological trends over the Indian sub-continent. Int J Remote Sens 39:3963–3982

    Article  Google Scholar 

  • Raj PE, Sonbawne S, Dani K, Saha S, Pandithurai G, Devara P (2009) Changes observed in sun photometer derived total column ozone and possible implications on surface-reaching UV radiation over a tropical Indian station. Int J Remote Sens 30:4153–4165

    Article  Google Scholar 

  • Schoeberl M, Douglass A, Hilsenrath E, Bhartia P, Barnett J, Gille J, Beer R, Gunson M, Waters J, Levelt P (2004) Earth observing system missions benefit atmospheric research. EOS Trans Am Geophys Union 85:177–181

    Article  Google Scholar 

  • Selgrade M, Repacholi MH, Koren HS (1997) Ultraviolet radiation-induced immune modulation: potential consequences for infectious, allergic, and autoimmune disease. Environ Health Perspect 105:332–334

    Article  Google Scholar 

  • Singh S, Singh R (2004) High-altitude clear-sky direct solar ultraviolet irradiance at Leh and Hanle in the western Himalayas: observations and model calculations. J Geophys Res Atmos. https://doi.org/10.1029/2004JD004854

    Article  Google Scholar 

  • Singh R, Nath S, Tanwar R, Singh S (2005) Study of erythemal dose variation and exposure time for different UV-B dose levels at Indian mainland and Antarctica. In Proc. URSI

  • Tanskanen A, Krotkov NA, Herman JR, Arola A (2006) Surface ultraviolet irradiance from OMI. IEEE Trans Geosci Remote Sens 44:1267–1271

    Article  Google Scholar 

  • Tanskanen A, Lindfors A, Määttä A, Krotkov N, Herman J, Kaurola J, Koskela T, Lakkala K, Fioletov V, Bernhard G (2007) Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008830

    Article  Google Scholar 

  • United Nations Environment Programme EEAP (2010) Environmental effects of ozone depletion and its interactions with climate change: progress report, 2009. Photochem Photobiol Sci 9:275–294

    Article  Google Scholar 

  • Varotsos C (2000) Atmospheric ozone variability: implications for climate change, human health, and ecosystems. Springer Verlag

    Google Scholar 

  • Varotsos C (2005) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26:3333–3342

    Article  Google Scholar 

  • Weatherhead B, Tanskanen A, Stevermer A (2005) Factors affecting surface ultraviolet radiation levels in the Arctic. In: Symon C (ed) Arctic climate impact assessment. Cambridge University Press, New York

    Google Scholar 

  • Webb AR, Slaper H, Koepke P, Schmalwieser AW (2011) Know your standard: clarifying the CIE erythema action spectrum. Photochem Photobiol 87:483–486

    Article  Google Scholar 

  • World Meteorological Organization (2007) Scientific assessment of ozone depletion: 2006 (Report 50, Global Ozone Research and Monitoring Project). Switzerland, Geneva

    Google Scholar 

  • Zerefos C, Bais A, Meleti C, Ziomas I (1995) A note on the recent increase of solar UV-B radiation over northern middle latitudes. Geophys Res Lett 22:1245–1247

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Principal, Nowrosjee Wadia College, Pune (India) and the Secretary, Modern Education Society, Pune (India) for encouragement and support. Thanks, are also due to the University Grants Commission, New Delhi for providing the financial support for research work reported in the present paper. The OMI UV/ozone/aerosol data products that were obtained via the Giovanni tool are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganesh Kutal or Gajanan Aher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutal, G., Kolhe, A., Varpe, S. et al. UV Erythemal Radiation and Its Sensitivity to Changes in Total Column Ozone and Aerosols. Aerosol Sci Eng 6, 176–185 (2022). https://doi.org/10.1007/s41810-022-00132-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-022-00132-x

Keywords

Navigation