Skip to main content
Log in

Scavenging of Submicron Aerosol Particles by Cloud of Charged Droplets Generated from Electro-Hydrodynamic Atomizer (EHDA)

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

High aerosol concentration is a cause of concern for human health and environment. Hence, developing novel methods and techniques for mitigating aerosols is the need of hour. Scavenging of aerosol particles using charged droplets generated using electro-hydrodynamic atomizer (EHDA) is an upcoming technology for aerosol mitigation. An experimental system, containing a single capillary EHDA mounted on a horizontal cylindrical-shaped aerosol charging chamber, is designed and fabricated to investigate aerosol scavenging characteristics. For evaluation of size-dependent aerosol scavenging characteristics, three types of test aerosols, namely smoke, nebulized NaCl and hot wire-generated metallic aerosols, are used. These aerosols are well characterised with respect to their size and charge distribution. For smoke aerosols, removal efficiency varied from 15 to 90% for particles in the range of 30 to 200 nm diameter. For NaCl aerosols, removal efficiency varied from 70 to 90% and is fairly independent of the particle size. Hot wire-generated metallic aerosols showed significant removal for aerosols size more than 30 nm. However, for particles size less than 20 nm, it is observed that aerosol concentration increases, when charge droplets are injected in neutralization chamber of EHDA. It is expected that these results will further provide efficacy and robustness to the EHDA-based eco-friendly air cleaning technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Balachandran W, Jaworek A, Krupa A, Kulon J (2003) Efficiency of smoke removal by charged water droplets. J Electrostat 58(3–4):209–220

    Article  Google Scholar 

  • Boelter KJ, Davidson JH (1997) Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci Technol 27(6):689–708

    Article  Google Scholar 

  • Borra JP (2018) Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. J Aerosol Sci 125:208–236

    Article  Google Scholar 

  • Cherrier G, Belut E, Gerardin F, Taniere A, Rimbert N (2017) Aerosol particles scavenging by a droplet: microphysical modeling in the greenfield gap. Atmos Environ 166:519–530

    Article  Google Scholar 

  • Danzomo AB, Salami MJE, Sani J, Khan MR, Nor IM (2012) Performance evaluation of wet scrubber system for industrial air pollution control. ARPN J Eng Appl Sci. 17(12):1669–1677

    Google Scholar 

  • Dustin GP, Donghyun R, Andrew KP (2014) Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators. Environ Sci Technol 48:2067–2074

    Article  Google Scholar 

  • Ghosh K, Tripathi SN, Joshi M, Mayya YS, Khan A, Sapra BK (2020) Particle formation from vapors emitted from glowing wires: theory and experiments. Aerosol Sci Technol 54(3):243–261

    Article  Google Scholar 

  • Huang SH, Chen CC (2002) Ultrafine aerosol penetration through electrostatic precipitators. Environ Sci Technol 36:4625–4632

    Article  Google Scholar 

  • Jaworek A, Adamiak K, Balachandran W, Krupa A, Castle P, Machowski W (2002) Numerical simulation of scavenging of small particles by charged droplets. Aerosol Sci Technol 36:913–924

    Article  Google Scholar 

  • Jaworek A, Balachandran W, Lackowski M, Kulon J, Krupa A (2010) Multi-nozzle electrospray system for gas cleaning processes. J Electrostat 64(3–4):194–202

    Google Scholar 

  • Juan DL, Fernandez De La Mora J (1997) Charge and size distribution of the EHDA drops. J Colloid Interface Sci 186:280–293

    Article  Google Scholar 

  • Khan A, Sen D, Kothalkar P, Sapra BK, Mazumder S, Mayya YS (2012) Design and performance of a laboratory spray dryer to realize evaporation-induced self-assembly of nanoparticles. Dry Technol. 30(6):679–686

    Article  Google Scholar 

  • Khan A, Modak P, Joshi M, Khandare P, Koli A, Gupta A, Anand S, Sapra BK (2014) Generation of high concentration nanoparticles using glowing wire technique. J Nanopart Res 16:2776–2783

    Article  Google Scholar 

  • Kim JH, Lee HS, Kim HH, Ogata A (2010) Electrospray with electrostatic precipitator enhances fine particles collection efficiency. J Electrostatics 68:305

    Article  Google Scholar 

  • Kraemer HF, Johnstone HF (1955) Collection of aerosol particles in presence of electrostatic fields. Ind Eng Chem 47:2426–2434

    Article  Google Scholar 

  • Lear CW, Krieve WF, Cohen E (1975) Charged droplet scrubbing for fine particle control. J Air Pollut Control Assoc. 25(2):184–189

    Article  Google Scholar 

  • Lee MH, Yang W, Chae N, Choi S (2020) Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl Eng Technol. 52:1043–1050

    Article  Google Scholar 

  • Lim KS, Kim HS, Lee KW (2004) Comparative performances of conventional cyclones and a double cyclone with and without an electric field. J Aerosol Sci 35:103–116

    Article  Google Scholar 

  • Lind T, Hokkinen J, Jokiniemi JK, Saarikoski S, Hillamo R (2003) Electrostatic precipitator collection efficiency and trace element emissions from co-combustion of biomass and recovered fuel in fluidized-bed combustion. Environ Sci Technol 37(12):2842–2846

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2d edn. Kluwer, Amsterdam, p 954

    Google Scholar 

  • Singh S, Khan A, Sapra BK, Mayya YS (2013) Parameterization of an electro-hydrodynamic atomization-based aerosol generator. Particul Sci Technol. 31(5):495–500

    Article  Google Scholar 

  • Singh S, Khan A, Koli A, Sapra BK, Mayya YS (2016) Electrohydrodynamic Atomization (EHDA) of high-conductivity pure solvent. Particul Sci Technol. 34(5):608–615

    Article  Google Scholar 

  • Tan B, Wang L, Zhang X (2007) The effect of an external DC electric field on bipolar charged aerosol agglomeration. J Electrostat 65(2):82–86

    Article  Google Scholar 

  • Tepper G, Kessick R, Pestov D (2007) An electrospray-based, ozone-free air purification technology. J Appl Phys 102:113305

    Article  Google Scholar 

  • Tinsley BA, Rohrbaugh RP, Hei M (2000) Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J Atmos Sci 57:2118–2134

    Article  Google Scholar 

  • Tripathi SN, Vishnoi S, Kumar S, Harrison RG (2006) Computationally efficient expressions for the collision efficiency between electrically charged aerosol particles and cloud droplets. Q J R Meteorol Soc 132:1717–1731

    Article  Google Scholar 

  • Wang PK, Grover SN, Pruppacher HR (1978) On the effect of electric charges on the scavenging of aerosol particles by cloud and small raindrops. J Atmos Sci 35:1735–1743

    Article  Google Scholar 

  • Watanabe T, Tochikubo F, Koizurni Y, Tsuchida T, Hautanen J, Kauppinen EI (1995) Submicron particle agglomeration by an electrostatic agglomerator. J Electrostat 34(4):367–383

    Article  Google Scholar 

  • Xie X, Qian H (2015) The Effects of electrospray-based electrostatic precipitator for removing particles. Proc Eng. 121:684–691

    Article  Google Scholar 

  • Yang C (2012) Aerosol filtration application using fibrous media—an industrial perspective. Chin J Chem Eng 20(1):1–9

    Article  Google Scholar 

  • Ylatalo SI, Hautanen J (1998) Electrostatic precipitator penetration function for pulverized coal combustion. Aerosol Sci Technol 29:17–30

    Article  Google Scholar 

  • Yoo KH, Lee JS, Oh MD (1997) Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipitators. Aerosol Sci Technol 27(3):308–323

    Article  Google Scholar 

  • Zhang L, Tinsley BA, Zhou L (2018) Parameterization of in-cloud aerosol scavenging due to atmospheric ionization: part 3 Effects of varying droplet radius. J. Geophys. Res-Atmos. 123:10546–10567

    Google Scholar 

  • Zhu J, Zhang X, Chen W, Shi Y, Yan K (2010) Electrostatic precipitation of fine particles with a bipolar pre-charger. J Electrostat 68:174–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Khan, A., Nakhwa, A. et al. Scavenging of Submicron Aerosol Particles by Cloud of Charged Droplets Generated from Electro-Hydrodynamic Atomizer (EHDA). Aerosol Sci Eng 5, 223–232 (2021). https://doi.org/10.1007/s41810-021-00096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-021-00096-4

Keywords

Navigation