The Structural and Optical Properties of Silver Oxide Thin Films Synthesized by Thermal Evaporation of Silver with Subsequent Annealing

Abstract

In this study, silver oxide thin films were deposited on silicon and glass substrates using thermal evaporation techniques with subsequent annealing in air. The deposited films were annealed in air at different temperatures. The effect of annealing temperature on the structural and optical properties of prepared thin films was investigated. The results showed that, except for the grain size, the annealing temperature has a significant effect on the oxidation rate and the optical properties of silver oxide thin films.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Biswanath M, Moumita M (2009) Nonvolatile memory device based on Ag nanoparticle: characteristics improvement. Appl Phys Lett 94:233–236

    Google Scholar 

  2. Chan YF, Zhang CX, Wu ZL, Zhao DM, Wang W, Xu HJ, Sun XM (2013) Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl Phys Lett 102:183118

    Article  Google Scholar 

  3. Chiyah B, Kayed K (2018) Effect of annealing temperature on the structural and optical properties of silver oxide thin films prepared by thermal evaporation with subsequent annealing. Int J Nanoelectron Mater 11:305–310

    Google Scholar 

  4. Detsri E, Popanyasak J (2015) Fabrication of silver nanoparticles/polyaniline composite thin films using layer-by-layer self-assembly technique for ammonia sensing. Colloids Surf A: Physicochem Eng Aspects 467:57–65

    Article  Google Scholar 

  5. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 16036:1–16

    Google Scholar 

  6. Dubas ST (2007) Preparation of silver nanoparticle thin films for sensing application. PhD thesis. Department of Material Science, Chulalongkorn University, Bangkok, Thailand

  7. Dubas ST, Pimpan V (2008a) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33

    Article  Google Scholar 

  8. Dubas ST, Pimpan V (2008b) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663

    Article  Google Scholar 

  9. Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sens Actuators B: Chem 138:625–630

    Article  Google Scholar 

  10. Fujiwara Y, Kobayashi Y, Kita K, Kakehashi R, Noro M, Katayama JI, Otsuka K (2008) Ag nanoparticle catalyst for electroless Cu deposition and promotion of its adsorption onto epoxy substrate. J Electrochem Soc 155:377–382

    Article  Google Scholar 

  11. Gomathi Devi L, Kavitha R (2016) A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622

    Article  Google Scholar 

  12. Harinee S, Muthukumar K, Dahms HU, Koperuncholan M, Vignesh S, Banu RJ, Ashok M, James RA (2019) Biocompatible nanoparticles with enhanced photocatalytic and antimicrofouling potential. Int Biodeter Biodegrad 145:104790

    Article  Google Scholar 

  13. Huang LM, Wen TC (2007) One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Mater Sci Eng A445–446:7–13

    Article  Google Scholar 

  14. Kayed K (2020) The optical properties of individual silver nanoparticles in Ag/Ag2O Composites synthesized by oxygen plasma treatment of silver thin films. Plasmonics. https://doi.org/10.1007/s11468-020-01169-9

    Article  Google Scholar 

  15. Li J, Fang W, Yu C, Zhou W, Zhu L, Xie Y (2015) Ag-based semiconductor photocatalysts in environmental purification. Appl Surf Sci 358:46–56

    Article  Google Scholar 

  16. Li S, Gao B, Wang Y, Jin B, Yue Q, Wang Z (2019) Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination 464:94–104

    Article  Google Scholar 

  17. Li M, Wang Y, Xing Y, Zhong J (2020) P123-assisted preparation of Ag/Ag2O with significantly enhanced photocatalytic performance. Solid State Sci 99:106062

    Article  Google Scholar 

  18. Ling L, Feng Y, Li H, Chen Y, Wen J, Zhu J, Bian Z (2019) Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl Surf Sci 483:772–778

    Article  Google Scholar 

  19. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Article  Google Scholar 

  20. Madhavi V, Kondaiah P, Mohan Rao G (2018) Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis. Appl Surf Sci 436:708–719

    Article  Google Scholar 

  21. Mahapatra SS, Karak N (2008) Silver nanoparticle in hyperbranched polyamine: synthesis, characterization and antibacterial activity. Mater Chem Phys 112:1114–1119

    Article  Google Scholar 

  22. Maruno S (2019) Surface plasmon spectroscopy of thin composite films of Au nanoparticles and PEDOT:PSS conjugated polymer. Org Electron 64:154–157

    Article  Google Scholar 

  23. Mott NF, Davis EA (1971) Electronic properties in non-crystalline materials. Oxford University Press, London

    Google Scholar 

  24. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe vonKolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch. Springer, pp 387–409

  25. Sun W, Hong R, Liu Q, Li Z, Shi J, Tao C, Zhang D (2019) SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation. Opt Mater 96:109298

    Article  Google Scholar 

  26. Uğur Ş, Akaoğlu C, Kucukkahveci E (2019) A study on film formation and fluorescence enhancement of PS latex/AgNPs composites depending on AgNPs content and annealing. Colloids Surf A 573:40–56

    Article  Google Scholar 

  27. Wadayama H, Okabe T, Taniguchi J (2018) Fabrication of multilayered structure of silver nanorod arrays for plasmon memory. Microelectron Eng 193:47–53

    Article  Google Scholar 

  28. Wang Y (2006) A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning. Nanotechnology 17:3304–3307

    Article  Google Scholar 

  29. Yang GW, Li H (2008) Sonochemical synthesis of highly monodispersed and size controllable Ag nanoparticles in ethanol solution. Mater Lett 62:2189–2191

    Article  Google Scholar 

  30. Zhao WB, Zhu JJ, Chen HY (2003) Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template. J Cryst Growth 258:176–180

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Damascus and the Syrian Atomic Energy Commission for providing the facility to carry out this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamal Kayed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kayed, K., Chiyah, B. The Structural and Optical Properties of Silver Oxide Thin Films Synthesized by Thermal Evaporation of Silver with Subsequent Annealing. Aerosol Sci Eng (2020). https://doi.org/10.1007/s41810-020-00072-4

Download citation

Keywords

  • Silver oxide
  • Thin film
  • Thermal evaporation
  • Annealing
  • Plasmon