Skip to main content

Advertisement

Log in

Concentration and Viability of Bacterial Aerosols Associated with Weather in Asian Continental Outflow: Current Understanding

  • Review
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Constituting a major fraction of bioaerosols, airborne bacteria take part in various atmospheric processes. Studies have suggested that airborne bacteria likely play an important role in cloud formation and consequently influence the solar radiation transfer and chemical conversions in the atmosphere, in addition to acting as links between geographically isolated microbial communities. However, how bacteria are dispersed in airflows remains poorly understood, because of the lack of reliable methods to describe the variations of airborne bacteria responding to changes in weather. We developed a simple method based on epifluorescence enumeration using LIVE/DEAD BacLight stain, by which we measured the concentrations of viable and non-viable bacterial cells in open air at a time resolution of 1 h or less. Although this method is labor-intensive, laboratory experiments and applications in field observations have demonstrated its reliability and effectiveness in studies on the correlation between airborne bacteria and Asian dust, the dependence of airborne bacteria on regional and synoptic weather, and the presence of bacteria in rainwater. In this short review, we briefly introduce the method, report the progress with its application to bacteria in Asian continental outflow, address the significance of meteorological factors in controlling the variation of airborne bacteria, and give perspectives on future studies in terms of the dynamics of bacterial aerosols in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowicz DA (1995) Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 103(S5):97–99

    Article  Google Scholar 

  • Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci 36(5–6):801–812. doi:10.1016/j.jaerosci.2004.10.012

    Article  Google Scholar 

  • Amato P, Joly M, Schaupp C, Attard E, Möhler O, Morris CE, Brunet Y, Delort AM (2015) Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmos Chem Phys 15(11):6455–6465. doi:10.5194/acp-15-6455-2015

    Article  Google Scholar 

  • Barberán A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, Fierer N (2015) Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA 112(18):5756–5761. doi:10.1073/pnas.1420815112

    Article  Google Scholar 

  • Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64(1–4):109–119. doi:10.1016/S0169-8095(02)00084-4

    Article  Google Scholar 

  • Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Method 37(1):77–86. doi:10.1016/S0167-7012(99)00048-2

    Article  Google Scholar 

  • Bowers RM, McLetchie S, Knight R, Fierer N (2011a) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5(4):601–612. doi:10.1038/ismej.2010.167

    Article  Google Scholar 

  • Bowers RM, Sullivan AP, Costello EK, Collett JL Jr, Knight R, Fierer N (2011b) Sources of bacteria in outdoor air across cities in the midwestern United States. Appl Environ Microbiol 77(18):6350–6356. doi:10.1128/AEM.05498-11

    Article  Google Scholar 

  • Bowers RM, McCubbin IB, Hallar AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49. doi:10.1016/j.atmosenv.2012.01.005

    Article  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA 104(1):299–304. doi:10.1073/pnas.0608255104

    Article  Google Scholar 

  • Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, Jiang J, Zhu TF (2014) Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ Sci Technol 48(3):1499–1507. doi:10.1021/es4048472

    Article  Google Scholar 

  • Casareto BE, Suzuki Y, Okada K, Morita M (1996) Biological micro-particles in rain water. Geophys Res Lett 23(2):173–176. doi:10.1029/95gl03785

    Article  Google Scholar 

  • Chi M-C, Li C-S (2007) Fluorochrome in monitoring atmospheric bioaerosols and correlations with meteorological factors and air pollutants. Aerosol Sci Technol 41(7):672–678. doi:10.1080/02786820701383181

    Article  Google Scholar 

  • Cho BC, Jang GI (2014) Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011. Atmos Environ 94:409–416. doi:10.1016/j.atmosenv.2014.05.048

    Article  Google Scholar 

  • Choi D-S, Park Y-K, Oh S-K, Yoon H-J, Kim JC, Seo W-J, Cha S-H (1997) Distribution of airborne microorganisms in yellow sands of Korea. J Microbiol 35(1):1–9

    Google Scholar 

  • Christner BC, Cai R, Morris CE, McCarter KS, Foreman CM, Skidmore ML, Montross SN, Sands DC (2008) Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc Natl Acad Sci USA 105(48):18854–18859. doi:10.1073/pnas.0809816105

    Article  Google Scholar 

  • Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, White AB, Ralph FM, Minnis P, Comstock JM, Tomlinson JM, Prather KA (2013) Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339(6127):1572–1578. doi:10.1126/science.1227279

    Article  Google Scholar 

  • DeLeon-Rodriguez N, Lathem TL, Rodriguez RL, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT (2013) Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci USA 110(7):2575–2580. doi:10.1073/pnas.1212089110

    Article  Google Scholar 

  • Delort A-M, Vaïtilingom M, Amato P, Sancelme M, Parazols M, Mailhot G, Laj P, Deguillaume L (2010) A short overview of the microbial population in clouds: potential roles in atmospheric chemistry and nucleation processes. Atmos Res 98(2):249–260. doi:10.1016/j.atmosres.2010.07.004

    Article  Google Scholar 

  • Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64:15598. doi:10.3402/tellusb.v64i0.15598

    Article  Google Scholar 

  • Dimmick R, Straat PA, Wolochow H, Levin G, Chatigny M, Schrot J (1975) Evidence for metabolic activity of airborne bacteria. J Aerosol Sci 6(6):387–393. doi:10.1016/0021-8502(75)90054-3

    Article  Google Scholar 

  • Duce RA, Arimoto R, Ray BJ, Unni CK, Harder PJ (1983) Atmospheric trace elements at Enewetak Atoll: 1. concentrations, sources, and temporal variability. J Geophys Res Ocean 88(C9):5321–5342. doi:10.1029/JC088iC09p05321

    Article  Google Scholar 

  • Estillore AD, Trueblood JV, Grassian VH (2016) Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 7(11):6604–6616. doi:10.1039/c6sc02353c

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54(8):777–784. doi:10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2

    Article  Google Scholar 

  • Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, Lang-Yona N, Burrows SM, Gunthe SS, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Després VR, Pöschl U (2016) Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos Res 182:346–376. doi:10.1016/j.atmosres.2016.07.018

    Article  Google Scholar 

  • Fukushima S, Zhang D (2015) Comparison in size and elemental composition of dust particles deposited to the surface and suspended in the air on the southwest Japan coast. Atmos Environ 118:157–163. doi:10.1016/j.atmosenv.2015.07.041

    Article  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459–477. doi:10.1128/CMR.00039-06

    Article  Google Scholar 

  • Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17(3):203–213. doi:10.1023/A:1011868218901

    Article  Google Scholar 

  • Guo S, Hu M, Zamora ML, Peng J, Shang D, Zheng J, Du Z, Wu Z, Shao M, Zeng L, Molina MJ, Zhang R (2014) Elucidating severe urban haze formation in China. Proc Natl Acad Sci USA 111(49):17373–17378. doi:10.1073/pnas.1419604111

    Article  Google Scholar 

  • Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59(Pt 1):1–7. doi:10.1099/jmm.0.015420-0

    Article  Google Scholar 

  • Hara K, Zhang D (2012) Bacterial abundance and viability in long-range transported dust. Atmos Environ 47:20–25. doi:10.1016/j.atmosenv.2011.11.050

    Article  Google Scholar 

  • Hara K, Zhang D, Yamada M, Matsusaki H, Arizono K (2011) A detection of airborne particles carrying viable bacteria in an urban atmosphere of Japan. Asian J Atmos Environ 5(3):152–156. doi:10.5572/ajae.2011.5.3.152

    Article  Google Scholar 

  • Hara K, Zhang D, Matsusaki H, Sadanaga Y, Ikeda K, Hanaoka S, Hatakeyama S (2015) UV-tolerant culturable bacteria in an Asian dust plume transported over the East China Sea. Aerosol Air Qual Res 15(2):591–599. doi:10.4209/aaqr.2014.03.0067

    Google Scholar 

  • Herlihy LJ, Galloway JN, Mills AL (1987) Bacterial utilization of formic and acetic acid in rainwater. Atmos Environ 21(11):2397–2402. doi:10.1016/0004-6981(87)90374-X

    Article  Google Scholar 

  • Ho H-M, Rao CY, Hsu H-H, Chiu Y-H, Liu C-M, Chao HJ (2005) Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39(32):5839–5850. doi:10.1016/j.atmosenv.2005.06.034

    Article  Google Scholar 

  • Hoose C, Kristjánsson JE, Chen J-P, Hazra A (2010) A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J Atmos Sci 67(8):2483–2503. doi:10.1175/2010jas3425.1

    Article  Google Scholar 

  • Hu W, Murata K, Toyonaga S, Zhang D (2017a) Bacterial abundance and viability in rainwater associated with cyclones, stationary fronts and typhoons in southwestern Japan. Atmos Environ (in revision)

  • Hu W, Murata K, Zhang D (2017b) Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater. J Environ Sci. 51:202–213. doi:10.1016/j.jes.2016.05.030

    Article  Google Scholar 

  • Hua N-P, Kobayashi F, Iwasaka Y, Shi G-Y, Naganuma T (2007) Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia 23(4):291–298. doi:10.1007/s10453-007-9076-9

    Article  Google Scholar 

  • Huffman J, Treutlein B, Pöschl U (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos Chem Phys 10(7):3215–3233. doi:10.5194/acp-10-3215-2010

    Article  Google Scholar 

  • Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of environmental microbiology. American Society for Microbiology Press, Washington

    Google Scholar 

  • Iwasaka Y, Minoura H, Nagaya K (1983) The transport and spatial scale of Asian dust-storm clouds: a case study of the dust-storm event of April 1979. Tellus 35B:189–196. doi:10.1111/j.1600-0889.1983.tb00023.x

    Article  Google Scholar 

  • Iwasaka Y, Li J, Shi G-Y, Kim Y, Matsuki A, Trochkine D, Yamada M, Zhang D, Shen Z, Hong C (2008) Mass transport of background Asian dust revealed by balloon-borne measurement: dust particles transported during calm periods by westerly from Taklamakan desert. In: Kim YJ, Platt U (eds) Advanced environmental monitoring. Springer, Netherlands, pp 121–135. doi:10.1007/978-1-4020-6364-0_9

    Chapter  Google Scholar 

  • Iwasaka Y, Shi G-Y, Yamada M, Kobayashi F, Kakikawa M, Maki T, Naganuma T, Chen B, Tobo Y, Hong C (2009) Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport. Air Qual Atmos Health 2(1):29–38. doi:10.1007/s11869-009-0031-5

    Article  Google Scholar 

  • Iwasaka Y, Kobayashi F, Minami Y (2010) Studies of KOSA-bioaerosol: micro-biota floating in the atmosphere. Earozoru Kenkyu 25(1):4–12. doi:10.11203/jar.25.4

    Google Scholar 

  • Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308(5718):73. doi:10.1126/science.1106335

    Article  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68(5):2391–2396. doi:10.1128/aem.68.5.2391-2396.2002

    Article  Google Scholar 

  • Jeon EM, Kim HJ, Jung K, Kim JH, Kim MY, Kim YP, Ka J-O (2011) Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos Environ 45(25):4313–4321. doi:10.1016/j.atmosenv.2010.11.054

    Article  Google Scholar 

  • Kakikawa M, Kobayashi F, Maki T, Yamada M, Higashi T, Chen B, Shi G, Hong C, Tobo Y, Iwasaka Y (2008) Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang. Air Qual Atmos Health 1(4):195–202. doi:10.1007/s11869-008-0024-9

    Article  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644. doi:10.1016/j.tree.2006.07.004

    Article  Google Scholar 

  • Kellogg CA, Griffin DW, Garrison VH, Peak KK, Royall N, Smith RR, Shinn EA (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali. West Africa. Aerobiologia 20(2):99–110. doi:10.1023/B:AERO.0000032947.88335.bb

    Article  Google Scholar 

  • Li C-S, Huang T-Y (2006) Fluorochrome in monitoring indoor bioaerosols. Aerosol Sci Technol 40(4):237–241. doi:10.1080/02786820500543308

    Article  Google Scholar 

  • Li M, Qi J, Zhang H, Huang S, Li L, Gao D (2011) Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci Total Environ 409(19):3812–3819. doi:10.1016/j.scitotenv.2011.06.001

    Article  Google Scholar 

  • Lighthart B (2000) Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16(1):7–16. doi:10.1023/a:1007694618888

    Article  Google Scholar 

  • Lighthart B, Shaffer BT, Frisch AS, Paterno D (2009) Atmospheric culturable bacteria associated with meteorological conditions at a summer-time site in the mid-Willamette Valley, Oregon. Aerobiologia 25(4):285–295. doi:10.1007/s10453-009-9133-7

    Article  Google Scholar 

  • Liu TS, Gu XF, An ZS, Fan YX (1981) The dust fall in Beijing, China on April 18, 1980. Geol Soc Am Spec Pap 186:149–158. doi:10.1130/SPE186-p149

    Google Scholar 

  • Maki T, Susuki S, Kobayashi F, Kakikawa M, Yamada M, Higashi T, Chen B, Shi G, Hong C, Tobo Y (2008) Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region. Dunhuang City. Air Qual Atmos Health 1(2):81–89. doi:10.1007/s11869-008-0016-9

    Article  Google Scholar 

  • Maki T, Susuki S, Kobayashi F, Kakikawa M, Tobo Y, Yamada M, Higashi T, Matsuki A, Hong C, Hasegawa H (2010) Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region. Suzu City. Sci Total Environ 408(20):4556–4562. doi:10.1016/j.scitotenv.2010.04.002

    Article  Google Scholar 

  • Maki T, Ishikawa A, Kobayashi F, Kakikawa M, Aoki K, Mastunaga T, Hasegawa H, Iwasaka Y (2011) Effects of Asian dust (KOSA) deposition event on bacterial and microalgal communities in the Pacific Ocean. Asian J Atmos Environ 5(3):157–163. doi:10.5572/ajae.2011.5.3.157

    Article  Google Scholar 

  • Maki T, Puspitasari F, Hara K, Yamada M, Kobayashi F, Hasegawa H, Iwasaka Y (2014) Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Sci Total Environ 488–489:75–84. doi:10.1016/j.scitotenv.2014.04.044

    Article  Google Scholar 

  • Matthias-Maser S, Bogs B, Jaenicke R (2000) The size distribution of primary biological aerosol particles in cloud water on the mountain Kleiner Feldberg/Taunus (FRG). Atmos Res 54(1):1–13. doi:10.1016/S0169-8095(00)00039-9

    Article  Google Scholar 

  • Miyakawa T, Kanaya Y, Taketani F, Tabaru M, Sugimoto N, Ozawa Y, Takegawa N (2015) Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: potential impacts of nonbiological materials on autofluorescence measurements of airborne particles. J Geophys Res Atmos 120(3):1171–1185. doi:10.1002/2014jd022189

    Article  Google Scholar 

  • Möhler O, DeMott P, Vali G, Levin Z (2007) Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4(6):1059–1071. doi:10.5194/bg-4-1059-2007

    Article  Google Scholar 

  • Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B, Leyronas C, Ariya PA, Psenner R (2011) Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 8(1):17–25. doi:10.5194/bg-8-17-2011

    Article  Google Scholar 

  • Murata K, Zhang D (2013) Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial cell concentration and viability in the air. Aerosol Air Qual Res 13(6):1755–1767. doi:10.4209/aaqr.2012.10.0293

    Google Scholar 

  • Murata K, Zhang D (2014) Transport of bacterial cells toward the Pacific in Northern Hemisphere westerly winds. Atmos Environ 87:138–145. doi:10.1016/j.atmosenv.2013.12.038

    Article  Google Scholar 

  • Murata K, Zhang D (2016) Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. J Geophys Res Atmos 121(19):11636–11647. doi:10.1002/2016jd025028

    Article  Google Scholar 

  • Núñez A, Amo de Paz G, Rastrojo A, García AM, Alcamí A, Gutiérrez-Bustillo AM, Moreno DA (2016) Monitoring of airborne biological particles in outdoor atmosphere. Part 1: importance, variability and ratios. Int Microbiol 19(1):1–13. doi:10.2436/20.1501.01.258

    Google Scholar 

  • Park J, Ichijo T, Nasu M, Yamaguchi N (2016) Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community. Sci Rept 6:35706. doi:10.1038/srep35706

    Article  Google Scholar 

  • Peter H, Hörtnagl P, Reche I, Sommaruga R (2014) Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ Microbiol Rept 6(6):618–624. doi:10.1111/1758-2229.12175

    Article  Google Scholar 

  • Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3(4):87–102. doi:10.3390/atmos3010087

    Article  Google Scholar 

  • Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbial 28(5):848–861. doi:10.1016/j.fm.2011.02.008

    Article  Google Scholar 

  • Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, Twohy CH, Prenni AJ, Prather KA (2009) In situ detection of biological particles in cloud ice-crystals. Nat Geosci 2(6):398–401. doi:10.1038/ngeo521

    Article  Google Scholar 

  • Seaver M, Eversole JD, Hardgrove JJ, Cary WK, Roselle DC (1999) Size and fluorescence measurements for field detection of biological aerosols. Aerosol Sci Technol 30(2):174–185. doi:10.1080/027868299304769

    Article  Google Scholar 

  • Shaffer BT, Lighthart B (1997) Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microb Ecol 34(3):167–177. doi:10.1007/s002489900046

    Article  Google Scholar 

  • Smets W, Moretti S, Denys S, Lebeer S (2016) Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmos Environ 139:214–221. doi:10.1016/j.atmosenv.2016.05.038

    Article  Google Scholar 

  • Sun J, Ariya PA (2006) Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos Environ 40(5):795–820. doi:10.1016/j.atmosenv.2005.05.052

    Article  Google Scholar 

  • Trochkine D, Iwasaka Y, Matsuki A, Zhang D, Osada K (2002) Aircraft borne measurements of morphology, chemical elements, and number-size distributions of particles in the free troposphere in spring over Japan: estimation of particle mass concentrations. J Arid Land Stud 11(4):327–335

    Google Scholar 

  • Tyagi P, Kawamura K, Bikkina S, Mochizuki T, Aoki K (2016) Hydroxy fatty acids in snow pit samples from Mt. Tateyama in central Japan: implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. J Geophys Res Atmos. doi:10.1002/2016jd025340

    Google Scholar 

  • Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2(8):557–560. doi:10.1038/ngeo583

    Article  Google Scholar 

  • Vaitilingom M, Deguillaume L, Vinatier V, Sancelme M, Amato P, Chaumerliac N, Delort AM (2013) Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc Natl Acad Sci USA 110(2):559–564. doi:10.1073/pnas.1205743110

    Article  Google Scholar 

  • Wei K, Zou Z, Zheng Y, Li J, Shen F, Wu CY, Wu Y, Hu M, Yao M (2016) Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci Total Environ 550:751–759. doi:10.1016/j.scitotenv.2016.01.137

    Article  Google Scholar 

  • Womack AM, Bohannan BJ, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans Royal Soc London Ser B Biol Sci 365(1558):3645–3653. doi:10.1098/rstb.2010.0283

    Article  Google Scholar 

  • Xia Y, Conen F, Alewell C (2012) Total bacterial number concentration in free tropospheric air above the Alps. Aerobiologia 29(1):153–159. doi:10.1007/s10453-012-9259-x

    Article  Google Scholar 

  • Xu Z, Wu Y, Shen F, Chen Q, Tan M, Yao M (2011) Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Technol 45(11):1337–1349. doi:10.1080/02786826.2011.593591

    Article  Google Scholar 

  • Xu C, Wei M, Chen J, Li W, Wang W, Zhang Q, Mellouki A (2017) Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Sci Total Environ 580:188–196. doi:10.1016/j.scitotenv.2016.11.145

    Article  Google Scholar 

  • Yu X, Wang Z, Zhang M, Kuhn U, Xie Z, Cheng Y, Pöschl U, Su H (2016) Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles. Atmos Chem Phys 16(17):11337–11348. doi:10.5194/acp-16-11337-2016

    Article  Google Scholar 

  • Yuan H, Zhang D, Shi Y, Li B, Yang J, Yu X, Chen N, Kakikawa M (2017) Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J Environ Sci. doi:10.1016/j.jes.2016.03.033

    Google Scholar 

  • Zhong X, Qi J, Li H, Dong L, Gao D (2016) Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos Environ 140:506–513. doi:10.1016/j.atmosenv.2016.06.034

    Article  Google Scholar 

Download references

Acknowledgements

Results and data used in this paper were obtained under the support of the Sumitomo Environmental Foundation (No. 103096); the Grant-in-Aid of JSPS for Challenging Exploratory Research (Nos. 25550017, 15K12192), for Research Fellow (PD26.12227), and for Scientific Research (B) (No. 16H02942), and the National Natural Science Foundation of China (No. 31470232). The State Scholarship Fund of Chinese Scholarship Council provides Mr. Hu the scholarship (CSC No. 201406010350) for his study at the Prefectural University of Kumamoto. The authors thank Prof. J. Morrow at Prefectural University of Kumamoto for his revision of words and grammar of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daizhou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Murata, K., Hu, W. et al. Concentration and Viability of Bacterial Aerosols Associated with Weather in Asian Continental Outflow: Current Understanding. Aerosol Sci Eng 1, 66–77 (2017). https://doi.org/10.1007/s41810-017-0008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-017-0008-y

Keywords

Navigation