Skip to main content
Log in

Regularizing effect for some parabolic problems with perturbed terms and irregular data

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper we deal with regularizing effect for some parabolic problems with lower order terms defined through a composition with a continuous, but unbounded, function on some intervals \([0,\sigma )\) with \(\sigma >0\), that have at most a power growth with respect to the gradient and a suitable data. A nonexistence result for some measures as data is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. More precisely, the necessary and sufficient conditions for a set to be removable. For example, if A is a compact subset of \({\mathbb {R}}^{\mathbb{N}}\), then A is removable for \(L^{\infty }({\mathbb {R}}^{\mathbb{N}})\) and the Laplacian \(\Delta \) if and only if the capacity of A is zero; or, if A is a compact subset of C then A is removable for \(L^{\infty }(C)\) if and only if the analytic capacity of A is zero.

  2. This is not difficult to do but still needs few technicalities by assuming \(p>2-\frac{1}{N}\) which is equivalent to \(\frac{N(p-1)}{N-1}>1\).

  3. Note that the equivalence between renormalized and entropy solutions is immediate for such measures.

  4. I.e., \(g(\cdot ,s,\zeta )\) is measurable in \(\Omega \) for any \((s,\zeta )\) in \(\mathbb {R}\times \mathbb {R}^{N}\), and \(g(x,\cdot ,\cdot )\) is continuous in \(\mathbb {R}\times \mathbb {R}^{N}\) for almost every \(x\in \Omega \).

  5. Also called the absolutely continuous measure with respect to the p-capacity, i.e., for every Borel set \(B\subset Q\) such that \(\text {cap}_{p}(B)=0\) it results \(\mu _{d}(B)=0\).

  6. See Notations.

  7. \(a(\cdot ,\cdot ,s,\zeta )\) is measurable on Q for every \((s,\zeta )\) in \(\mathbb {R}\times \mathbb {R}^{N}\) and \(a(t,x,\cdot,\cdot)\) is continuous on \(\mathbb {R}\times \mathbb {R}^{N}\) for a.e. (tx) in Q.

  8. Let us stress that the assumption \(\gamma (0)=0\) is only technical and it can be removed with the use of a slightly different approximation procedure.

  9. \(M(t,x,s)=(a_{ij}(t,x,s))_{i,j=1}^{N}\) is a symmetric matrix whose coefficients \((a_{i,j}):(0,T)\times \Omega \times \mathbb {R}\mapsto \mathbb {R}\) are Carathéodory functions (i.e., \(a_{i,j}(\cdot ,\cdot ,s)\) is measurable on Q for every \(s\in \mathbb {R}\), and \(a_{i,j}(t,x,\cdot )\) is continuous on \(\mathbb {R}\) for a.e. \((t,x)\in (0,T)\times \Omega \)).

  10. A sequence of functions satisfying

    $$\begin{aligned} \varrho _{n}\in C^{\infty }_{c}(\mathbb {R}^{N+1}),\ \text {supp}(\varrho _{n})\subset \mathcal {B}_{\frac{1}{n}}(0)\text { with } \varrho _{n}\ge 0\text { and }\int _{\mathbb {R}^{N+1}}\varrho _{n}=1. \end{aligned}$$
  11. A “specific” type of positive bump \(C^{\infty }_{c}(Q)\)-functions \(\psi _{\delta }\) (depending on \(\delta >0\)).

References

  1. Abdellaoui, M.: Perturbation effects for some nonlinear parabolic equations with lower order term and \(L^{1}\)-data. J Elliptic Parabol. Equ. 6, 599–631 (2020). https://doi.org/10.1007/s41808-020-00071-z

  2. Abdellaoui, M., Azroul, E.: Renormalized solutions for nonlinear parabolic equations with general measure data. Electron. J. Differ. Equ. 132, 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, M., Azroul, E.: Non-stability result of entropy solutions for nonlinear parabolic problems with singular measures. Electron. J Elliptic Parabol. Equ. 5, 149–174 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Abdellaoui, M., Redwane, H.: On some regularity results of parabolic problems with nonlinear perturbed terms and general data. Partial Differ. Equ. Appl. 3, 2 (2022). https://doi.org/10.1007/s42985-021-00141-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronson, D.G., Serrin, J.: Local behaviour of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81 (1967)

    MATH  Google Scholar 

  6. Bénilan, P., Brézis, H.: Nonlinear problems related to the Thomas-Fermi equation (dedicated to Philippe Bénilan). J. Evol. Equ. 3, 673–770 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear PD.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Lineaire 5 (1988), 347-364

  8. Bénilan, P., Igbida, N.: Limite de la solution de \(u_{t}-\Delta u^{m}+\text{ div } F(u)=0\) lorsque \(m\rightarrow \infty \). Rev. Mat. Complut. 13, 195–205 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Bénilan, L., Boccardo, P., Herrero, M.A.: On the limit of solutions of \(u_{t}= \Delta u^{m}\) as \(m\rightarrow \infty \), Rend. Sem. Mat. Univ. Pol. Torino, fascicolo speciale (1989), 1–13

  10. Bénilan, P., Brézis, H., Crandall, M.: A semilinear elliptic equation in \(L^{1}(\mathbb{R}^{N})\). Ann. Scuola Norm. Sup. Pisa IV2, 523–555 (1975)

  11. Bénilan, P., Brezis, H., Crandall, M.C.; A semilinear equation in \(L^{1}(\mathbb{R}^{N})\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 (1975) no. 4, 523–555

  12. Boccardo, L.: On the regularizing effect of strongly increasing lower order terms. J. Evol. Equ. 3(2), 225–236 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right hand side measures. Comm. Partial Differ. Equ. 17(3&4), 641–655 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^{1}\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 539–551 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Boccardo, L., Galloueët, T., Orsina, L.: Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73, 203–223 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Boccardo, L., Gallouët, T., Vazquez, J.L.: Nonlinear elliptic equations in \(\mathbb{R}^{N}\) without growth restrictions on the data. J. Diff. Equ. 105, 334–363 (1993)

    MATH  Google Scholar 

  19. Boccardo, L., Murat, F.: Increasing powers leads to bilateral problems, in Composite media and homogenization theory. G. Dal Maso and G. Dell’Antonio ed., World Scientific. 1995

  20. Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152(4), 183–196 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Boccardo, L., Murat, F., Puel, J.P.: Résultats d’existence pour certains problèmes Blliptiques quasilinéaires. Ann. Scuola Nom. Pisa 11, 213–235 (1984)

    MATH  Google Scholar 

  22. Brezis, H.: Nonlinear elliptic equations involving measures, in Contributions to Nonlinear Partial Differential Equations (Madrid, 1981), Res. Notes in Math., 89, Pitman, Boston, Mass.-London, 1983, pp. 82–89

  23. Brezis, H.: Conference at the “International School on Problems having Infinite Energy”, Rome (1999)

  24. Brezis, H., Browder, F.E.: Some properties of higher order Sobolev spaces. J. Math. Pures Appl. 61, 245–259 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Brezis, H., Nirenberg, L.: Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal. 9(2), 201–219 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Browder, F.E.: Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms, in “Partial Differential Equations,” Proceedings of Symposia in Pure Mathematics, Berkeley, 1971, No. 23, pp. 269–286, Amer. Math. Sot., Providence, RI, 1971

  27. Brezis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^{1}\). J. Math. Soc. Jpn. 25, 565–590 (1973)

    MATH  Google Scholar 

  28. Carrillo, J., Wittbold, P.: Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems. J. Differ. Equ. 156, 93–121 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Dal Maso, G., Murat, F.: Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems. Nonlinear Anal. 31, 405–412 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 741–808 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Dall’Aglio, L., Orsina, L.: On the limit of some nonlinear elliptic equations involving increasing powers. Asymptot. Anal. 14, 49–71 (1997)

    MathSciNet  MATH  Google Scholar 

  32. DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  33. Diaz, G., Letelier, R.: Explosive solutions of quasilinear elliptic equations: existence and uniqueness. Nonlinear Anal. 20, 97–125 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Droniou, J., Prignet, A.: Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data. No DEA 14(1–2), 181–205 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Droniou, J., Porretta, A., Prignet, A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2), 99–161 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Dupaigne, L., Ponce, A.C., Porretta, A.: Elliptic equations with vertical asymptotes in the nonlinear term, Journal d’Analyse Mathématique 98(1), 349–396

  37. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  38. Fukushima, M., Sato, K., Taniguchi, S.: On the closable part of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28, 517–535 (1991)

    MathSciNet  MATH  Google Scholar 

  39. Gilbarg, L.E., Trlidinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Heidelberg/New York (1977)

    Google Scholar 

  40. Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rendiconti di Matematica e delle sue Applicazioni, Sapienza Universita di Roma 27, 299–314 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  42. Huang, S., Tian, Q., Wang, J., Mu, J.: Stability for noncoercive elliptic equations. Electron. J. Differ. Equ. 242, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Ladyzhenskayaand, O.A., Ural’rseva, N.N.: “Linear and Quasilinear Equations,” Academic Press, New York/London, 1968 (English translation of the 1st Russian edition 1964)

  44. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  45. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    MathSciNet  MATH  Google Scholar 

  46. Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in \(L^{1}\). Nonlinear Anal. 32, 325–334 (1998)

    MathSciNet  MATH  Google Scholar 

  47. Lions, P.L., Murat, F.: Solutions renormalisées d’équations elliptiques non linéaires, Unpublished paper

  48. Murat, F., Porretta, A.: Stability properties, existence and nonexistence of renormalized solutions for elliptic equations with measure data. Commun. Partial Differ. Equ. 27(11, 12), 2267–2310 (2002)

  49. Orsina, L., Porretta, A.: Strongly stability results for nonlinear elliptic equations with respect to very singular perturbation of the data. Commun. Contemp. Math. 3(2), 259–285 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Orsina, L., Prignet, A.: Non-existence of solutions for some nonlinear elliptic equations involving measures. Proc. R. Soc. Edinb. A 30, 167–187 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Orsina, L., Prignet, A.: Strong stability results for solutions of elliptic equations with power-like lower order terms and measure data. J. Funct. Anal. 189, 549–566 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Martínez-Aparicio, P., Petitta, F.: Parabolic equations with nonlinear singularities. Nonlinear Anal. 74(1), 114–131 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 116–162 (1959)

    MathSciNet  MATH  Google Scholar 

  54. Petitta, F.: Nonlinear parabolic equations with general measure data, Ph.D. Thesis, Università di Roma, Italy, 2006

  55. Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura ed Appl. 187(4), 563–604 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Petitta, F.: A non-existence result for nonlinear parabolic equations with singular measure data. Proc. R. Soc. Edinburgh Sect. A Math. 139, 381–392 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Petitta, F., Porretta, A.: On the notion of renormalized solution to nonlinear parabolic equations with general measure data. J. Elliptic Parabol. Equ. 1, 201–214 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Petitta, F., Ponce, A.C., Porretta, A.: Approximation of diffuse measures for parabolic capacities, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 161–166

  59. Petitta, F., Ponce, A.C., Porretta, A.: Diffuse measures and nonlinear parabolic equations. J. Evol. Equ. 11(4), 861–905 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Pierre, M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14, 522–533 (1983)

    MathSciNet  MATH  Google Scholar 

  61. Porretta, A.: Elliptic and parabolic equations with natural growth terms and measure data. Ph.D. Thesis, Università di Roma, Italy (1999)

  62. Porretta, A.: Nonlinear equations with natural growth terms and measure data, 2002-Fez Conference on Partial Differential Equations. Electron. J. Differ. Equ. Conf. 09, 183–202 (2002)

  63. Porretta, A.: Local estimates and large solutions for some elliptic equations with absorption. Adv. Differ. Equ. 9(3, 4), 329–351 (2004)

  64. Porretta, A.: Absorption effects for some elliptic equations with singularities. Bollettino dell’Unione Matematica Italiana Serie 8 8-B(2), 369–395 (2005). Unione Matematica Italiana (English)

  65. Porretta, A.: Remarks on existence or loss of minima of infinite energy. Asymptot. Anal. 52, 53–94 (2007)

    MathSciNet  Google Scholar 

  66. Porretta, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura ed Appl. (IV) 177, 143–172 (1999)

    MathSciNet  MATH  Google Scholar 

  67. Porretta, A., Segura de León, S.: Nonlinear elliptic equations having a gradient term with natural growth (English, French summary). J. Math. Pures Appl. 85(3), 465–492 (2006)

    MathSciNet  MATH  Google Scholar 

  68. Prignet, A.: Existence and uniqueness of entropy solutions of parabolic problems with \(L^{1}\) data. Nonlin. Anal. TMA 28, 1943–1954 (1997)

    MathSciNet  MATH  Google Scholar 

  69. Rudin, W.: (1987) Real and Complex Analysis. Third edition. McGraw-Hill Book Co., New York. First edition, 1966

  70. Schwartz, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute of Fundamental Research Studies in Mathematics, Vol. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London (1973)

  71. Simon, J.: Compact sets in the space \(L^{p}(0, T;B)\). Ann. Math. Pura Appl. 146, 65–96 (1987)

    MATH  Google Scholar 

  72. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdellaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellaoui, M. Regularizing effect for some parabolic problems with perturbed terms and irregular data. J Elliptic Parabol Equ 8, 443–468 (2022). https://doi.org/10.1007/s41808-022-00158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-022-00158-9

Keywords

Mathematics Subject Classification

Navigation