Skip to main content
Log in

Eigenvalue problem associated with nonhomogeneous integro-differential operators

Eigenvalue problem

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper, we establish the existence of two positive constants \(\lambda _0\) and \(\lambda _1\) with \(\lambda _0\leqslant \lambda _1\), such that any \(\lambda \in [\lambda _1, \infty )\) is an eigenvalue, while any \(\lambda \in (0,\lambda _0)\) is not an eigenvalue, for a Kirchhoff type problem driven by nonlocal operators of elliptic type in a fractional Orlicz-Sobolev space, with Dirichlet boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes \(|\) from probability to finance and quantum groups. Not. AMS 51, 1336–1347 (2004)

    MATH  Google Scholar 

  3. Azroul, E., Boumazourh, A.: On a class of fractional systems with nonstandard growth conditions. J. Pseudo-Differ. Oper. Appl. 11, 805–820 (2020). https://doi.org/10.1007/s11868-019-00310-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Azroul, E., Benkirane, A., Srati, M.: Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-020-00067-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Azroul, E., Benkirane, A., Srati, M.: Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-020-00042-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Azroul, E., Benkirane, A., Shimi, M.: Existence and Multiplicity of solutions for fractional \(p(x,)\)-Kirchhoff type problems in \(\mathbb{R}^N\). Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1673373

    Article  MATH  Google Scholar 

  7. Azroul, E., Shimi, M.: Nonlocal eigenvalue problems with variable exponent. Moroccan J. Pure Appl. Anal. 4(1), 46–61 (2018)

    Article  Google Scholar 

  8. Azroul, E., Benkirane, A., Shimi, M.: General fractional Sobolev space with variable exponent and applications to nonlocal problems. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-020-00062-w

    Article  MathSciNet  MATH  Google Scholar 

  9. Azroul, E., Benkirane, A., Boumazourh, A., Srati, M.: Three solutions for a nonlocal fractional \(p\)-Kirchhoff Type elliptic system. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1670347

  10. Azroul, E., Benkirane, A., Srati, M.: Three solutions for Kirchhoff problem involving the nonlocal fractional \(p\)-Laplacian. Adv. Oper. Theory 4, 821–835 (2019). https://doi.org/10.15352/AOT.1901-1464

    Article  MathSciNet  MATH  Google Scholar 

  11. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: On a class of fractional \(p(x)\)-Kirchhoff type problems. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1603372

  12. Azroul, E., Benkirane, A., Srati, M.: Three solutions for a Schrödinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators. J. Pseudo-Differ. Oper. Appl. (2020).https://doi.org/10.1007 s11868-020-00331-5

  13. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: Three solutions for fractional \(p(x,)\)-Laplacian Dirichlet problems with weight. J. Nonlinear Funct. Anal. 22, 1–18 (2020)

    MATH  Google Scholar 

  14. Bonder, J.F., Salort, A.M.: Fractional order Orlicz-Soblev spaces. J. Funct. Anal. 277(2), 333–367 (2019)

    Article  MathSciNet  Google Scholar 

  15. Boumazourh, A., Srati, M.: Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space. Moroccan J. Pure Appl. Anal. 2020, 42–52 (2020). https://doi.org/10.2478/mjpaa-2020-0004

    Article  Google Scholar 

  16. Clément, Ph, de Pagter, B., Sweers, G., de Thélin, F.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math. 1, 241–267 (2004)

    Article  MathSciNet  Google Scholar 

  17. Cont, R., Tankov, P.: Financial Modelling With Jump Processes, Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  18. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  19. Fan, X.L., Zhao, D.: On the Spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  20. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5(2), 315–328 (2020)

  21. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Elec. J. Qual. Theor. Diff. Equ. 76, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Kováčik, O., Rákosník, J.: On Spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). Czechoslovak Math. J. 41(4), 592–618 (1991)

    Article  MathSciNet  Google Scholar 

  23. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. 49, 795–826 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mihăilescu, M., Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz-Soboliv spaces. Ann. Inst. Fourier 58(6), 2087–2111 (2008)

    Article  MathSciNet  Google Scholar 

  25. Mihăilescu, M., Rădulescu, V.: Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. Anal. Appl. 6(1), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  26. Mihăilescu, M., Rădulescu, V., Dušan, R.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting. J. Math. Pures Appl. 93(2), 132–148 (2010)

    Article  MathSciNet  Google Scholar 

  27. Mironescu, P., Sickel, W.: A Sobolev non embedding. (2015). https://hal.archives-ouvertes.fr/hal-01162231

  28. Mustonen, V., Tienari, M.: An eigenvalue problem for generalized Laplacian in Orlic-Sobolev spaces. Proc. R. Soc. Edinb. Sect. A Math. 129(1), 153–163 (1999)

    Article  Google Scholar 

  29. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  30. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin, Heidelberg (1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Srati.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azroul, E., Benkirane, A. & Srati, M. Eigenvalue problem associated with nonhomogeneous integro-differential operators . J Elliptic Parabol Equ 7, 47–64 (2021). https://doi.org/10.1007/s41808-020-00092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00092-8

Keywords

Mathematics Subject Classification

Navigation