Abstract
This paper deals with the Lipschitz continuity of solutions to variational obstacle problems with nearly linear growth. The main tool used here is a new higher differentiability result which reveals to be crucial because it allows us to perform the linearization procedure to transform the constrained problem in an unconstrained one and it permits us to deduce the equivalence between our minimization problem and its corresponding variational formulation. Our results hold true for a large class of example for which the Lavrentiev phenomenon does not occur, not necessarily for lagrangians dependent on the modulus of the gradient. We assume the same Sobolev regularity both for the gradient of the obstacle and for the coefficients.
This is a preview of subscription content, log in to check access.
References
- 1.
Acerbi, E., Bouchitté, G., Fonseca, I.: Relaxation of convex functionals: the gap problem. Ann. IHP Anal. Non Linear 20, 359–390 (2003)
- 2.
Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case \(1 < p < 2\). J. Math. Anal. Appl. 140(1), 115–135 (1989)
- 3.
Bella, P., Schäffner, M.: On the regularity of minimizers for scalar integral functionals with \((p,q)-\)growth. Anal. PDE. https://arxiv.org/abs/1904.12279v1 (2019) (to appear)
- 4.
Benassi, C., Caselli, M.: Lipschitz continuity results for obstacle problems. Rend. Lincei Mat. Appl. 31(1), 191–210 (2020)
- 5.
Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with \(p, q\)-growth: a variational approach. Arch. Ration. Mech. Anal. 210(1), 219–267 (2013)
- 6.
Breit, D., De Maria, B., Passarelli di Napoli, A.: Regularity for non-autonomous functionals with almost linear growth. Manuscr. Math. 136(1–2), 83–114 (2011)
- 7.
Buttazzo, G., Belloni, M.: A survey of old and recent results about the gap phenomenon in the calculus of variations. In: Lucchetti, R., Revalski, J. (eds.) Recent Developments in Well-posed Variational Problems, Mathematical Applications, vol. 331, pp. 1–27. Kluwer Academic Publishers, Dordrecht (1995)
- 8.
Buttazzo, G., Mizel, V.J.: Interpretation of the Lavrentiev phenomenon by relaxation. J. Funct. Anal. 110(2), 434–460 (1992)
- 9.
Capone, C.: An higher integrability result for the second derivatives of the solutions to a class of elliptic PDE’s. Manuscr. Math. (2020). https://doi.org/10.1007/s00229-020-01186-2
- 10.
Capone, C., Radice, T.: A regularity result for a class of elliptic equations with lower order terms. J. Ellipt. Parabol. Equ. (2020). https://doi.org/10.1007/s41808-020-00082-w
- 11.
Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIII, 1065–1089 (2014)
- 12.
Carozza, M., Kristensen, J., Passarelli di Napoli, A.: On the validity of the Euler Lagrange system. Commun. Pure Appl. Anal. 14(1), 51–62 (2018)
- 13.
Caselli, M., Eleuteri, M., Passarelli di Napoli, A.: Regularity results for a class of obstacle problems with \(p,q\)-growth conditions. arXiv:1907.08527 (2019) (preprint)
- 14.
Caselli, M., Gentile, A., Giova, R.: Regularity results for solutions to obstacle problems with Sobolev coefficients. J. Differ. Equ. 269(10), 8308–8330 (2020)
- 15.
Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)
- 16.
Cupini, G., Giannetti, F., Giova, R., Passarelli di Napoli, A.: Regularity results for vectorial minimizers of a class of degenerate convex integrals. J. Differ. Equ. 265(9), 4375–4416 (2018)
- 17.
De Filippis, C.: Regularity results for a class of nonautonomous obstacle problem with \((p, q)\)-growth. J. Math. Anal. Appl. (2019). https://doi.org/10.1016/j.jmaa.2019.123450
- 18.
De Filippis, C., Mingione, G.: On the regularity of minima of nonautonomous functionals. J. Geom. Anal. 30, 1584–1626 (2020)
- 19.
De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Equ. 267(1), 547–586 (2018)
- 20.
Duzaar, F.: Variational inequalities for harmonic maps. J. Reine Angew. Math. 374, 39–60 (1987)
- 21.
Duzaar, F., Grotowski, J.F., Kronz, M.: Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. 184, 421–448 (2005)
- 22.
Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz continuity for energy integrals with variable exponents. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(1), 61–87 (2016)
- 23.
Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz estimates for systems with ellipticity conditions at infinity. Ann. Mat. Pura Appl. 195(4), 1575–1603 (2016)
- 24.
Eleuteri, M., Marcellini, P., Mascolo, E.: Local Lipschitz continuity of minimizers with mild assumptions on the \(x-\)dependence. Discrete Contin. Dyn. Syst. Ser. S 12(2), 251–265 (2019)
- 25.
Eleuteri, M., Marcellini, P., Mascolo, E.: Regularity for scalar integrals without structure conditions. Adv. Calc. Var. 13(2), 279–300 (2020)
- 26.
Eleuteri, M., Passarelli di Napoli, A.: Higher differentiability for solutions to a class of obstacle problems. Calc. Var. 57(5), 115 (2018)
- 27.
Eleuteri, M., Passarelli di Napoli, A.: Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194, 111434 (2020)
- 28.
Eleuteri, M., Passarelli di Napoli, A.: On the validity of variational inequalities for obstacle problems with non-standard growth (submitted)
- 29.
Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with \((p, q)\) growth. J. Differ. Equ. 204, 5–55 (2004)
- 30.
Esposito, A., Leonetti, F., Petricca, P.V.: Absence of Lavrentiev gap for non-autonomous functionals with \((p, q)\)-growth. Adv. Nonlinear Anal. 8(1), 73–78 (2019)
- 31.
Fuchs, M.: Variational inequalities for vector valued functions with non convex obstacles. Analysis 5, 223–238 (1985)
- 32.
Fuchs, M.: \(p\)-harmonic obstacle problems. Part I: partial regularity theory. Ann. Mat. Pura Appl. 156, 127–158 (1990)
- 33.
Fuchs, M.: Topics in the Calculus of Variations, Advanced Lectures in Mathematics. Vieweg, Berlin (1994)
- 34.
Fuchs, M., Gongbao, L.: Variational inequalities for energy functionals with nonstandard growth conditions. Abstr. Appl. Anal. 3, 41–64 (1998)
- 35.
Fuchs, M., Mingione, G.: Full \({\cal{C}}^{1, \alpha }\)-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102, 227–250 (2000)
- 36.
Fuchs, M., Seregin, G.: A regularity theory for variational integrals with \(L \ln L\)-growth. Calc. Var. 6, 171–187 (1998)
- 37.
Gavioli, C.: Higher differentiability for a class of obstacle problems with nonstandard growth conditions. Forum Mat. 31(6), 1501–1516 (2019)
- 38.
Gavioli, C.: A priori estimates for solutions to a class of obstacle problems under \(p, q\)-growth conditions. J. Ellipt. Parabol. Equ. 5(2), 325–437 (2019)
- 39.
Gavioli, C.: Higher differentiability for a class of obstacle problems with nearly linear growth conditions (submitted)
- 40.
Gentile, A.: Regularity for minimizers of a class of non-autonomous functionals with sub-quadratic growth. Adv. Calc. Var. (2020). https://doi.org/10.1515/acv-2019-0092
- 41.
Gentile, A.: Higher differentiability results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions. arXiv:2007.04064(preprint)
- 42.
Giova, R.: Higher differentiability for \(n-\)harmonic systems with Sobolev coefficients. J. Differ. Equ. 259(11), 5667–5687 (2015)
- 43.
Giova, R., Passarelli di Napoli, A.: Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients. Adv. Calc. Var. 12(1), 85–110 (2019)
- 44.
Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)
- 45.
Greco, L., Iwaniec, T., Sbordone, C.: Variational integrals of nearly linear growth. Differ. Integr. Equ. 10(4), 687–716 (1997)
- 46.
Hariulehto, P., Hästö, P.: Double phase image restoration. arXiv:1906.09837 (2019) (preprint)
- 47.
Leone, C., Passarelli di Napoli, A., Verde, A.: Lipschitz regularity for some asymptotically subquadratic problems. Nonlinear Anal. 67, 1532–1539 (2007)
- 48.
Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. I. Poincaré Sect. C Tome 3(5), 391–409 (1986)
- 49.
Marcellini, P.: Un example de solution discontinue d’un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico “U. Dini”, Università di Firenze (1987)
- 50.
Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105(3), 267–284 (1989)
- 51.
Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Equ. 90(1), 1–30 (1991)
- 52.
Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105(2), 296–333 (1993)
- 53.
Marcellini, P.: A variational approach to parabolic equations under general and \(p, q\)-growth conditions. Nonlinear Anal. 194, 111456 (2019)
- 54.
Marcellini, P.: Regularity under general and \(p, q\)-growth conditions. Discrete Contin. Dyn. Syst. S Ser. 13, 2009–2031 (2020)
- 55.
Marcellini, P., Papi, G.: Nonlinear elliptic systems with general growth. J. Differ. Equ. 221, 412–443 (2006)
- 56.
Passarelli di Napoli, A.: Existence and regularity results for a class of equations with logarithmic growth. Nonlinear Anal. 125, 290–309 (2015)
- 57.
Passarelli di Napoli, A.: Higher differentiability of minimizers of variational integrals with Sobolev coefficients. Adv. Calc. Var. 7(1), 59–89 (2014)
- 58.
Passarelli di Napoli, A.: Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case \(p = n = 2\). Potent. Anal. 41(3), 715–735 (2014)
- 59.
Passarelli di Napoli, A.: Regularity results for non-autonomous variational integrals with discontinuous coefficients. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 475–496 (2015)
- 60.
Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2019)
- 61.
Zhikov, V.V.: On Lavrentiev phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)
Author information
Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bertazzoni, G., Riccò, S. Lipschitz regularity results for a class of obstacle problems with nearly linear growth. J Elliptic Parabol Equ 6, 883–918 (2020). https://doi.org/10.1007/s41808-020-00088-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- Regularity of solutions
- Obstacle problems
- A priori estimates
- Nearly linear growth
Mathematics Subject Classification
- Primary 49N60
- 35J85
- Secondary 35B65
- 35B45
- 49J40