Skip to main content
Log in

Linear parabolic equations with strong boundary degeneration

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

As an application of the theory of linear parabolic differential equations on noncompact Riemannian manifolds, developed in earlier papers, we prove a maximal regularity theorem for nonuniformly parabolic boundary value problems in Euclidean spaces. The new feature of our result is the fact that—besides of obtaining an optimal solution theory—we consider the ‘natural’ case where the degeneration occurs only in the normal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, we use the same symbol for a Riemannian metric and its restrictions to submanifolds.

  2. If V is a vector bundle over M, then \(C^k(V)\) denotes the vector space of \(C^k\) sections of V.

References

  1. Agranovich, M.S., Vishik, M.I.: Elliptic problems with a parameter and parabolic problems of general type. Russ. Math. Surv. 19, 53–157 (1964)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems. Abstract Linear Theory, vol. I. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  3. Amann, H.: Anisotropic function spaces on singular manifolds (2012). arXiv:1204.0606

  4. Amann, H.: Function spaces on singular manifolds. Math. Nachr. 286, 436–475 (2012)

    Article  MathSciNet  Google Scholar 

  5. Amann, H.: Uniformly regular and singular Riemannian manifolds. In: Elliptic and Parabolic Equations, Springer Proc. Math. Stat., vol. 119, pp. 1–43. Springer, Cham (2015)

  6. Amann, H.: Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems. In: Recent Developments of Mathematical Fluid Mechanics, pp. 43–77. Birkhäuser, Basel (2016)

  7. Amann, H.: Cauchy problems for parabolic equations in Sobolev–Slobodeckii and Hölder spaces on uniformly regular Riemannian manifolds. J. Evol. Equ. 17(1), 51–100 (2017)

    Article  MathSciNet  Google Scholar 

  8. Amann, H.: Linear and Quasilinear Parabolic Problems. Function Spaces, vol. II. Birkhäuser, Basel (2019)

    Book  Google Scholar 

  9. Amann, H.: Linear and Quasilinear Parabolic Problems. Differential Equations, vol. III. Birkhäuser, Basel (2021). In preparation

    Google Scholar 

  10. Ammann, B., Große, N., Nistor, V.: Analysis and boundary value problems on singular domains: an approach via bounded geometry. C. R. Math. Acad. Sci. Paris 357(6), 487–493 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ammann, B., Große, N., Nistor, V.: The strong Legendre condition and the well-posedness of mixed Robin problems on manifolds with bounded geometry. Rev. Roumaine Math. Pures Appl. 64(2–3), 85–111 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Ammann, B., Große, N., Nistor, V.: Well-posedness of the Laplacian on manifolds with boundary and bounded geometry. Math. Nachr. 292(6), 1213–1237 (2019)

    Article  MathSciNet  Google Scholar 

  13. Browder, F.E.: Estimates and existence theorems for elliptic boundary value problems. Proc. Natl. Acad. Sci. USA 45, 365–372 (1959)

    Article  MathSciNet  Google Scholar 

  14. Disconzi, M., Shao, Y., Simonett, G.: Remarks on uniformly regular Riemannian manifolds. Math. Nachr. 289, 232–242 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fornaro, S., Metafune, G., Pallara, D.: Analytic semigroups generated in \(L^p\) by elliptic operators with high order degeneracy at the boundary. Note Mat. 31(1), 103–116 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Fursikov, A.V.: A certain class of degenerate elliptic operators. Mat. Sb. (N.S.) 79(121), 381–404 (1969)

    MathSciNet  Google Scholar 

  17. Große, N., Schneider, C.: Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Math. Nachr. 286(16), 1586–1613 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kim, K.-H.: Sobolev space theory of parabolic equations degenerating on the boundary of \(C^1\) domains. Commun. Partial Differ. Equ. 32(7–9), 1261–1280 (2007)

    Article  Google Scholar 

  19. Kim, K.-H., Krylov, N.V.: On SPDEs with variable coefficients in one space dimension. Potential Anal. 21(3), 209–239 (2004)

    Article  MathSciNet  Google Scholar 

  20. Kim, K.-H., Krylov, N.V.: On the Sobolev space theory of parabolic and elliptic equations in \(C^1\) domains. SIAM J. Math. Anal. 36(2), 618–642 (2004)

    Article  MathSciNet  Google Scholar 

  21. Krylov, N.V.: Some properties of weighted Sobolev spaces in \({\bf R}^d_+\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(4), 675–693 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Krylov, N.V.: Weighted Sobolev spaces and Laplace’s equation and the heat equations in a half space. Commun. Partial Differ. Equ. 24(9–10), 1611–1653 (1999)

    Article  MathSciNet  Google Scholar 

  23. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients in a half space. SIAM J. Math. Anal. 31(1), 19–33 (1999)

    Article  MathSciNet  Google Scholar 

  24. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM J. Math. Anal. 30(2), 298–325 (1999)

    Article  MathSciNet  Google Scholar 

  25. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Transl. Math. Monographs, Providence (1968)

  26. Lototsky, S.V.: Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations. Methods Appl. Anal. 7(1), 195–204 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Lototsky, S.V.: Linear stochastic parabolic equations, degenerating on the boundary of a domain. Electron. J. Probab. 6(24), 14 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Schick, T.: Manifolds with boundary and of bounded geometry. Math. Nachr. 223, 103–120 (2001)

    Article  MathSciNet  Google Scholar 

  29. Vespri, V.: Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems. Ann. Mat. Pura Appl. (4) 155, 353–388 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Amann.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Dedicated to Michel Chipot in Appreciation of our Joint Professional Time.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amann, H. Linear parabolic equations with strong boundary degeneration. J Elliptic Parabol Equ 6, 123–144 (2020). https://doi.org/10.1007/s41808-020-00061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00061-1

Keywords

Mathematics Subject Classification

Navigation