Skip to main content
Log in

Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz–Sobolev spaces without Ambrosetti–Rabinowitz condition via penalization method

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

This work is concerned with existence, multiplicity and concentration of positive solutions for the following class of quasilinear problems

$$\begin{aligned} -\Delta _{\Phi }u+V(\varepsilon x)\phi (|u|) u=f(u)\quad \text {in} ~ {\mathbb {R}}^N~(N\ge 2), \end{aligned}$$

where \(\Phi (t)=\int _0^{|t|}\phi (s)sds\) is a N-function, \(\Delta _{\Phi }\) is the \(\Phi\)-Laplacian operator, \(\varepsilon\) is a positive parameter, \(V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) is a continuous function and \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a \(C^1\)-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic, Amsterdam (2003)

    MATH  Google Scholar 

  2. Ait-Mahiout, K., Alves, C.O.: Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz–Sobolev spaces. Complexe Var. Eliptic Equ. 62, 767–785 (2017). https://doi.org/10.1080/17476933.2016.1243669

    Article  MathSciNet  MATH  Google Scholar 

  3. Ait-Mahiout, K., Alves, C.O.: Multiple solutions for a class of quasilinear problems in Orlicz–Sobolev spaces. Asymptot. Anal. 104, 49–66 (2017). https://doi.org/10.3233/ASY-171428

    Article  MathSciNet  MATH  Google Scholar 

  4. Ait-Mahiout, K., Alves, C.O.: Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz–Sobolev spaces without the Ambrosetti–Rabinowitz condition. J. Elliptic Parabol. Equ. 4, 389 (2018)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.O., da Silva, A.R.: Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space. J. Math. Phys. 57, 111502 (2016). https://doi.org/10.1063/1.4966534

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., da Silva, A.R.: Multiplicity and concentration behavior of solutions for a quasilinear problem involving \(N\)-functions via penalization method. Electron. J. Differ. Equ. 2016(158), 1–24 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Alves, C.O., da Silva, A.R.: Existence of multi-peak solutions for a class of quasilinear problems in Orlicz–Sobolev spaces. Acta Appl. Math. 151, 171–198 (2017)

    Article  MathSciNet  Google Scholar 

  8. Alves, C.O., de Holanda, A.R.F., Santos, J.A.: Existence of positives solutions for a class of semipositone quasilinear problems through Orlicz–Sobolev space. Proc. Am. Math. Soc. 147(1), 285–299 (2019)

    Article  MathSciNet  Google Scholar 

  9. Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a quasilinear problem in \({\mathbb{R}}^{N}\) via penalization method. Adv. Nonlinear Stud. 5, 551–572 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Alves, C.O., Figueiredo, G.M., Santos, J.A.: Strauss and Lions type results for a class of Orlicz–Sobolev spaces and applications. Topol. Methods Nonlinear Anal. 44(2), 435–456 (2014)

    Article  MathSciNet  Google Scholar 

  11. Alves, C.O., Gonçalves, J.V., Santos, J.A.: Strongy nonlinear multivalued elliptic equations on a bounded domain. J. Global Optim. 58(3), 565–593 (2014)

    Article  MathSciNet  Google Scholar 

  12. Alves, C.O., Carvalho, M.L.M., Gonçalves, J.V.A.: On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle. Commun. Contemp. Math. (2014). https://doi.org/10.1142/S0219199714500382

    Article  MATH  Google Scholar 

  13. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  Google Scholar 

  14. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  Google Scholar 

  15. Chung, N.T., Toan, H.Q.: On a nonlinear and non-homogeneous problem without (A–R) type condition in Orlicz–Sobolev spaces. Appl. Comput. Math. 219, 7820–7829 (2013)

    Article  MathSciNet  Google Scholar 

  16. Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

    Article  MathSciNet  Google Scholar 

  17. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  Google Scholar 

  18. Figuerido, G.M., Santos, J.A.: On a \(\Phi\)-Kirchhoff multivalued problem with critical growth in an Orlicz–Sobolev space. Asymptot. Anal. 89(1–2), 151172 (2014)

    MathSciNet  Google Scholar 

  19. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  20. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \({\mathbb{R}}^{N}\). Funkcial. Ekvac. 49(2), 235–267 (2006)

    Article  MathSciNet  Google Scholar 

  21. Fukagai, N., Ito, M., Narukawa, K.: Quasilinear elliptic equations with slowly growing principal part and critical Orlicz–Sobolev nonlinear term. Proc. R. Soc. Edinburgh Sect. A 139(1), 73–106 (2009)

    Article  MathSciNet  Google Scholar 

  22. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinburgh 129, 787–809 (1999)

    Article  Google Scholar 

  23. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  24. Liu, S.B.: On superlinear problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 73, 788–795 (2010)

    Article  MathSciNet  Google Scholar 

  25. Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz conditions. Nonlinear Anal. 72, 4602–4613 (2010)

    Article  MathSciNet  Google Scholar 

  26. Lusternik, L., Schnirelmann, L.: Méthodes Topologiques dans les Problémes Variationnels. Hermann, Paris (1934)

    MATH  Google Scholar 

  27. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, 74th edn. Springer, New York (1989)

    Book  Google Scholar 

  28. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics. Springer, Berlin (1983)

    Book  Google Scholar 

  29. Miyagaki, O.H., Souto, M.A.S.: Super-linear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equ. 245, 3628–3638 (2008)

    Article  Google Scholar 

  30. Nemer, R.C.M., Santos, J.A.: Multiple solutions for an inclusion quasilinear problem with nonhomogeneous boundary condition through Orlicz–Sobolev spaces. Commun. Contemp. Math. 19(3), 1650031 (2017). 21 pp

    Article  MathSciNet  Google Scholar 

  31. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  Google Scholar 

  32. Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1985)

    Google Scholar 

  33. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  34. Santos, J.A.: Multiplicity of solutions for quasilinear equations involving critical Orlicz–Sobolev nonlinear terms. Electron. J. Differ. Equ. 2013(249), 1–13 (2013)

    MathSciNet  Google Scholar 

  35. Santos, J.A., Soares, S.H.M.: Radial solutions of quasilinear equations in Orlicz–Sobolev type spaces. J. Math. Anal. Appl. 428, 1035–1053 (2015)

    Article  MathSciNet  Google Scholar 

  36. Schechter, M., Zou, W.: Superlinear problems. Pacific J. Math. 214, 145–160 (2004)

    Article  MathSciNet  Google Scholar 

  37. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. 4th Edn. Springer-Verlag, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  38. Struwe, M., Tarantello, G.: On multivortex solutions in Chern–Simons gauge theory. Boll. Unione. Mat. Ital. Sez. B 8(1), 109–121 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referees for their careful reading and helpful suggestions which led to a substantial improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ait-Mahiout.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Mahiout, K. Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz–Sobolev spaces without Ambrosetti–Rabinowitz condition via penalization method. J Elliptic Parabol Equ 6, 473–506 (2020). https://doi.org/10.1007/s41808-020-00054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00054-0

Keywords

Mathematics Subject Classification

Navigation