Abstract
We describe acceleration of the front propagation for solutions to a class of monostable nonlinear equations with a nonlocal diffusion in \({{\mathbb {R}}^d}\), \(d\ge 1\). We show that the acceleration takes place if either the diffusion kernel or the initial condition has ‘regular’ heavy tails in \({{\mathbb {R}}^d}\) (in particular, decays slower than exponentially). Under general assumptions which can be verified for particular models, we present sharp estimates for the time-space zone which separates the region of convergence to the unstable zero solution with the region of convergence to the stable positive constant solution. We show the variety of different possible rates of the propagation starting from a little bit faster than a linear one up to the exponential rate. The paper generalizes to the case \(d>1\) our results for the case \(d=1\) obtained early in Finkelshtein and Tkachov (Appl Anal 98(4):756–780, 2019).
Similar content being viewed by others
References
Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts. Math. Ann. 354(1), 73–109 (2012)
Alfaro, M., Coville, J.: Propagation phenomena in monostable integro-differential equations: acceleration or not? J. Differ. Equ. 263(9), 5727–5758 (2017)
Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. AMS Providence, RI, xvi+256 pp (2010)
Aronson, D.G.: The asymptotic speed of propagation of a simple epidemic. In: Nonlinear Diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, 1976), pp. 1–23. Res. Notes Math., No. 14. Pitman, London (1977)
Berestycki, H., Coville, J., Vo, H.-H.: Persistence criteria for populations with non-local dispersion. J. Math. Biol. 72(7), 1693–1745 (2016)
Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)
Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)
Bolker, B., Pacala, S.W.: Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52(3), 179–197 (1997)
Bonnefon, O., Coville, J., Garnier, J., Roques, L.: Inside dynamics of solutions of integro-differential equations. Discrete Contin. Dyn. Syst. Ser. B 19(10), 3057–3085 (2014)
Bouin, E., Garnier, J., Henderson, C., Patout, F.: Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels. SIAM J. Math. Anal. 50(3), 3365–3394 (2018)
Brändle, C., Chasseigne, E., Ferreira, R.: Unbounded solutions of the nonlocal heat equation. Commun. Pure Appl. Anal. 10(6), 1663–1686 (2011)
Britton, N.: Spatial structures and periodic travelling waves in an integro-differential reactiondiffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)
Cabré, X., Coulon, A.-C., Roquejoffre, J.-M.: Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. C. R. Math. Acad. Sci. Paris 350(19–20), 885–890 (2012)
Cabré, X., Roquejoffre, J.-M.: The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)
Coulon, A.-C., Roquejoffre, J.-M.: Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations. Commun. Partial Differ. Equ. 37(11), 2029–2049 (2012)
Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244(12), 3080–3118 (2008)
Coville, J., Dupaigne, L.: Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal. 60(5), 797–819 (2005)
Diekmann, O.: On a nonlinear integral equation arising in mathematical epidemiology. In: Differential Equations and Applications (Proc. Third Scheveningen Conf., Scheveningen, 1977), North-Holland Math. Stud., vol. 31, pp. 133–140. North-Holland, Amsterdam (1978)
Durrett, R.: Crabgrass, measles and gypsy moths: an introduction to modern probability. Bull. Am. Math. Soc. (New Ser.) 18(2), 117–143 (1988)
Evans, L.C., Souganidis, P.E.: A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38(1), 141–172 (1989)
Gourley, S., Chaplain, M., Davidson, F.: Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)
Faye, G., Holzer, M.: Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach. J. Differ. Equ. 258(7), 2257–2289 (2015)
Felmer, P., Yangari, M.: Fast propagation for fractional KPP equations with slowly decaying initial conditions. SIAM J. Math. Anal. 45(2), 662–678 (2013)
Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28. Springer, Berlin, iv+185 pp (1979)
Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(2), 343–370 (2015)
Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012)
Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations. Electron. J. Differ. Equ. 2019(10), 1–27 (2019)
Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves. J. Math. Anal. Appl. 475(1), 94–122 (2019)
Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: front propagation. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1643011
Finkelshtein, D., Tkachov, P.: Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line. Appl. Anal. 98(4), 756–780 (2019)
Finkelshtein, D., Tkachov, P.: The hair-trigger effect for a class of nonlocal nonlinear equations. Nonlinearity 31(6), 2442–2479 (2018)
Finkelshtein, D., Tkachov, P.: Kesten’s bound for sub-exponential densities on the real line and its multi-dimensional analogues. Adv. Appl. Probab. 50(2), 373–395 (2018)
Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York, xii+157 pp (2013)
Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004)
Garnier, J.: Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 43(4), 1955–1974 (2011)
Hallatschek, O., Fisher, D.S.: Acceleration of evolutionary spread by long-range dispersal. Proc. Natl. Acad. Sci. 111(46), E4911–E4919 (2014)
Hamel, F., Garnier, J., Roques, L.: Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discrete Contin. Dyn. Syst. Ser. A 37(2), 743–756 (2017)
Hamel, F., Roques, L.: Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 249(7), 1726–1745 (2010)
Henderson, C.: Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data. Nonlinearity 29(11), 3215 (2016)
Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin, iv+348 pp (1981)
Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou Sér. Inter. A 1, 1–26 (1937)
Kondratiev, Y., Molchanov, S., Piatnitski, A., Zhizhina, E.: Resolvent bounds for jump generators. Appl. Anal. 97(3), 323–336 (2018)
Kuehn, C., Tkachov, P.: Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete Contin. Dyn. Syst. 39(4), 2077–2100 (2019)
Lewis, M.A., Petrovskii, S.V., Potts, J.R.: The Mathematics Behind Biological Invasions, Interdisciplinary Applied Mathematics, vol. 44. Springer, Cham, xvi+362 pp. With a foreword by James D. Murray (2016)
Liu, B.R., Kot, M.: Accelerating invasions and the asymptotics of fat-tailed dispersal. J. Theor. Biol. 471, 22–41 (2019)
Medlock, J., Kot, M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184(2), 201–222 (2003)
Méléard, S., Mirrahimi, S.: Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity. Commun. Partial Differ. Equ. 40(5), 957–993 (2015)
Mollison, D.: Possible velocities for a simple epidemic. Adv. Appl. Probab. 4, 233–257 (1972)
Mollison, D.: The rate of spatial propagation of simple epidemics. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), vol. III: Probability Theory, pp. 579–614. Univ. California Press, Berkeley (1972)
Murray, J.D.: Mathematical Biology. II, Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York, xxvi+811 pp. Spatial models and biomedical applications (2003)
Perthame, B., Souganidis, P.E.: Front propagation for a jump process model arising in spatial ecology. Discrete Contin. Dyn. Syst. 13(5), 1235–1246 (2005)
Schumacher, K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)
Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249(4), 747–795 (2010)
Sun, Y.-J., Li, W.-T., Wang, Z.-C.: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity. Nonlinear Anal. 74(3), 814–826 (2011)
Weinberger, H.: On sufficient conditions for a linearly determinate spreading speed. Discrete Contin. Dyn. Syst. Ser. B 17(6), 2267–2280 (2012)
Weinberger, H.F.: Asymptotic behavior of a model in population genetics, pp. 47–96. Lecture Notes in Mathematics, vol. 648 (1978)
Xu, W.-B., Li, W.-T., Ruan, S.: Fast propagation for reaction-diffusion cooperative systems. J. Differ. Equ. 265(2), 645–670 (2018)
Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45(4), 925–953 (2009)
Zhang, G.-B., Li, W.-T., Wang, Z.-C.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252(9), 5096–5124 (2012)
Funding
No funding was received.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Proof of Lemma 2.5
Firstly, we note that (1.7) implies (A5). Let G be defined by (2.4), i.e., for \(0\le u\in E\) and \(x\in {{\mathbb {R}}^d}\),
where \(\frac{f(s)}{s}:=\beta\) for \(s=0\). Then it is straightforward to check that (A2)–(A3) and (A6)–(A8) hold. We are going to prove that there exists \(p\ge 0\) such that, for any \(v,w\in E_1^+\) with \(v\le w\),
Note that (Ap.1) evidently implies (A4). Next, (A10) will follow from (Ap.1) if we choose any \(\delta <\rho\) with \(\delta <\rho\) and any \(b\in C^\infty ({{\mathbb {R}}^d})\cap L^\infty ({{\mathbb {R}}^d})\), such that \(a -\rho \mathbb {1}_{B_\rho (0)} \le b \le a - \delta \mathbb {1}_{B_\delta (0)}\).
By (1.5), there exists a Lipschitz constant \(K>0\), such that
where we used an elementary inequality \(q^k-r^k\le k(q-r)\) for \(0\le r\le q\le 1\). Multiplying both parts of (Ap.2) on \(0\le v\le 1\) and using (1.7), we get
Finally, by (A2), \((w-v)Gw\le \beta (w-v)\), and therefore, the inequality (Ap.1) holds with \(p:= \beta +\alpha K>0\). \(\square\)
Lemma A.1
Let\(\lambda >1\)and let\(b:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\)be defined, for larges, as follows
Let\(\beta >0\), and define, for larget, the function\(\eta (t):=b^{-1}\bigl (e^{-\beta t}\bigr )\). Then
Proof
The equation \(b(s)=e^{-\beta t}\) yields \(s(\log s)^{-\lambda }=\beta t\). Making substitution \(s=e^{\tau }\), one easily gets
Since \(s>e^\lambda\) implies \(-\frac{\tau }{\lambda }<-1\) and assuming t big enough, to ensure that \(-\frac{1}{\lambda (\beta t)^{\frac{1}{\lambda }}}>-\frac{1}{e}\), one has that the solution to the latter equation can be given in terms of the negative real branch \(W_{-1}\) of Lambert W-function, that is the function such that \(W_{-1}(\nu )\exp (W_{-1}(\nu ))=\nu\), \(W_{-1}(\nu )<-1\), \(\nu \in (-e^{-1},0)\). Namely, one gets \(-\frac{\tau }{\lambda }=W_{-1}\bigl (-\lambda ^{-1}(\beta t)^{-\frac{1}{\lambda }}\bigr ),\) and, therefore
However, \(\exp (-W_{-1}(\nu )) =\nu ^{-1}W_{-1}(\nu )\), therefore,
i.e.
It is well-known that \(W_{-1}(\nu )\sim \log (-\nu )\), \(\nu \rightarrow 0-\). This yields (Ap.3). \(\square\)
Lemma A.2
Let a function\(X(t)\rightarrow \infty\), \(t\rightarrow \infty\), be such that, forlarget,
where\(\beta >0\)and\(b:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\)is a decreasing at\(\infty\)function, such that\(\int _{{\mathbb {R}}_+} b(r)r\,dr<\infty\). Consider the following functions
for largexandt. Then, for any\(\varepsilon \in (0,1)\)and larget,
Proof
Rewriting the set \(\{(y_1,y_2)\in {\mathbb {R}}^2\mid y_1\ge X(t), y_2\ge X(t)\}\) for \(X(t)>0\) in polar coordinates, we obtain from (Ap.4) that, for large t,
Therefore, for any \(\delta >0\),
where
is an increasing function. Since c(x) is decreasing, we obtain from (Ap.6) that
Set \(\lambda =\frac{\sqrt{2}}{\sqrt{2}-1}>1\). Choose \(\delta >0\) such that
then
where we used the inequality \(\sin x>\frac{2}{\pi }x\) for \(0<x<\frac{\pi }{2}\). Then (Ap.7) implies
Take finally an \(\varepsilon \in (0,1)\) and assume that t is big enough to ensure that \(e^{\varepsilon \beta t}>\lambda\). Since \(c^{-1}(x)\) is a decreasing function, one gets the statement. \(\square\)
Remark A.3
Let (1.17)–(1.18) holds. Then, by Theorem 2.9, (1.9)–(1.10) hold with \(\Lambda (t)=\Lambda (t,c)\) given by (1.11) where \(c(x_1,x_2)=\int _{x_1}^\infty \int _{x_2}^\infty b(|y|)\,dy_1\,dy_2\), cf. (1.16), and \(b\in {\mathcal {E}}_{d}\) is log-equivalent to \(e^{-\sqrt{s}}\), \(s>0\). Take \(b(s)=\frac{1}{\pi } s^{-\frac{3}{2}}e^{-\sqrt{s}}\) for large s. By [32, Corollary 3.1], \(b\in {\mathcal {E}}_{d}\). Let \(X(t):=X_1(t)=X_2(t)\) describe the motion of the boundary of \(\Lambda (t)\) in the diagonal direction in (1.16). Then, by Lemma A.2, we have, cf. (Ap.5),
Then, by (Ap.5), \(\mu (t)=\frac{\beta ^2}{\sqrt{2}}t^2\). Therefore, by Lemma A.2, for any \(\varepsilon \in (0,1)\) and large t, (1.19) holds.
Rights and permissions
About this article
Cite this article
Finkelshtein, D., Kondratiev, Y. & Tkachov, P. Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case. J Elliptic Parabol Equ 5, 423–471 (2019). https://doi.org/10.1007/s41808-019-00045-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41808-019-00045-w
Keywords
- Nonlocal diffusion
- Reaction–diffusion equation
- Front propagation
- Acceleration
- Monostable equation
- Nonlocal nonlinearity
- Long-time behavior
- Integral equation