Skip to main content
Log in

Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We describe acceleration of the front propagation for solutions to a class of monostable nonlinear equations with a nonlocal diffusion in \({{\mathbb {R}}^d}\), \(d\ge 1\). We show that the acceleration takes place if either the diffusion kernel or the initial condition has ‘regular’ heavy tails in \({{\mathbb {R}}^d}\) (in particular, decays slower than exponentially). Under general assumptions which can be verified for particular models, we present sharp estimates for the time-space zone which separates the region of convergence to the unstable zero solution with the region of convergence to the stable positive constant solution. We show the variety of different possible rates of the propagation starting from a little bit faster than a linear one up to the exponential rate. The paper generalizes to the case \(d>1\) our results for the case \(d=1\) obtained early in Finkelshtein and Tkachov (Appl Anal 98(4):756–780, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts. Math. Ann. 354(1), 73–109 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Alfaro, M., Coville, J.: Propagation phenomena in monostable integro-differential equations: acceleration or not? J. Differ. Equ. 263(9), 5727–5758 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. AMS Providence, RI, xvi+256 pp (2010)

  4. Aronson, D.G.: The asymptotic speed of propagation of a simple epidemic. In: Nonlinear Diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, 1976), pp. 1–23. Res. Notes Math., No. 14. Pitman, London (1977)

  5. Berestycki, H., Coville, J., Vo, H.-H.: Persistence criteria for populations with non-local dispersion. J. Math. Biol. 72(7), 1693–1745 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bolker, B., Pacala, S.W.: Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52(3), 179–197 (1997)

    MATH  Google Scholar 

  9. Bonnefon, O., Coville, J., Garnier, J., Roques, L.: Inside dynamics of solutions of integro-differential equations. Discrete Contin. Dyn. Syst. Ser. B 19(10), 3057–3085 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Bouin, E., Garnier, J., Henderson, C., Patout, F.: Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels. SIAM J. Math. Anal. 50(3), 3365–3394 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Brändle, C., Chasseigne, E., Ferreira, R.: Unbounded solutions of the nonlocal heat equation. Commun. Pure Appl. Anal. 10(6), 1663–1686 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Britton, N.: Spatial structures and periodic travelling waves in an integro-differential reactiondiffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Cabré, X., Coulon, A.-C., Roquejoffre, J.-M.: Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. C. R. Math. Acad. Sci. Paris 350(19–20), 885–890 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Cabré, X., Roquejoffre, J.-M.: The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Coulon, A.-C., Roquejoffre, J.-M.: Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations. Commun. Partial Differ. Equ. 37(11), 2029–2049 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244(12), 3080–3118 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Coville, J., Dupaigne, L.: Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal. 60(5), 797–819 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Diekmann, O.: On a nonlinear integral equation arising in mathematical epidemiology. In: Differential Equations and Applications (Proc. Third Scheveningen Conf., Scheveningen, 1977), North-Holland Math. Stud., vol. 31, pp. 133–140. North-Holland, Amsterdam (1978)

    Google Scholar 

  19. Durrett, R.: Crabgrass, measles and gypsy moths: an introduction to modern probability. Bull. Am. Math. Soc. (New Ser.) 18(2), 117–143 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Evans, L.C., Souganidis, P.E.: A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38(1), 141–172 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Gourley, S., Chaplain, M., Davidson, F.: Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Faye, G., Holzer, M.: Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach. J. Differ. Equ. 258(7), 2257–2289 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Felmer, P., Yangari, M.: Fast propagation for fractional KPP equations with slowly decaying initial conditions. SIAM J. Math. Anal. 45(2), 662–678 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28. Springer, Berlin, iv+185 pp (1979)

    MATH  Google Scholar 

  25. Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(2), 343–370 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations. Electron. J. Differ. Equ. 2019(10), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves. J. Math. Anal. Appl. 475(1), 94–122 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: front propagation. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1643011

  30. Finkelshtein, D., Tkachov, P.: Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line. Appl. Anal. 98(4), 756–780 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Finkelshtein, D., Tkachov, P.: The hair-trigger effect for a class of nonlocal nonlinear equations. Nonlinearity 31(6), 2442–2479 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Finkelshtein, D., Tkachov, P.: Kesten’s bound for sub-exponential densities on the real line and its multi-dimensional analogues. Adv. Appl. Probab. 50(2), 373–395 (2018)

    MathSciNet  Google Scholar 

  33. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  34. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York, xii+157 pp (2013)

    MATH  Google Scholar 

  35. Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Garnier, J.: Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 43(4), 1955–1974 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Hallatschek, O., Fisher, D.S.: Acceleration of evolutionary spread by long-range dispersal. Proc. Natl. Acad. Sci. 111(46), E4911–E4919 (2014)

    Google Scholar 

  38. Hamel, F., Garnier, J., Roques, L.: Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discrete Contin. Dyn. Syst. Ser. A 37(2), 743–756 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Hamel, F., Roques, L.: Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 249(7), 1726–1745 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Henderson, C.: Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data. Nonlinearity 29(11), 3215 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin, iv+348 pp (1981)

    MATH  Google Scholar 

  42. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou Sér. Inter. A 1, 1–26 (1937)

    Google Scholar 

  43. Kondratiev, Y., Molchanov, S., Piatnitski, A., Zhizhina, E.: Resolvent bounds for jump generators. Appl. Anal. 97(3), 323–336 (2018)

    MathSciNet  Google Scholar 

  44. Kuehn, C., Tkachov, P.: Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete Contin. Dyn. Syst. 39(4), 2077–2100 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Lewis, M.A., Petrovskii, S.V., Potts, J.R.: The Mathematics Behind Biological Invasions, Interdisciplinary Applied Mathematics, vol. 44. Springer, Cham, xvi+362 pp. With a foreword by James D. Murray (2016)

  46. Liu, B.R., Kot, M.: Accelerating invasions and the asymptotics of fat-tailed dispersal. J. Theor. Biol. 471, 22–41 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Medlock, J., Kot, M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184(2), 201–222 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Méléard, S., Mirrahimi, S.: Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity. Commun. Partial Differ. Equ. 40(5), 957–993 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Mollison, D.: Possible velocities for a simple epidemic. Adv. Appl. Probab. 4, 233–257 (1972)

    MathSciNet  MATH  Google Scholar 

  50. Mollison, D.: The rate of spatial propagation of simple epidemics. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), vol. III: Probability Theory, pp. 579–614. Univ. California Press, Berkeley (1972)

  51. Murray, J.D.: Mathematical Biology. II, Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York, xxvi+811 pp. Spatial models and biomedical applications (2003)

  52. Perthame, B., Souganidis, P.E.: Front propagation for a jump process model arising in spatial ecology. Discrete Contin. Dyn. Syst. 13(5), 1235–1246 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Schumacher, K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)

    MathSciNet  MATH  Google Scholar 

  54. Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249(4), 747–795 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Sun, Y.-J., Li, W.-T., Wang, Z.-C.: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity. Nonlinear Anal. 74(3), 814–826 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Weinberger, H.: On sufficient conditions for a linearly determinate spreading speed. Discrete Contin. Dyn. Syst. Ser. B 17(6), 2267–2280 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Weinberger, H.F.: Asymptotic behavior of a model in population genetics, pp. 47–96. Lecture Notes in Mathematics, vol. 648 (1978)

  58. Xu, W.-B., Li, W.-T., Ruan, S.: Fast propagation for reaction-diffusion cooperative systems. J. Differ. Equ. 265(2), 645–670 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45(4), 925–953 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, G.-B., Li, W.-T., Wang, Z.-C.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252(9), 5096–5124 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Finkelshtein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2.5

Firstly, we note that (1.7) implies (A5). Let G be defined by (2.4), i.e., for \(0\le u\in E\) and \(x\in {{\mathbb {R}}^d}\),

$$\begin{aligned} (Gu)(x) = \beta - \alpha \frac{f\bigl (u(x)\bigr )}{u(x)} - (1-\alpha ) \beta \bigl (1-(a^-*u)(x)\bigr )^k, \end{aligned}$$

where \(\frac{f(s)}{s}:=\beta\) for \(s=0\). Then it is straightforward to check that (A2)–(A3) and (A6)–(A8) hold. We are going to prove that there exists \(p\ge 0\) such that, for any \(v,w\in E_1^+\) with \(v\le w\),

$$\begin{aligned} p(w-v)&+ a*(w-v)\nonumber \\&\ge (w-v)Gw + v(Gw-Gv) + \rho \mathbb {1}_{B_\rho (0)}*(w-v). \end{aligned}$$
(Ap.1)

Note that (Ap.1) evidently implies (A4). Next, (A10) will follow from (Ap.1) if we choose any \(\delta <\rho\) with \(\delta <\rho\) and any \(b\in C^\infty ({{\mathbb {R}}^d})\cap L^\infty ({{\mathbb {R}}^d})\), such that \(a -\rho \mathbb {1}_{B_\rho (0)} \le b \le a - \delta \mathbb {1}_{B_\delta (0)}\).

By (1.5), there exists a Lipschitz constant \(K>0\), such that

$$\begin{aligned} Gw-Gv&=\alpha \Bigr (\frac{f(v)}{v}-\frac{f(w)}{w}\Bigr )+ (1-\alpha )\beta \Bigl ((1-a^-*v )^k - (1-a^-*w)^k \Bigr )\nonumber \\&\le \alpha K (w-v)+(1- \alpha )\beta k a^-*(w-v), \end{aligned}$$
(Ap.2)

where we used an elementary inequality \(q^k-r^k\le k(q-r)\) for \(0\le r\le q\le 1\). Multiplying both parts of (Ap.2) on \(0\le v\le 1\) and using (1.7), we get

$$\begin{aligned} v(Gw-Gv)\le \alpha K (w-v)+ a*(w-v) - \rho \mathbb {1}_{B_\rho (0)}*(w-v). \end{aligned}$$

Finally, by (A2), \((w-v)Gw\le \beta (w-v)\), and therefore, the inequality (Ap.1) holds with \(p:= \beta +\alpha K>0\). \(\square\)

Lemma A.1

Let\(\lambda >1\)and let\(b:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\)be defined, for larges, as follows

$$\begin{aligned} b(s)=\exp \Bigl (-\frac{s}{(\log s)^\lambda }\Bigr ). \end{aligned}$$

Let\(\beta >0\), and define, for larget, the function\(\eta (t):=b^{-1}\bigl (e^{-\beta t}\bigr )\). Then

$$\begin{aligned} \eta (t)\sim \beta t (\log t)^\lambda , \quad t\rightarrow \infty . \end{aligned}$$
(Ap.3)

Proof

The equation \(b(s)=e^{-\beta t}\) yields \(s(\log s)^{-\lambda }=\beta t\). Making substitution \(s=e^{\tau }\), one easily gets

$$\begin{aligned} -\frac{\tau }{\lambda } e^{-\frac{\tau }{\lambda }}=-\frac{1}{\lambda (\beta t)^{\frac{1}{\lambda }}}. \end{aligned}$$

Since \(s>e^\lambda\) implies \(-\frac{\tau }{\lambda }<-1\) and assuming t big enough, to ensure that \(-\frac{1}{\lambda (\beta t)^{\frac{1}{\lambda }}}>-\frac{1}{e}\), one has that the solution to the latter equation can be given in terms of the negative real branch \(W_{-1}\) of Lambert W-function, that is the function such that \(W_{-1}(\nu )\exp (W_{-1}(\nu ))=\nu\), \(W_{-1}(\nu )<-1\), \(\nu \in (-e^{-1},0)\). Namely, one gets \(-\frac{\tau }{\lambda }=W_{-1}\bigl (-\lambda ^{-1}(\beta t)^{-\frac{1}{\lambda }}\bigr ),\) and, therefore

$$\begin{aligned} \eta (t)=\exp \biggl ( -\lambda W_{-1}\Bigl (-\frac{1}{\lambda (\beta t)^{\frac{1}{\lambda }}}\Bigr ) \biggr ). \end{aligned}$$

However, \(\exp (-W_{-1}(\nu )) =\nu ^{-1}W_{-1}(\nu )\), therefore,

$$\begin{aligned} \exp (-\lambda W_{-1}(\nu )) =(-\nu )^{-\lambda }(-W_{-1}(\nu ))^\lambda , \end{aligned}$$

i.e.

$$\begin{aligned} \eta (t)=\lambda ^\lambda \beta t\biggl ( -W_{-1}\Bigl (-\frac{1}{\lambda (\beta t)^{\frac{1}{\lambda }}}\Bigr ) \biggr )^\lambda , \quad t>\frac{1}{\beta }\Bigl (\frac{e}{\lambda }\Bigr )^\lambda . \end{aligned}$$

It is well-known that \(W_{-1}(\nu )\sim \log (-\nu )\), \(\nu \rightarrow 0-\). This yields (Ap.3). \(\square\)

Lemma A.2

Let a function\(X(t)\rightarrow \infty\), \(t\rightarrow \infty\), be such that, forlarget,

$$\begin{aligned} \int _{X(t)}^\infty \int _{X(t)}^\infty b(|y|)\,dy_1\,dy_2=e^{-\beta t}, \qquad |y|=\sqrt{y_1^2+y_2^2}, \end{aligned}$$
(Ap.4)

where\(\beta >0\)and\(b:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\)is a decreasing at\(\infty\)function, such that\(\int _{{\mathbb {R}}_+} b(r)r\,dr<\infty\). Consider the following functions

$$\begin{aligned} c(x):=\frac{\pi }{2}\int _{\sqrt{2}x}^\infty b(r)r\,dr, \qquad \mu (t):=c^{-1}\bigl (e^{-\beta t}\bigr ) \end{aligned}$$
(Ap.5)

for largexandt. Then, for any\(\varepsilon \in (0,1)\)and larget,

$$\begin{aligned} \mu (t)\ge X(t) \ge \frac{1}{2}\mu (t-\varepsilon t). \end{aligned}$$

Proof

Rewriting the set \(\{(y_1,y_2)\in {\mathbb {R}}^2\mid y_1\ge X(t), y_2\ge X(t)\}\) for \(X(t)>0\) in polar coordinates, we obtain from (Ap.4) that, for large t,

$$\begin{aligned} e^{-\beta t}&=\int _{\sqrt{2}X(t)}^\infty \int _{\arcsin \frac{X(t)}{r}}^{\arccos \frac{X(t)}{r}} b(r)r\,dr =\int _{\sqrt{2}X(t)}^\infty \biggl (\frac{\pi }{2}-2\arcsin \frac{X(t)}{r}\biggr ) b(r)r\,dr\\&=X(t)^2\int _{\sqrt{2}}^\infty \biggl (\frac{\pi }{2}-2\arcsin \frac{1}{s}\biggr ) b\bigl (X(t)s\bigr )\,s\,ds. \end{aligned}$$

Therefore, for any \(\delta >0\),

$$\begin{aligned} c\bigl ( X(t)\bigr )\ge e^{-\beta t}&\ge X(t)^2\int _{\sqrt{2}+\delta }^\infty \biggl (\frac{\pi }{2}-2\arcsin \frac{1}{s}\biggr ) b\bigl (X(t)s\bigr )\,s\,ds\nonumber \\&\ge f(\delta ) X(t)^2 \int _{\sqrt{2}+\delta }^\infty b\bigl (X(t)s\bigr )\,s\,ds=\frac{2}{\pi } f(\delta ) c\biggl (\frac{\sqrt{2}+\delta }{\sqrt{2}}X(t) \biggr ), \end{aligned}$$
(Ap.6)

where

$$\begin{aligned} f(\delta ):=\frac{\pi }{2}-2\arcsin \frac{1}{\sqrt{2}+\delta }\in \Bigl (0,\frac{\pi }{2}\Bigr ), \quad \delta >0, \end{aligned}$$

is an increasing function. Since c(x) is decreasing, we obtain from (Ap.6) that

$$\begin{aligned} c^{-1}(e^{-\beta t})\ge X(t) \ge \frac{\sqrt{2}}{\sqrt{2}+\delta }c^{-1}\biggl (\frac{\pi }{2f(\delta )}e^{-\beta t}\biggr ). \end{aligned}$$
(Ap.7)

Set \(\lambda =\frac{\sqrt{2}}{\sqrt{2}-1}>1\). Choose \(\delta >0\) such that

$$\begin{aligned} f(\delta )=\frac{\pi }{2\lambda }<\frac{\pi }{2}, \end{aligned}$$

then

$$\begin{aligned} \frac{\sqrt{2}}{\sqrt{2}+\delta }=\sqrt{2}\sin \biggl (\frac{\pi }{4}\Bigl (1-\frac{1}{\lambda }\Bigr )\biggr )>\frac{1}{\sqrt{2}}\Bigl (1-\frac{1}{\lambda }\Bigr )=\frac{1}{2}, \end{aligned}$$

where we used the inequality \(\sin x>\frac{2}{\pi }x\) for \(0<x<\frac{\pi }{2}\). Then (Ap.7) implies

$$\begin{aligned} \mu (t)\ge X(t) \ge \frac{1}{2}c^{-1}\bigl (\lambda e^{-\beta t}\bigr ). \end{aligned}$$

Take finally an \(\varepsilon \in (0,1)\) and assume that t is big enough to ensure that \(e^{\varepsilon \beta t}>\lambda\). Since \(c^{-1}(x)\) is a decreasing function, one gets the statement. \(\square\)

Remark A.3

Let (1.17)–(1.18) holds. Then, by Theorem 2.9, (1.9)–(1.10) hold with \(\Lambda (t)=\Lambda (t,c)\) given by (1.11) where \(c(x_1,x_2)=\int _{x_1}^\infty \int _{x_2}^\infty b(|y|)\,dy_1\,dy_2\), cf. (1.16), and \(b\in {\mathcal {E}}_{d}\) is log-equivalent to \(e^{-\sqrt{s}}\), \(s>0\). Take \(b(s)=\frac{1}{\pi } s^{-\frac{3}{2}}e^{-\sqrt{s}}\) for large s. By [32, Corollary 3.1], \(b\in {\mathcal {E}}_{d}\). Let \(X(t):=X_1(t)=X_2(t)\) describe the motion of the boundary of \(\Lambda (t)\) in the diagonal direction in (1.16). Then, by Lemma A.2, we have, cf. (Ap.5),

$$\begin{aligned} c(x)=\frac{\pi }{2}\frac{1}{\pi } \int _{\sqrt{2}x}^\infty \frac{1}{\sqrt{r}}\exp \bigl (-\sqrt{r}\bigr )\,dr =\exp \bigl (-\root 4 \of {2}\sqrt{x}\bigr ). \end{aligned}$$

Then, by (Ap.5), \(\mu (t)=\frac{\beta ^2}{\sqrt{2}}t^2\). Therefore, by Lemma A.2, for any \(\varepsilon \in (0,1)\) and large t, (1.19) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkelshtein, D., Kondratiev, Y. & Tkachov, P. Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case. J Elliptic Parabol Equ 5, 423–471 (2019). https://doi.org/10.1007/s41808-019-00045-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-019-00045-w

Keywords

Mathematics Subject Classification

Navigation