Abstract
The aim of this work is to establish the existence and multiplicity of solutions for the following class of quasilinear problems
where \(\varepsilon\) is a positive parameter, \(N\ge 2\), V, f are continuous functions satisfying some technical conditions and \(\phi\) is a \(C^{1}\)-function.
Similar content being viewed by others
References
Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)
Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods. Nonlinear Anal. 10, 1–13 (1997)
del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)
Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)
Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131(2), 223–253 (1990)
Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)
Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153(2), 229–244 (1993)
Alves, C.O., Figueiredo, G.M.: Existence and multiplicity of positive solutions to a p-Laplacian equation in \({\mathbb{R}}^{N}\). Differ. Integral Equ. 19(2), 143–162 (2006)
Alves, C.O., da Silva, A.R.: Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space. J. Math. Phys. 57, 111502 (2016). https://doi.org/10.1063/1.4966534
DiBenedetto, E.: \(C^{1, \gamma }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1985)
Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \({\mathbb{R}}^{N}\). Funk. Ekvac. 49(2), 235–267 (2006)
Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. 186(3), 539–564 (2007)
Ait-Mahiout, K., Alves, C.O.: Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz–Sobolev spaces. Complex Var. Elliptic Equ. 62, 767–785 (2017). https://doi.org/10.1080/17476933.2016.1243669
Ait-Mahiout, K., Alves, C.O.: Multiple solutions for a class of quasilinear problems in Orlicz–Sobolev spaces. Asymptot. Anal. 104, 49–66 (2017). https://doi.org/10.3233/ASY-171428
Alves, C.O., Figueiredo, G.M., Santos, J.A.: Strauss and Lions type results for a class of Orlicz–Sobolev spaces and applications. Topol. Methods Nonlinear Anal. 44(2), 435–456 (2014)
Alves, C.O., Carvalho, M.L.M., Gonçalves, J.V.A.: On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle. Commun. Contemp. Math. (2014). https://doi.org/10.1142/S0219199714500382.
Azzollini, A., d’Avenia, P., Pomponio, A.: Quasilinear elliptic equations in \({\mathbb{R}}^{N}\) via variational methods and Orlicz–Sobolev embeddings. Calc. Var. Partial Differ. Equ. 49, 197–213 (2014)
Bonanno, G., Bisci, G.M., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. 75, 4441–4456 (2012)
Bonanno, G., Bisci, G.M., Rădulescu, V.: Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: an Orlicz–Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)
Fukagai, N., Ito, M., Narukawa, K.: Quasilinear elliptic equations with slowly growing principal part and critical Orlicz–Sobolev nonlinear term. Proc. R. Soc. Edinburgh Sect. A 139(1), 73–106 (2009)
Le, V.K., Motreanu, D., Motreanu, V.V.: On a non-smooth eigenvalue problem in Orlicz–Sobolev spaces. Appl. Anal. 89(2), 229–242 (2010)
Mihailescu, M., Rădulescu, V., Repovš, D.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting. J. Math. Pures Appl. 93, 132–148 (2010)
Mihailescu, M., Rădulescu, V.: Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces. C. R. Acad. Sci. Paris Ser. I(346), 401–406 (2008)
Mihailescu, M., Rădulescu, V.: Existence and multiplicity of solutions for a quasilinear non-homogeneous problems: an Orlicz–Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)
Rădulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)
Rădulescu, V., Repovš, D.: Partial Differential Equations with Variable Exponents Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)
Repovš, D.: Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13, 645–661 (2015)
Santos, J.A.: Multiplicity of solutions for quasilinear equations involving critical Orlicz–Sobolev nonlinear terms. Electron. J. Differ. Equ. 2013(249), 1–13 (2013)
Santos, J.A., Soares, S.H.M.: Radial solutions of quasilinear equations in Orlicz–Sobolev type spaces. J. Math. Anal. Appl. 428, 1035–1053 (2015)
Alves, C.O., da Silva, A.R.: Multiplicity and concentration behavior of solutions for a quasilinear problem involving N-functions via penalization method. Electron. J. Differ. Equ. 2016(158), 1–24 (2016)
Adams, A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Academic Press, London (2003)
Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1985)
Chung, N.T., Toan, H.Q.: On a nonlinear and non-homogeneous problem without (A–R) type condition in Orlicz–Sobolev spaces. Appl. Comput. Math. 219, 7820–7829 (2013)
Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)
Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinburgh 129, 787–809 (1999)
Liu, S.B.: On superlinear problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 73, 788–795 (2010)
Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz conditions. Nonlinear Anal. 72, 4602–4613 (2010)
Miyagaki, O.H., Souto, M.A.S.: Super-linear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equ. 245, 3628–3638 (2008)
Schechter, M., Zou, W.: Superlinear problems. Pacific J. Math. 214, 145–160 (2004)
Struwe, M., Tarantello, G.: On multivortex solutions in Chern–Simons gauge theory. Boll. Unione Mat. Ital. Sez. B 1(8), 109–121 (1998)
Lusternik, L., Schnirelmann, L.: Méthodes Topologiques dans les Problèmes Variationnels. Hermann, Paris (1934)
Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, vol. 74. Springer, New York (1989)
Willem, M.: Minimax Theorems. Birkhauser, Basel (1996)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Additional information
C. O. Alves was partially supported by CNPq/Brazil Proc. 304804/2017-7.
Rights and permissions
About this article
Cite this article
Ait-Mahiout, K., Alves, C.O. Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz–Sobolev spaces without Ambrosetti–Rabinowitz condition. J Elliptic Parabol Equ 4, 389–416 (2018). https://doi.org/10.1007/s41808-018-0026-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41808-018-0026-1