Skip to main content
Log in

Some results based on maximal regularity regarding population models with age and spatial structure

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We review some results on abstract linear and nonlinear population models with age and spatial structure. The results are mainly based on the assumption of maximal \(L_p\)-regularity of the spatial dispersion term. In particular, this property allows us to characterize completely the generator of the underlying linear semigroup and to give a simple proof of asynchronous exponential growth of the semigroup. Moreover, maximal regularity is also a powerful tool in order to establish the existence of nontrivial positive equilibrium solutions to nonlinear equations by fixed point arguments or bifurcation techniques. We illustrate the results with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(a_m\) is finite, individuals may attain age greater than \(a_m\) but are no longer tracked in the model.

  2. More precisely, if \(\mu (a)>0\) for \(a\in (0,a_m)\) and \(\int _0^{a_m} \mu (a)\mathrm {d}a=\infty\), then \(1-\Pi (a,0)\) is a probability distribution with density \(\mu (a)\Pi (a,0)\).

  3. We shall suppress the age interval J also in the writing of other function spaces as no confusion seems likely.

  4. Recall that if E is an ordered Banach space, then \(T\in {\mathcal {L}}(E)\) is strongly positive if \(Tz\in E\) is a quasi-interior point for each \(z\in E^+{\setminus }\{0\}\), that is, if \(\langle z',Tz\rangle _{E} >0\) for every \(z'\in (E')^+{\setminus }\{0\}\).

  5. Recall that \(\mathrm {int}(E_\varsigma ^+)\not =\emptyset\) consists exactly of the quasi-interior points of \(E_\varsigma\).

  6. Similarly, one can introduce a bifurcation parameter in the death modulus to construct nontrivial equilibria [14, 60].

  7. Note that \(E_0\) is separable since \(E_1\) is separable and dense in \(E_0\). Thus, if \(E_0\) is reflexive , then \(E_0'\) is separable.

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Dual semigroups and second-order linear elliptic boundary value problems. Israel J. Math. 45, 225–254 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Linear and quasilinear parabolic problems, vol. I. Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA (1995)

  4. Anita, L.-I., Anita, S.: Asymptotic behavior of the solutions to semi-linear age-dependent population dynamics with diffusion and periodic vital rates. Math. Popul. Stud. 15, 114–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayati, B.: A structured-population model of Proteus mirabilis swarm-colony development. J. Math. Biol. 52, 93–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayati, B., Webb, G., Anderson, R.: Computational methods and results for structured multiscale models of tumor invasion. SIAM J. Multsc. Mod. Simul. 5, 1–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bátkai, A., Fijavž, M.K., Rhandi, A.: Positive operator semigroups. Oper. Theor. Adv. Appl. 257, Birkhäuser Cham (2017)

  8. Busenberg, S., Langlais, M.: Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission. J. Math. Anal. Appl. 213, 511–533 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cushing, J.M.: Existence and stability of equilibria in age-structured population dynamics. J. Math. Biol. 20, 259–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushing, J.M.: Global branches of equilibrium solutions of the McKendrick equations for age structured population growth. Comp. Math. Appl. 11, 175–188 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cushing, J.: Equilibria in structured populations. J. Math. Biol. 23, 15–39 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daners, D., Koch-Medina, P.: Abstract evolution equations, periodic problems, and applications. Pitman Res. Notes Math. Ser., 279, Longman, Harlow (1992)

  14. Delgado, M., Molina-Becerra, M., Suárez, A.: Nonlinear age-dependent diffusive equations: a bifurcation approach. J. Diff. Equ. 244, 2133–2155 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delgado, M., Molina-Becerra, M., Suárez, A.: A nonlinear age-dependent model with spatial diffusion. J. Math. Anal. Appl. 313, 366–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delgado, M., Molina-Becerra, M., Suárez, A.: The sub-supersolution method for an evolutionary reaction-diffusion age-dependent problem. Diff. Integr. Equ. 18, 155–168 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Delgado, M., Suárez, A.: Age-dependent diffusive Lotka–Volterra type systems. Math. Comput. Model. 45, 668–680 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dore, G.: Maximal regularity in \(L^p\) spaces for an abstract Cauchy problem. Adv. Diff. Equ. 5, 293–322 (2000)

    MATH  Google Scholar 

  19. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 139, 459–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dyson, J., Sanchez, E., Villella-Bressan, R., Webb, G.F.: An age and spatially structured model of tumor invasion with haptotaxis. Discrete Contin. Dyn. Syst. Ser. B 8, 45–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dyson, J., Villella-Bressan, R., Webb, G.F.: An age and spatially structured model of tumor invasion with haptotaxis. II. Math. Popul. Stud. 15, 73–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Engel, K.-J.: Nagel, R.: One-parameter semigroups for linear evolution equations. Springer New York Inc. (2000)

  23. Engel, K.-J., Nagel, R.: A short course on operator semigroups. Springer, New York (2006)

    MATH  Google Scholar 

  24. Esipov, S.E., Shapiro, J.A.: Kinetic model of Proteus mirabilis swarm colony development. J. Math. Biol. 36, 249–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feller, W.: On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fitzgibbon, W., Parrott, M., Webb, G.: Diffusion epidemic models with incubation and crisscross dynamics. Math. Biosci. 128, 131–155 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, B.Z., Chan, W.L.: On the semigroup for age dependent population dynamics with spatial diffusion. J. Math. Anal. Appl. 184(1), 190–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurtin, M.E.: A system of equations for age-dependent population diffusion. J. Thero. Biol. 40, 389–392 (1973)

    Article  Google Scholar 

  29. Gurtin, M.E., MacCamy, R.C.: Nonlinear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281–300 (1974)

    Article  MATH  Google Scholar 

  30. Gurtin, M.E., MacCamy, R.C.: Diffusion models for age-structured populations. Math. Biosci. 54, 49–59 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gyllenberg, M., Webb, G.F.: Asynchronous exponential growth of semigroups of nonlinear operators. J. Math. Anal. Appl. 167, 443–467 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huyer, W.: Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion. Semigroup Forum 49, 99–114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iannelli, M., Martcheva, M., Milner, F.A.: Gender-structured population modeling. Mathematical Methods, Numerics, and Simulations. SIAM Frontiers in Applied Mathematics, Philadelphia (2005)

  34. Kato, T.: Integration of the equation of evolution in Banach spaces. J. Math. Soc. Japan 5, 208–234 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kunya, T., Oizumi, R.: Existence result for an age-structured SIS epidemic model with spatial diffusion. Nonlinear Anal. Real World Appl. 23, 196–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Langlais, M.: Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion. J. Math. Biol. 26, 319–346 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Laurençot, Ph, Walker, Ch.: An age and spatially structured population model for Proteus mirabilis swarm-colony development. Math. Mod. Nat. Phen. 7, 49–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Magal, P., Thieme, H.R.: Eventual compactness for semiflows generated by nonlinear age-structured models. Commun. Pure Appl. Anal. 3, 695–727 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edin. Math. Soc. 44, 435–438 (1926)

    Google Scholar 

  40. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44, Springer (1983)

  41. Pejsachowicz, J., Rabier, P.J.: Degree theory for \(C^1\) Fredholm mappings of index 0. J. Anal. Math. 76, 289–319 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prüß, J.: On the qualitative behaviour of populations with age-specific interactions. Comp. Math. Appl. 9, 327–339 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Prüß, J.: Maximal regularity for evolution equations in L p -spaces. Conf. Sem. Mat. Univ. Bari 285, 1–39 (2003)

    Google Scholar 

  44. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  45. Restrepo, G.: Differentiable norms in Banach spaces. Bull. Am. Math. Soc. 70, 413–414 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rhandi, A.: Positivity and stability for a population equation with diffusion on \(L^1\). Positivity 2(2), 101–113 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rhandi, A., Schnaubelt., R.: Asymptotic behaviour of a non-autonomous population equation with diffusion in \(L^1\). Disc. Contin. Dyn. Systems 5(3), 663–683 (1999)

    Article  MATH  Google Scholar 

  48. Sharpe, F.R., Lotka, A.J.: A problem in age distributions. Phil. Mag. 21, 98–130 (1911)

    Article  MATH  Google Scholar 

  49. Shi, J., Wang, X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Diff. Equ. 246(7), 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Simon, J.: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

  51. Thieme, H.R.: Positive perturbation of operator semigroups: growth bounds, essential compactness, and asynchronous exponential growth. Discrete Contin. Dyn. Syst. 4(4), 735–764 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Thieme, H.R.: Mathematics in Population Biology. Princeton series in theoretical and computational biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  53. Triebel, H.: Interpolation theory, function spaces, differential operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  54. von Foerster, H.: Some remarks on changing populations. The Kinetics of Cellular Proliferation, Grune and Stratton, pp. 382–407 (1959)

  55. Walker, Ch.: Global well-posedness of a haptotaxis model including age and spatial structure. Diff. Int. Eq. 20, 1053–1074 (2007)

    MATH  Google Scholar 

  56. Walker, Ch.: Global existence for an age and spatially structured haptotaxis model with nonlinear age-boundary conditions. Europ. J. Appl. Math. 19, 113–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Walker, Ch.: Positive equilibrium solutions for age and spatially structured population models. SIAM J. Math. Anal. 41, 1366–1387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Walker, Ch.: Global bifurcation of positive equilibria in nonlinear population models. J. Diff. Equ. 248, 1756–1776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Walker, Ch.: Age-dependent equations with non-linear diffusion. Discrete Contin. Dyn. Syst. 26, 691–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Walker, Ch.: Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates. Ann. Mat. Pura Appl. 190, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Walker, Ch.: On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions. J. Reine Angew. Math. 660, 149–179 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Walker, Ch.: On nonlocal parabolic steady-state equations of cooperative or competing systems. Nonlinear Anal. Real World Appl. 12, 3552–3571 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Walker, Ch.: Positive solutions of some parabolic system with cross-diffusion and nonlocal initial conditions. NoDEA Nonlinear Diff. Equ. Appl. 19, 195–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Walker, Ch.: Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh. Math. 170, 481–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Walker, Ch.: Global continua of positive solutions for some quasilinear parabolic equations with a nonlocal initial condition. J. Dyn. Diff. Equ. 25, 159–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Webb, G.F.: Theory of nonlinear age-dependent population dynamics. Monographs and Textbooks in Pure and Applied Mathematics, 89. Marcel Dekker, Inc., New York (1985)

  67. Webb, G.F.: An age-dependent epidemic model with spatial diffusion. Arch. Rat. Mech. Anal. 75, 91–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  68. Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math. Soc. 303(2), 751–763 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  69. Webb, G.F.: Population models structured by age, size, and spatial position. Structured population models in biology and epidemiology, 149, Lecture Notes in Math, vol. 1936, : Math. Biosci. Subser., Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Walker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, C. Some results based on maximal regularity regarding population models with age and spatial structure. J Elliptic Parabol Equ 4, 69–105 (2018). https://doi.org/10.1007/s41808-018-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-018-0010-9

Keywords

Mathematics Subject Classification

Navigation