Skip to main content
Log in

A constrained model for MEMS with varying dielectric properties

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

A semilinear parabolic equation with constraint modeling the dynamics of a microelectromechanical system (MEMS) is studied. In contrast to the commonly used MEMS model, the well-known pull-in phenomenon occurring above a critical potential threshold is not accompanied by a break-down of the model, but is recovered by the saturation of the constraint for pulled-in states. It is shown that a maximal stationary solution exists and that saturation only occurs for large potential values. In addition, the existence, uniqueness, and large time behavior of solutions to the evolution equation are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

  2. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)

    Book  Google Scholar 

  3. Bernstein, D.H., Guidotti, P., Pelesko, J.A.. Analytical and numerical analysis of electrostatically actuated MEMS devices. In: Proceedings of Modeling and Simulation of Microsystems 2000, San Diego, CA, pp. 489–492 (2000)

  4. Brézis H: Problèmes unilatéraux. J. Math. Pures. Appl. 51(9):1–168 (1972)

    MathSciNet  MATH  Google Scholar 

  5. H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5., North-Holland Publishing Co., 1973

  6. Brezis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Japan 25, 565–590 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow up for \(u_t - \Delta u=g(u)\) revisited. Adv. Differ. Equ. 1(1), 73–90 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Brubaker, N., Pelesko, J.A.: Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity. Nonlinear Anal. 75, 5086–5102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, Y.-H., Hung, K.-C., Wang, S.-H.: Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS. Nonlinear Anal. 89, 284–298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esposito, P., Ghoussoub, N., Guo, Y.: Mathematical analysis of partial differential equations modeling electrostatic MEMS, vol. 20 of Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2010)

  11. Flores, G., Mercado, G., Pelesko, J.A., Smyth, N.: Analysis of the dynamics and touchdown in a model of electrostatic MEMS. SIAM J. Appl. Math. 67, 434–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) spaces. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  13. Ghoussoub, N., Guo, Y.: On the partial differential equations of electrostatic MEMS devices: stationary case. SIAM J. Math. Anal. 38, 1423–1449 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghoussoub, N., Guo, Y.: Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS. Methods Appl. Anal. 15, 361–376 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Guidotti, P., Bernstein, D.: Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators. In: Proceedings of Modeling and Simulation of Microsystems 2001, Hilton Head Island, SC, pp. 306–309

  16. Guo, Y., Pan, Z., Ward, M.J.: Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties. SIAM J. Appl. Math. 66, 309–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Comm. Pure Appl. Math XVI, 305–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Reprint of the 1980 original. Classics in Applied Mathematics, 31. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)

  19. Laurençot, Ph.: Weak compactness techniques and coagulation equations. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds.) Evolutionary Equations with Applications in Natural Sciences, Lecture Notes Math. 2126, Springer, pp. 199–253 (2015)

  20. Laurençot, Ph., Walker, Ch.: Heterogeneous dielectric properties in MEMS Models. Preprint (2017) submitted for publication

  21. Laurençot, Ph., Walker, Ch.: Some singular equations modeling MEMS. Bull. Am. Math. Soc. 54, 437–479 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lê, C.H.: Etude de la classe des opérateurs m-accrétifs de \(L^1(\Omega )\) et accrétifs dans \(L^\infty (\Omega )\). Thèse de 3ème cycle (Université de Paris VI, Paris) (1977)

  23. Lindsay, A.E., Lega, J., Glasner, K.G.: Regularized model of post-touchdown configurations in electrostatic MEMS: equilibrium analysis. Phys. D 280–281, 95–108 (2014)

    Article  MATH  Google Scholar 

  24. Lindsay, A.E., Lega, J., Glasner, K.G.: Regularized model of post-touchdown configurations in electrostatic MEMS: interface dynamics. IMA J. Appl. Math. 80, 1635–1663 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, H., Xing, R.: On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete Contin. Dyn. Syst. 35(8), 3627–3682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pelesko, J.A.: Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM J. Appl. Math. 62, 888–908 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  28. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done while PhL enjoyed the hospitality and support of the Institut für Angewandte Mathematik, Leibniz Universität Hannover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laurençot.

Additional information

Partially supported by the CNRS Project PICS07710.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurençot, P., Walker, C. A constrained model for MEMS with varying dielectric properties. J Elliptic Parabol Equ 3, 15–51 (2017). https://doi.org/10.1007/s41808-017-0003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-017-0003-0

Keywords

Mathematics Subject Classification

Navigation