Skip to main content
Log in

Banana Pseudostem: An Innovative and Sustainable Packaging Material: A Review

  • Review Paper
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

An increase in environmental consciousness among people and governing bodies can lead to the use of biodegradable and eco-friendly packaging materials. Biodegradable materials have some limitations in use due to their poor mechanical strength. Hence, the material scientists looking for a component that circumvents the problem. As the banana pseudostem (BPS) is an agricultural waste, the valorization of this waste contributes to the economy of the farming community. The fibre from BPS has good mechanical strength and biodegradable properties. These properties mainly depend on the extraction method and the type of fibre present in the plant. BPS contains cellulose ~ 31.27% and hemicellulose ~ 14.98%, making it suitable for fibre extraction and application in the packaging industry. Grease-proof paper, paper, film, laminates, nanocrystals and nanofiber have been made from pseudostem fibre. Nanocellulose and nanofibers have the potential for packaging innovation due to their morphology, aspect ratio, low cost, low density, barrier properties and surface energy. Film mechanical properties and thermal stability have increased with the incorporation of BPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abitha VK, Rane AV, Yadav D, Maria HJ, Thomas S (2024) Green micro-and nanocomposite materials. Green micro-and nanocomposites. Jenny Stanford Publishing, New York, pp 1–9

    Google Scholar 

  2. Ai B, Zheng L, Li W, Zheng X, Yang Y, Xiao D, Sheng Z (2021) Biodegradable cellulose film prepared from banana pseudo-stem using an ionic liquid for mango preservation. Front Plant Sci 12:625878. https://doi.org/10.3389/fpls.2021.625878

    Article  Google Scholar 

  3. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N (2015) Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater Des 1980–2015(66):246–257

    Article  Google Scholar 

  4. Anbupalani MS, Venkatachalam CD, Rathanasamy R (2020) Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers–a review. J Reinf Plast Compos 39(13–14):520–544

    Article  Google Scholar 

  5. Anonymous (2022a) Global biodegradable packaging materials market outlook (2022–32) In: Biodegradable packaging material market. https://www.factmr.com/report/2063/biodegradable-packaging-material-market. Accessed on 25 January 2023

  6. Anonymous (2022b) paper and paperboard market overview. https://www.industryarc.com/Report/15128/paper-and-paperboard-market.html. Accessed on 03 February 2023

  7. APEDA (2021) Indian production of banana. In: National Horticulture Board, https://agriexchange.apeda.gov.in/India%20Production/India_Productions.aspx?cat=fruit&hscode=1042. Accessed on 25 January 2023.

  8. Aziz NAA, Ho LH, Azahari B, Bhat R, Cheng LH, Ibrahim MNM (2011) Chemical and functional properties of the native banana (Musa acuminata× balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem 128(3):748–753. https://doi.org/10.1016/j.foodchem.2011.03.100

    Article  Google Scholar 

  9. Azraaie N, Zainul Abidin NAM, Ibrahim NA, Mamat Razali NA, Abdul Aziz F, Radiman S (2014) X-ray diffraction (XRD) analysis of cellulose from banana (Musa acuminata) pseudo-stem waste. Adv Mater Res 895:174–177. https://doi.org/10.4028/www.scientific.net/AMR.895.174

    Article  Google Scholar 

  10. Babalola OA, Olorunnisola AO (2019) Evaluation of coconut (Cocos nucifera) husk fibre as a potential reinforcing material for bioplastic production. Mater Res Proc. 2019:11

    Google Scholar 

  11. Badanaya P, Jose S, Bose G (2023) Banana pseudostem fiber: a critical review on fiber extraction, characterization, and surface modification. J Nat Fibers 20(1):2168821. https://doi.org/10.1080/15440478.2023.2168821

    Article  Google Scholar 

  12. Balakrishnan S, Wickramasinghe GD, Wijayapala US (2022) Eco-Friendly softening for banana fibers from Sri Lankan banana cultivar: Influence on physical and chemical properties on banana fibers. J Nat Fibers 19(14):9177–9189. https://doi.org/10.1080/15440478.2021.1982811

    Article  Google Scholar 

  13. Balda S, Sharma A, Capalash N, Sharma P (2021) Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technol Environ Policy 23:1389–1401. https://doi.org/10.1007/s10098-021-02041-y

    Article  Google Scholar 

  14. Bilba K, Arsene MA, Ouensanga A (2007) Study of banana and coconut fibers: botanical composition, thermal degradation and textural observations. Bioresour Technol 98(1):58–68. https://doi.org/10.1016/j.biortech.2005.11.030

    Article  Google Scholar 

  15. Busche M, Acatay C, Martens S, Weisshaar B, Stracke R (2021) Functional characterisation of banana (Musa spp.) 2-oxoglutarate-dependent dioxygenases involved in flavonoid biosynthesis. Front Plant Sci. 12:701780. https://doi.org/10.3389/fpls.2021.701780

    Article  Google Scholar 

  16. Cecci RRR, Passos AA, de Aguiar Neto TC, Silva LA (2019) Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. SN Appl Sci 2(1):20. https://doi.org/10.1007/s42452-019-1790-8

    Article  Google Scholar 

  17. Chen Q, Sochor B, Chumakov A, Betker M, Ulrich NM, Toimil-Molares ME, Gordeyeva K, Soderberg LD, Roth SV (2022) Cellulose-reinforced programmable and stretch-healable actuators for smart packaging. Adv Func Mater 32(49):2208074

    Article  Google Scholar 

  18. Cordeiro N, Mendonça C, Pothan LA, Varma A (2012) Monitoring surface properties evolution of thermochemically modified cellulose nanofibres from banana pseudo-stem. Carbohyd Polym 88(1):125–131. https://doi.org/10.1016/j.carbpol.2011.11.077

    Article  Google Scholar 

  19. Dinesh S, Elanchezhian C, Vijayaramnath B, Sathiyanarayanan K, Adinarayanan A (2020) Experimental investigation of banana bract fiber and palm fiber reinforced with epoxy hybrid composites. Materials Today: Proceedings 22:335–341

    Google Scholar 

  20. FAO (2021)Production/Yield quantities of Bananas in World. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed on 26 January 2023

  21. Ganan P, Zuluaga R, Restrepo A, Labidi J, Mondragon I (2008) Plantain fibre bundles isolated from Colombian agro-industrial residues. Biores Technol 99(3):486–491. https://doi.org/10.1016/j.biortech.2007.01.012

    Article  Google Scholar 

  22. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  Google Scholar 

  23. Ghosh M, Ghosh P (2020) Storage study of grapes (Vitis vinifera) using the nanocomposite biodegradable film from banana pseudostem. J Food Process Preserv 44(12):e14917. https://doi.org/10.1111/jfpp.14917

    Article  Google Scholar 

  24. Goswami T, Kalita D, Rao PG (2008) Greaseproof paper from Banana (Musa paradisica L.) pulp fibre. Indian J Chem Technol. pp 457–61. http://neist.csircentral.net/id/eprint/209

  25. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. https://doi.org/10.1021/cr900339w

    Article  Google Scholar 

  26. Jacob N, Prema P (2008) Novel process for the simultaneous extraction and degumming of banana fibers under solid-state cultivation. Braz J Microbiol 39:115–121. https://doi.org/10.1590/S1517-83822008000100025

    Article  Google Scholar 

  27. Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Siengchin S (2021) A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym Compos 42(12):6239–6264. https://doi.org/10.1002/pc.26312

    Article  Google Scholar 

  28. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  Google Scholar 

  29. Jayaprabha JS, Brahmakumar M, Manilal VB (2011) Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. J Nat Fibers 8(3):149–160. https://doi.org/10.1080/15440478.2011.601614

    Article  Google Scholar 

  30. Karthi N, Kumaresan K, Rajeshkumar G, Gokulkumar S, Sathish S (2022) Tribological and thermo-mechanical performance of chemically modified musa acuminata/corchorus capsularis reinforced hybrid composites. J Nat Fibers 19(12):4640–4653

    Article  Google Scholar 

  31. Khan MZH, Sarkar MAR, Al Imam FI, Khan MZH, Malinen RO (2014) Paper making from banana pseudo-stem: characterization and comparison. J Nat Fibers 11(3):199–211. https://doi.org/10.1080/15440478.2013.874962

    Article  Google Scholar 

  32. Khezerlou A, Tavassoli M, Alizadeh-Sani M, Hashemi M, Ehsani A, Bangar SP (2023) Multifunctional food packaging materials: Lactoferrin loaded Cr-MOF in films-based gelatin/κ-carrageenan for food packaging applications. Int J Biol Macromol 251:126334

    Article  Google Scholar 

  33. Kittikorn T, Jitjaicham S, Chanwetwirot C, Malakul R, Kadea S (2022) Improvement of lamination process of banana pseudo stem/polylactic acid: mechanical-thermal and biodegradation analysis. doi: https://doi.org/10.21203/rs.3.rs-1939983/v1.

  34. Kudagamage C, Chandrasiri GWJ, Razmy AMZ (2002) Analysis of long-term trends in banana sector of Sri Lanka. Ann Sri Lanka Dept Agric. 4:21–32

    Google Scholar 

  35. Kumar D, Mohanraj P (2017) Review on natural fiber in various pretreatment conditions for preparing perfect fiber. Asian J Appl Sci Technol (AJAST). 1(2):66–78

    Google Scholar 

  36. Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Jiang X (2018) Nanocellulose-based antibacterial materials. Adv Healthcare Mater 7(20):1800334. https://doi.org/10.1002/adhm.2000334

    Article  Google Scholar 

  37. Logendran D, Gurusami K, Chakaravarthi MA, Puthilibai G, Suresh M, Sudhakar M (2020) Experimental research on glass fibres/caustic soda treated banana fibers hybrid composite. Mater Today Proc 33:4408–4411

    Article  Google Scholar 

  38. Lucia F (2022) Packaging market shares worldwide 2019, by material. https://www.statista.com/statistics/271601/packaging-materials-in-the-global-packaging-market-since-2003. Accessed on 25 January 2023

  39. Mahmud MA, Belal SA, Gafur MA (2023) Development of a biocomposite material using sugarcane bagasse and modified starch for packaging purposes. J Market Res 24:1856–1874. https://doi.org/10.1016/j.jmrt.2023.03.083

    Article  Google Scholar 

  40. Maliha M, Brammananth R, Coppel RL, Werrett MV, Andrews PC, Batchelor W (2022) The effect of pulp type on the performance of microfibrillar lignocellulosic bismuth-based active packaging material. Cellulose 29(8):4599–4611. https://doi.org/10.1007/s10570-022-04562-1

    Article  Google Scholar 

  41. Manickam P, Kandhavadivu P (2022) Development of banana nonwoven fabric for eco-friendly packaging applications of rural agriculture sector. J Nat Fibers 19(8):3158–3170. https://doi.org/10.1080/15440478.2020.1840479

    Article  Google Scholar 

  42. Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y (2019a) Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos B Eng 160:341–347. https://doi.org/10.1016/j.compositesb.2018.08.048

    Article  Google Scholar 

  43. Meng F, Zhang X, Yu W, Zhang Y (2019b) Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols. Ind Crops Prod 137:377–385. https://doi.org/10.1016/j.indcrop.2019.05.025

    Article  Google Scholar 

  44. Meng F, Zhang Y, Xiong Z, Wang G, Li F, Zhang L (2018) Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos B Eng 143:1–8. https://doi.org/10.1016/j.compositesb.2017.12.009

    Article  Google Scholar 

  45. Milani MY, Samarawickrama DS, Perera PSD, Wijeratnam RW, Hewajulige IGN (2020) Eco friendly packaging material from banana pseudo stem for transportation of fruits and vegetables. Acta Hortic. https://doi.org/10.17660/ActaHortic.2020.1278.9

    Article  Google Scholar 

  46. Mohamadi M (2023) Plastic types and applications. Plastic waste treatment and management: gasification processes. Springer, Cham, pp 1–19. https://doi.org/10.1007/978-3-031-31160-4_1

    Book  Google Scholar 

  47. Mumthas ACSI, Wickramasinghe GLD, Gunasekera US (2019) Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: based on fibres extracted from five common Sri Lankan cultivars. J Eng Fibers Fabr 14:1558925019865697. https://doi.org/10.1177/1558925019865697

    Article  Google Scholar 

  48. Nasrollahzadeh M, Sajadi MS, Atarod M, Sajjadi M, Isaabadi Z (2019) An introduction to green nanotechnology. Academic Press, New York

    Google Scholar 

  49. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  Google Scholar 

  50. Norfarhana AS, Ilyas RA, Nazrin A, Sapuan SM, Syafiq RMO, Khoo PS, Abral H (2023) Nanocellulose: from biosources to nanofiber and their applications. Phys Sci Rev. https://doi.org/10.1515/psr-2022-0008

    Article  Google Scholar 

  51. Olagundoye AA, Morayo AO (2022) Characterization of potato peel starch-based bioplastic reinforced with banana pseudostem cellulose for packaging applications. Int J Innov Sci Res Technol 7(4):1360–1371

    Google Scholar 

  52. Oyewo AT, Oluwole OO, Ajide OO, Omoniyi TE, Akhter P, Hamayun MH, Hussain M (2023) Physico-chemical, thermal and micro-structural characterization of four common banana pseudo-stem fiber cultivars in Nigeria. J Nat Fibers. 20(1):2167031

    Article  Google Scholar 

  53. Oyewo AT, Oluwole OO, Ajide OO, Omoniyi TE, Hamayun MH, Hussain M (2022) Experimental and theoretical studies to investigate the water absorption behavior of carbon/banana fibre hybrid epoxy composite. Mater Chem Phys 285:126084. https://doi.org/10.1016/j.matchemphys.2022.126084

    Article  Google Scholar 

  54. Pei P, Zou R, Zhang C, Yu M, Chang S, Tan J, Li J, Li X, Li S (2023) Optimization of alkali-treated banana pseudo-stem fiber/PBAT/PLA bio-composite for packaging application using response surface methodology. BioResources. 18(1):39

    Article  Google Scholar 

  55. Płoska J, Garbowska M, Klempová S, Stasiak-Różańska L (2023) obtaining bacterial cellulose through selected strains of acetic acid bacteria in classical and waste media. Appl Sci 13(11):6429. https://doi.org/10.3390/app13116429

    Article  Google Scholar 

  56. Pothan LA, Thomas S (2004) Effect of hybridization and chemical modification on the water-absorption behavior of banana fiber–reinforced polyester composites. J Appl Polym Sci 91(6):3856–3865

    Article  Google Scholar 

  57. Rajesh M, Jayakrishna K, Sultan MTH, Manikandan M, Mugeshkannan V, Shah AUM, Safri SNA (2020) The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. J Market Res 9(5):10305–10315

    Google Scholar 

  58. Reddy N, Yang Y (2015) Fibers from banana pseudo-stems. Innovative biofibers from renewable resources. Springer, Berlin, pp 25–27

    Book  Google Scholar 

  59. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K (2018) Impact behaviour of hybrid composites for structural applications: a review. Compos B Eng 133:112–121

    Article  Google Scholar 

  60. Sakare P, Bharimalla AK, Dhakane-Lad J, Patil PG (2021) Development of greaseproof paper from banana pseudostem fiber for packaging of butter. J Nat Fibers 18(12):1974–1982. https://doi.org/10.1080/15440478.2019.1710652

    Article  Google Scholar 

  61. Sango T, Yona AMC, Duchatel L, Marin A, Ndikontar MK, Joly N, Lefebvre JM (2018) Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Ind Crops Prod 122:657–668. https://doi.org/10.1016/j.indcrop.2018.06.050

    Article  Google Scholar 

  62. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohyd Polym 207:108–121

    Article  Google Scholar 

  63. Satyanarayana KG, Ramos LP, Wypych F (2005) Development of new materials based on agro and industrial wastes towards ecofriendly society. Biotechnol Energy Manag 2:583–624. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  Google Scholar 

  64. Seki Y, Selli F, Erdogan UH, Atagur M, Seydibeyoglu MO (2022) A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose 29(9):4877–4918. https://doi.org/10.1007/s10570-022-04597-4

    Article  Google Scholar 

  65. Shah H, Srinivasulu B, Shit SC (2013) Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polym Renew Resour 4(2):61–84. https://doi.org/10.1177/204124791300400202

    Article  Google Scholar 

  66. Shaikh S, Yaqoob M, Aggarwal P (2021) An overview of biodegradable packaging in food industry. Curr Res Food Sci 4:503–520. https://doi.org/10.1016/j.crfs.2021.07.005

    Article  Google Scholar 

  67. Sidhu JS, Zafar TA (2018) Bioactive compounds in banana fruits and their health benefits. Food Qual Saf 2(4):183–188. https://doi.org/10.1093/fqsafe/fyy019

    Article  Google Scholar 

  68. Simbaña EA, Ordóñez PE, Ordóñez YF, Guerrero VH, Mera MC, Carvajal EA (2020) Abaca: cultivation, obtaining fibre and potential uses. Handbook of natural fibres. Woodhead Publishing, New York, pp 197–218

    Chapter  Google Scholar 

  69. Singh R, Kaushik R, Gosewade S (2018) Bananas as underutilized fruit having huge potential as raw materials for food and non-food processing industries: a brief review. Pharm Innov J 7(6):574–580

    Google Scholar 

  70. Srivastava KR, Singh MK, Mishra PK, Srivastava P (2019) Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. J Polym Res 26(4):95. https://doi.org/10.1007/s10965-019-1751-3

    Article  Google Scholar 

  71. Subagyo A, Chafidz A (2018) Banana pseudo-stem fiber: Preparation, characteristics, and applications. In: Jideani AI, Anyasi TA (eds) Banana nutrition-function and processing kinetics, BoD–Books on Demand. p 19

  72. Takalo J, Timonen J, Sampo J, Rantala M, Siltanen S, Lassas M (2014) Using the fibre structure of paper to determine authenticity of the documents: analysis of transmitted light images of stamps and banknotes. Forensic Sci Int 244:252–258. https://doi.org/10.1016/j.forsciint.2014.09.002

    Article  Google Scholar 

  73. Vanapalli KR, Samal B, Dubey BK, Bhattacharya J (2019) Emissions and environmental burdens associated with plastic solid waste management. Plastics to energy. William Andrew Publishing, New York, pp 313–342. https://doi.org/10.1016/B978-0-12-813140-4.00012-1

    Chapter  Google Scholar 

  74. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159

    Article  Google Scholar 

  75. Venkateshwaran N, Santhanam V, Alavudeen A (2019) Feasibility study of fly ash as filler in banana fiber-reinforced hybrid composites. Processing of green composites. Springer, Singapore, pp 31–47

    Google Scholar 

  76. Vinayagamoorthy R (2021) Influence of fibre pretreatments on characteristics of green fabric materials. Polym Polym Compos 29(7):1039–1054

    Google Scholar 

  77. Wa M, Js J, PK D, (2023) Biosoftening of banana pseudostem fiber using cellulase and pectinase enzyme isolated from Aspergillus niger for textile industry. J Genet Eng Biotechnol 21(1):170. https://doi.org/10.1186/s43141-023-00617-3

    Article  Google Scholar 

  78. Wu J, Wang D, Meng F, Li J, Huo C, Du X, Xu S (2022) Polyvinyl alcohol based bio-composite films reinforced by liquefaction products and cellulose nanofibrils from coconut coir. J Appl Polym Sci 139(12):51821. https://doi.org/10.1002/app.51821

    Article  Google Scholar 

  79. Xie J, Hse CY, Li C, Shupe TF, Hu T, Qi J, De Hoop CF (2016) Characterization of microwave liquefied bamboo residue and its potential use in the generation of nanofibrillated cellulosic fiber. ACS Sustain. Chem. Eng 4:3477–3485. https://doi.org/10.1021/acssuschemeng.6b00497

    Article  Google Scholar 

  80. Xu S, Xiong C, Tan W, Zhang Y (2015) Microstructural, thermal, and tensile characterization of banana pseudo-stem fibers obtained with mechanical, chemical, and enzyme extraction. BioResources 10(2):3724–3735

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript preparation. The idea was given by R B Modi, and a literature search & data collection was done by Prakasha R. The first draft of the manuscript was written by Vinay G M, the draft was critically revised by R B Modi. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G M. Vinay.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinay, G.M., Modi, R.B. & Prakasha, R. Banana Pseudostem: An Innovative and Sustainable Packaging Material: A Review. J Package Technol Res (2024). https://doi.org/10.1007/s41783-024-00167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41783-024-00167-0

Keywords

Navigation