Skip to main content
Log in

Novel Approach Coating by Edible Biopolymers of Sesame Fermented with Lactobacillus plantarum to Improve the Shelf Life of Strawberries and Preserve Their Nutritional Quality During Storage

  • Research Article
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

An edible coating based on sesame bioactive compounds combined with Lactobacillus plantarum was studied to evaluate the shelf life of strawberries during storage. Drip loss, fresh firmness, color, total soluble solids, ascorbic acid, lycopene, total phenol, flavonoids, antioxidant activity, and microbial analysis for both coated and non-coated samples were determined during 15 days of storage at 4 °C. The results showed that there was a reduction in drip loss by 47.61% for coated samples compared to the control at the end of storage. On day 3, the phenolic compounds in coated strawberries increased by 72.56% compared to uncoated ones. After 15 days at 4 °C, an enhancement of the antioxidant activity was observed (DPPH 28.92%, ABTS 46.67%, FRAP 213.129%, TAC 474.061%). In addition, a significant effect on reducing microbial populations was found (p < 0.05). All of this suggests that using an edible coating containing probiotics can slow down the ripening process, increase shelf life, and maintain the quality of strawberries stored for 15 days at 4 °C without spoilage or off-flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alu’datt MH, Alli I, Nagadi M (2012) Preparation characterization and properties of whey-soy proteins co-precipitates. Food Chem 134:294–300. https://doi.org/10.1016/j.foodchem.2012.02.142

    Article  CAS  Google Scholar 

  2. Amal S, Atress M, Elmogy H, Aboul B (2010) Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. J Hortic Sci Ornamnet Plant 2:88–97

    Google Scholar 

  3. AOAC (2005) Official analytical chemists. Official methods of analysis, 18th edn. AOAC International, Gaithersburg, MD

    Google Scholar 

  4. Ashish K, Charanjiv S (2021) Edible composite bi-layer coating based on whey protein isolate, xanthan gum, and clove oil for prolonging shelf life of tomatoes. Meas Food 2021:100005. https://doi.org/10.1016/j.meafoo.2021.100005

    Article  Google Scholar 

  5. Azarakhsh N, Osman A, Ghazali HM, Tan CP, Adzahan NM (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 88:1–7. https://doi.org/10.1016/j.postharvbio.2013.09.004

    Article  CAS  Google Scholar 

  6. SantoshKumar B, Howlader P, Xiaochen J, Wenxia W, Heng Y (2019) Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via abscisic acid signaling in strawberry. Food Chem 283:665–674. https://doi.org/10.1016/j.foodchem.2019.01.060

    Article  CAS  Google Scholar 

  7. Brasil IM, Gomes C, Puerta-Gomez A, Castell-Perez ME, Moreira RG (2012) Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT Food Sci Technol 47:39–45. https://doi.org/10.1016/j.lwt.2012.01.005

    Article  CAS  Google Scholar 

  8. Briandet R, Herry J, Bellon-Fontaine M (2001) Determination of the van der Waals, electron donor and electron acceptor surface tension components of static gram-positive microbial biofilms. Colloids Surf B 21(4):299–310. https://doi.org/10.1016/S0927-7765(00)00213-7

    Article  CAS  Google Scholar 

  9. Castello ML, Fito PJ, Argu¨elles A, Fito P (2007) Application of the SAFES (systematic approach to food engineering systems) methodology to strawberry freezing process. J Food Eng 83(2):238–249. https://doi.org/10.1016/j.jfoodeng.2007.02.035

    Article  CAS  Google Scholar 

  10. Castello ML, Fito PJ, Chiralt A (2010) Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. J Food Eng 97(1):64–71. https://doi.org/10.1016/j.jfoodeng.2009.09.016

    Article  CAS  Google Scholar 

  11. De Oliveira Filho JM, Rodrigues ACFV, de Almeida D (2019) Active food packaging Alginate films with cottonseed protein hydrolysates. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.01.052

    Article  Google Scholar 

  12. Dhital R, Mora NB, Watson D, Kohli P, Choudhary R (2018) Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT: Food Sci Technol 97:124–134. https://doi.org/10.1016/j.lwt.2018.06.038

    Article  CAS  Google Scholar 

  13. Yan Di, Li X, Chang X, Ruijuan G, Duan X, Liu F, Liu X, Wang Y (2022) Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. LWT 154:112651. https://doi.org/10.1016/j.lwt.2021.112651

    Article  CAS  Google Scholar 

  14. Duck SA, Park E, Lee DS (2009) Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce. Postharvest Biol Technol 52(1):78–83. https://doi.org/10.1016/j.postharvbio.2008.09.014

    Article  CAS  Google Scholar 

  15. Kachouri F, Setti K, Ksontini H, Mechmeche M, Hamdi M (2016) Improvement of antioxidant activity of olive mill wastewater phenolic compounds by Lactobacillus plantarum fermentation. Desalin Water Treat. https://doi.org/10.1080/19443994.2016.1170637

    Article  Google Scholar 

  16. Fish WW, Perkins-Veazie P et Collins JK (2002) J Food Compos Anal. 15: 309–317. Food Hydrocolloids. 92 (2019): 267–275

  17. Gani A, Baba WN, Ahmad M, Shah U, Ashraf Khan A, Wani IA, Masoodi FA, Gani A (2015) Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT Food Sci Technol 66:496–502. https://doi.org/10.1016/j.lwt.2015.10.067

    Article  CAS  Google Scholar 

  18. Gao H, Cheng N, Zhou J, Wang B, Deng J, Cao W (2011) Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. J Food Sci Technol 51:950–956. https://doi.org/10.1007/s13197-011-0591-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hajji S, Younes I, Affes S, Boufi S, Nasri M (2018) Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocoll. 83:375–392. https://doi.org/10.1016/j.foodhyd.2018.05.013

    Article  CAS  Google Scholar 

  20. Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

    Article  CAS  PubMed  Google Scholar 

  21. Heydari R, Bavandi S, Javadian SR (2015) Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Sci Nutr 3(3):188–194. https://doi.org/10.1016/j.fpsl.2021.100746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joanna T (2020) Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.10.022

    Article  Google Scholar 

  23. Kachouri F, Ksontini H, Kraiem M, Setti K, Mechmeche M, Hamdi M (2015) Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J FoodSci Technol 52:7924–7933. https://doi.org/10.1007/s13197-015-1912-2

    Article  CAS  Google Scholar 

  24. Kachouri F, Hamdi M (2004) Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:841–845. https://doi.org/10.1016/S0032-9592(03)00189-4

    Article  CAS  Google Scholar 

  25. Kachouri F, Hamdi M (2006) Use Lactobacillus plantarum in olive oil process and improvement of phenolic compounds content. J Food Eng 77:746–752. https://doi.org/10.1016/j.foodeng.2005.05.061

    Article  CAS  Google Scholar 

  26. Kachouri F, Ksontini H, Kraiem M, Setti K, Mechmeche M, Hamdi M (2015) Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J Food Sci Technol 52(12):7924–7933. https://doi.org/10.1007/s13197-015-1912-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kachouri F, Hamida K, Moktar H (2014) Removal of aflatoxin B1 and inhibition of aspergillus flavus growth by the use of Lactobacillus plantarum on olives. J Food Protect 77:1760–1767. https://doi.org/10.4315/0362-028X.JEP-13-360

    Article  CAS  Google Scholar 

  28. Faten K, Hamida K, Soumya EA, Saad ISK, Hasnac M, Hassan L, Moktar H (2015) Lactobacillus plantarum: effect of a protective biofilm on the surface of olives during storage. Braz J Microbiol. 47:202–209. https://doi.org/10.1016/j.bjm.2015.11.028

    Article  CAS  Google Scholar 

  29. Diako K, Hamidi-Esfahani Z, Rahmati E (2021) Effect of edible coatings on the shelf-life of fresh strawberries: a comparative study using TOPSIS-Shannon entropy method. NFS J 23(2021):17–23. https://doi.org/10.1016/j.nfs.2021.02.003

    Article  CAS  Google Scholar 

  30. Kim AN, Lee KY, Jeong EJ, Cha SW, Kim BG, Kerr WL, Choi SG (2021) Effect of vacuum-grinding on the stability of anthocyanins, ascorbic acid, and oxidative enzyme activity of strawberry. LWT: Food sScience and Technology 136:110304. https://doi.org/10.1016/j.lwt.2020.110304

    Article  CAS  Google Scholar 

  31. Menel K, Kachouri F, Ghoul M, Hamdi M (2015) Antioxidative and bioprotective effect of lactic acid bacteria on postharvest strawberry: intact and cell lysates. J Food Sci Technol 52:7345–7352. https://doi.org/10.1007/s13197-015-1708-4

    Article  CAS  Google Scholar 

  32. Lachmana J, Hamouzb K, Šulca M, Orsaka M, Piveca V, Hejtmankovaa A, Dvorakb P, Čeplc J (2009) Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem 114(3):836–843. https://doi.org/10.1016/j.foodchem.2008.10.029

    Article  CAS  Google Scholar 

  33. Laloo D, Sahu AN (2011) Antioxidant activities of three Indian commercially available Nagakesar: an in vitro study. J Chem Pharm Res 3(1):277–283

    Google Scholar 

  34. Llanos A, Apaza W (2018) Antifungal activity of five chemical and two biological fungicides for the management of Botrytis cinerea, causal agent of gray mold in strawberry. PJA 2:1–8. https://doi.org/10.21704/pja.v2il.1126

    Article  Google Scholar 

  35. Luqman S, Kumar R (2012) Correlation between scavenging properties and antioxidant activity in the extracts of Rmblica officinalis Gaertn., syn Phyllanthus emblica L. fruit. Annal Phytomed 1(1):54–61

    CAS  Google Scholar 

  36. Luximon-Ramma A, Bahorum T, Crosier A, Zbarsky V, Datla KK, Dexter DT, Aruom OI (2005) Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res Int 38:357–367. https://doi.org/10.1016/j.foodres.2004.10.005

    Article  CAS  Google Scholar 

  37. Levate ML, GomesCorrêa JL, Júnior I, da SilvaAraújo C, CostaVimercati W (2022) Intermittent microwave drying and heated air drying of fresh and isomaltulose (Palatinose) impregnated strawberry. LWT 155:112918. https://doi.org/10.1016/j.lwt.2021.112918

    Article  CAS  Google Scholar 

  38. Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol. 72:107–113. https://doi.org/10.1016/S0168-1605(01)00624-9

    Article  CAS  PubMed  Google Scholar 

  39. Mahfoudhi N, Salem H (2014) Use of almond gum and gum Arabic as novel edible coating to delay postharvest ripening and to maintain sweet cherry (Prunus Avium) quality during storage. J Food Process Preserv ISSN. https://doi.org/10.1111/jfpp.12369

    Article  Google Scholar 

  40. Marecek V, Mikyska A, Hampel D, Cejka P, Neuwirthova J, Malachova A, Cerkal R (2017) ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J cerealSci 73:40–45. https://doi.org/10.1016/j.jcs.2016.11.004

    Article  CAS  Google Scholar 

  41. Diana M, Avarez-Orti M, Nunes MA, Costa ASG, Machado S, Alves RC, Pardo JE (2021) Whole or defatted sesame seed (Sesamum indicum L.): the effect of cold pressing on oil and cake quality. Foods 10:2108

    Article  Google Scholar 

  42. Mills S, Stanton C, Hill C, Ross R (2011) New developments and applications of bacteriocins and peptides in foods. Annu Rev Food Sci Technol 2:299–329. https://doi.org/10.1146/annurev-food-022510-133721

    Article  CAS  PubMed  Google Scholar 

  43. Leila M, Ramezanian A, Tanaka FTF (2020) Impact of aloe vera gel coating enriched with basil (Ocimum basilicum L.) essential oil on postharvest quality of strawberry fruit. J Food Meas Characterization. https://doi.org/10.1007/s11694-020-00634-7

    Article  Google Scholar 

  44. Nambeesan US, Doyle WJ, Capps DH, Starns C, Scherm H (2018) Effect of electronic cold-PasteurizationTM (ECPTM) on fruit quality and postharvest diseases during blueberry storage. Holiculturae 4:25. https://doi.org/10.3390/horticulturae4030025

    Article  Google Scholar 

  45. Pereira JO, Soares J, Sousa S, Madureira AR, Gomes A, Pintado M (2016) Edible films as carrier for lactic acid bacteria. LWT: Food Sci Technol 73:543–550. https://doi.org/10.1016/j.lwt.2016.06.060

    Article  CAS  Google Scholar 

  46. Salgado PR, Ortiz CM, Musso YS, Di Giorgio L, Mauri AN (2015) Edible films and coatings containing bioactives. Curr Opinion in Food Sci 5:86–92. https://doi.org/10.1016/j.cofs.2015.09.004

    Article  Google Scholar 

  47. Savadkoohi S, Hoogenkamp H, Shamsi K, Farahnaky A (2014) Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Sci 97(4):410–418. https://doi.org/10.1016/j.meatsci.2014.03.017

    Article  PubMed  Google Scholar 

  48. Alok S, Sharma L, Maity T (2020) Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetable. Chapter 34:859–879. https://doi.org/10.1016/B978-0-12-816897-4.00034-5

    Article  Google Scholar 

  49. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78. https://doi.org/10.1016/j.tifs.2004.02.014

    Article  CAS  Google Scholar 

  50. Loveleen S, Saini CS, Sharma HK, Sandhu KS (2018) Biocomposite edible coatings based on cross linked-sesame protein and mango puree for the shelf life stability of fresh-cut mango fruit. J Food Process Eng. https://doi.org/10.1111/jfpe.12938

    Article  Google Scholar 

  51. Sharma L, Singh C (2016) Sesame protein based edible films: development and characterization. Food Hydrocolloids 61:139e147. https://doi.org/10.1016/j.foodhyd.2016.05.007

    Article  CAS  Google Scholar 

  52. Silva N, Junqueira VCA, Silveira NFA, Taniwaki MH, Santos RFS, & Gomes RAR (2010). Manual de Métodos de Análise Microbiológica de Alimentos e Água. Varela.

  53. Vicente AR, Costa ML, Martínez GA, Chaves AR, Civello PM (2005) Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest biol Technol 38(3):213–222. https://doi.org/10.1016/j.postharvbio.2005.06.005

    Article  CAS  Google Scholar 

  54. Hong WC, KaiMak IE, Li D (2021) Bilayer edible coating with stabilized Lactobacillus plantarum improved the shelf life and safety quality of fresh-cut apple slices. Food Packag Shelf Life. 30:100746. https://doi.org/10.1016/j.fpsl.2021.100746

    Article  CAS  Google Scholar 

  55. Xiao C, Zhu L, Luo W, Song X, Deng Y (2010) Combined action of pure oxygen pretreatment and chitosan coating incorporated with rosemary extracts on the quality of fresh-cut pears. Food Chem 121:1003–1009. https://doi.org/10.1016/j.foodchem.2010.01.038

    Article  CAS  Google Scholar 

  56. Yousuf B, Qadri OS, Srivastava AK (2018) Recent developments in shelf-life extension of fresh cut fruits and vegetables by application of different edible coatings: a review. LWT: Food Sci Techno 89:198–209. https://doi.org/10.1016/j.lwt.2017.10.051

    Article  CAS  Google Scholar 

  57. Zapata PJ, Guillen F, Martinez-Romero D, Castillo S, Valero D, Serrano M (2008) Use of alginate or zein as edible coatings to delay postharvest ripening process and to maintain tomato (Solanum lycopersicon Mill) quality. J Sci Food Agric 88:1287–1293. https://doi.org/10.1002/jsfa.3220

    Article  CAS  Google Scholar 

  58. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275. https://doi.org/10.1016/j.ijbiomac.2012.12.037

    Article  CAS  PubMed  Google Scholar 

  59. Zhao T, Doyle MP, Zhao P (2004) Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl Environ Microbiol 70:3996–4003. https://doi.org/10.1128/AEM.70.73996-4003.2004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. AEM 56:1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roua Khalfallah.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfallah, R., Mechmeche, M., Ksontini, H. et al. Novel Approach Coating by Edible Biopolymers of Sesame Fermented with Lactobacillus plantarum to Improve the Shelf Life of Strawberries and Preserve Their Nutritional Quality During Storage. J Package Technol Res 8, 63–77 (2024). https://doi.org/10.1007/s41783-024-00162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-024-00162-5

Keywords

Navigation