Skip to main content
Log in

Whey Protein Concentrate Coating Incorporated with Modified Atmosphere Packaging for Extending Tangerines Shelf-Life: Physicochemical, Microbiological and Sensory Evaluation Through Refrigerated Storage

  • Research Article
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

In this study, tangerines (Dancy) were packaged in modified atmosphere packaging to prevent microbial spoilage and quality degradation. Different concentrations of WPC (0, 5, 10, and 15%) were coated on tangerines and packed in polyethylene bags under MAP (5% oxygen, 15% carbon dioxide, and 80% nitrogen). During the 60-day storage period, the tangerines were kept in the refrigerator. During storage, tangerine samples showed an increase in bacterial, mold and yeast counts, soluble solids, weight loss, pH, color change, and O2 consumption and CO2 production. However, they decreased in acidity, ascorbic acid, firmness, and sensory properties. As a result of the WPC coating (10%) and packing in MAP, tangerines exhibited the lowest pH, soluble solids, weight loss, O2 consumption, and CO2 production (P < 0.05). The color change in tangerines coated with WPC was the lowest. Sensory scores of samples were increased by WPC coating. Microbial and fungal counts were also lowest in these samples. WPC coating and MAP conditions by delaying aging caused the maintenance of ascorbic acid, acidity, and firmness of tangerine samples. After 60 days of storage, the Lightness and Chroma index of tangerines coated with 5 and 10% WPC incorporated with MAP were within acceptable levels. Extending the shelf-life of tangerines was evidently achieved through the use of WPC coating and a controlled atmosphere (MAP) environment. To obtain a deeper understanding of the tangerines’ shelf-life, it is advisable to conduct research over an extended duration or under more accelerated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nekvapil F, Brezestean I, Barchewitz D, Glamuzina B, Chiş V, Pinzaru SC (2018) Citrus fruits freshness assessment using Raman spectroscopy. Food Chem 242:560–567. https://doi.org/10.1016/j.foodchem.2017.09.105

    Article  CAS  PubMed  Google Scholar 

  2. El-Otmani M, Ait-Oubahou A, Zacarías L (2011) Citrus spp.: Orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime. Postharvest biology and technology of tropical and subtropical fruits, vol 1. Woodhead Publishing, pp 437–516. https://doi.org/10.1533/9780857092762.437

    Chapter  Google Scholar 

  3. Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem 50(4):893–898. https://doi.org/10.1021/jf011212y

    Article  CAS  PubMed  Google Scholar 

  4. Li Q, Yao S, Deng L, Zeng K (2022) Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chem 376:131876–131886. https://doi.org/10.1016/j.foodchem.2021.131876

    Article  CAS  Google Scholar 

  5. Kosseva M, Joshi VK, Panesar PS (eds) (2016) Science and technology of fruit wine production. Academic Press

    Google Scholar 

  6. Zacarias L, Cronje PJ, Palou L (2020) Chapter 21—Postharvest technology of citrus fruits. In: Talon M, Caruso M, Gmitter FG (eds) The genus citrus. Woodhead Publishing, pp 421–446. https://doi.org/10.1016/B978-0-12-812163-4.00021-8

    Chapter  Google Scholar 

  7. Duan X, OuYang Q, Tao N (2018) Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits. J Sci Food Agric 98(2):527–533. https://doi.org/10.1002/jsfa.8490

    Article  CAS  PubMed  Google Scholar 

  8. Spadoni A, Guidarelli M, Sanzani SM, Ippolito A, Mari M (2014) Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biol Technol 94:66–73. https://doi.org/10.1016/j.postharvbio.2014.03.006

    Article  CAS  Google Scholar 

  9. Yao HJ, Tian SP (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol 98(4):941–950. https://doi.org/10.1111/j.1365-2672.2004.02531.x

    Article  CAS  PubMed  Google Scholar 

  10. Li F, Zhang X, Song B, Li J, Shang Z, Guan J (2013) Combined effects of 1-MCP and MAP on the fruit quality of pear (Pyrus bretschneideri Reld cv. Laiyang) during cold storage. Sci Hortic 164:544–551. https://doi.org/10.1016/j.scienta.2013.10.018

    Article  CAS  Google Scholar 

  11. Arnon H, Granit R, Porat R, Poverenov E (2015) Development of polysaccharidesbased edible coatings for citrus fruits: a layer-by-layer approach. Food Chem 166:465–472. https://doi.org/10.1016/j.foodchem.2014.06.061

    Article  CAS  PubMed  Google Scholar 

  12. Silva-Weiss A, Ihl M, Sobral PD, Gómez-Guillén MC, Bifani VJ (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng Rev 5:200–216. https://doi.org/10.1007/s12393-013-9072-5

    Article  CAS  Google Scholar 

  13. Galus S, Kadzińska J (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45(2):273–283. https://doi.org/10.1016/j.tifs.2015.07.011

    Article  CAS  Google Scholar 

  14. Xu D, Qin H, Ren D (2018) Prolonged preservation of tangerine fruits using chitosan/montmorillonite composite coating. Postharvest Biol Technol 143:50–57. https://doi.org/10.1016/j.postharvbio.2018.04.013

    Article  CAS  Google Scholar 

  15. Arnon H, Zaitsev Y, Porat R, Poverenov E (2014) Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Technol 87:21–26. https://doi.org/10.1016/j.postharvbio.2013.08.007

    Article  CAS  Google Scholar 

  16. Perez-Gago MB, Serra M, Del Rio MA (2006) Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol Technol 39(1):84–92. https://doi.org/10.1016/j.postharvbio.2005.08.002

    Article  CAS  Google Scholar 

  17. Schmid M, Sängerlaub S, Wege L, Stäbler A (2014) Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packag Technol Sci 27(10):799–817. https://doi.org/10.1002/pts.2071

    Article  CAS  Google Scholar 

  18. Bodbodak S, Moshfeghifar M (2016) Advances in modified atmosphere packaging of fruits and vegetables. Eco-friendly technology for postharvest produce quality. Academic Press, pp 127–183

    Chapter  Google Scholar 

  19. Castellanos DA, Herrera AO (2017) Modified atmosphere packaging: design and optimization strategies for fresh produce. Postharvest Handling 85

  20. Soliva-Fortuny RC, Martín-Belloso O (2003) Microbiological and biochemical changes in minimally processed fresh-cut conference pears. Eur Food Res Technol 217:4–9. https://doi.org/10.1007/s00217-003-0701-8

    Article  CAS  Google Scholar 

  21. Singh P, Wani AA, Goyal GK (2012) Shelf-life extension of fresh ready-to-bake pizza by the application of modified atmosphere packaging. Food Bioprocess Technol 5:1028–1037. https://doi.org/10.1007/s11947-010-0447-9

    Article  CAS  Google Scholar 

  22. Khorram F, Ramezanian A, Hosseini SM (2017) Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci Hortic 225:22–28. https://doi.org/10.1016/j.scienta.2017.06.045

    Article  CAS  Google Scholar 

  23. Karacay E, Ayhan Z (2010) Microbial, physical, chemical and sensory qualities of minimally processed and modified atmosphere packaged “ready to eat” orange segments. Int J Food Prop 13(5):960–971. https://doi.org/10.1080/10942910902927110

    Article  CAS  Google Scholar 

  24. Roe JH (1954) Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods Biochem Anal. https://doi.org/10.1002/9780470110171.ch5

    Article  PubMed  Google Scholar 

  25. Parra J, Ripoll G, Orihuel-Iranzo B (2014) Potassium sorbate effects on citrus weight loss and decay control. Postharvest Biol Technol 96:7–13. https://doi.org/10.1016/j.postharvbio.2014.04.011

    Article  CAS  Google Scholar 

  26. Moggia C, Beaudry RM, Retamales JB, Lobos GA (2017) Variation in the impact of stem scar and cuticle on water loss in highbush blueberry fruit argue for the use of water permeance as a selection criterion in breeding. Postharvest Biol Technol 132:88–96. https://doi.org/10.1016/j.postharvbio.2017.05.019

    Article  Google Scholar 

  27. Ali A, Maqbool M, Ramachandran S, Alderson PG (2010) Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 58(1):42–47. https://doi.org/10.1016/j.postharvbio.2010.05.005

    Article  CAS  Google Scholar 

  28. Sabır A, Sabır FK, Kara Z (2011) Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage. J Food Sci Technol 48:312–318. https://doi.org/10.1007/s13197-011-0237-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muftuoğlu F, Ayhan Z, Esturk O (2012) Modified atmosphere packaging of Kabaaşı apricot (Prunus armeniaca L’Kabaaşı’): effect of atmosphere, packaging material type and coating on the physicochemical properties and sensory quality. Food Bioprocess Technol 5:1601–1611. https://doi.org/10.1007/s11947-010-0482-6

    Article  CAS  Google Scholar 

  30. Bal E, Urun BA (2021) Effects of chitosan coating with putrescine on bioactive compounds and quality of strawberry cv. Sanandreas during cold storage. Erwerbs Obstbau 63:7–14. https://doi.org/10.1007/s10341-020-00531-9

    Article  CAS  Google Scholar 

  31. Baswal AK, Dhaliwal HS, Singh Z, Mahajan BVC, Kalia A, Gill KS (2020) Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Sci Hortic 260:108887–108898. https://doi.org/10.1016/j.scienta.2019.108887

    Article  CAS  Google Scholar 

  32. Chen C, Nie Z, Wan C, Chen J (2019) Preservation of Xinyu tangerines with an edible coating using Ficus hirta Vahl. fruits extract-incorporated chitosan. Biomolecules 9:46–60. https://doi.org/10.3390/biom9020046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saberi B, Golding JB, Marques JR, Pristijono P, Chockchaisawasdee S, Scarlett CJ, Stathopoulos CE (2018) Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’oranges. Postharvest Biol Technol 137:9–20. https://doi.org/10.1016/j.postharvbio.2017.11.003

    Article  CAS  Google Scholar 

  34. Nie Z, Huang Q, Chen C, Wan C, Chen J (2020) Chitosan coating alleviates postharvest juice sac granulation by mitigating ROS accumulation in harvested pummelo (Citrus grandis L. Osbeck) during room temperature storage. Postharvest Biol Technol 169:111309–111318. https://doi.org/10.1016/j.postharvbio.2020.111309

    Article  CAS  Google Scholar 

  35. Hazrati S, BeyraghdarKashkooli A, Habibzadeh F, Tahmasebi-Sarvestani Z, Sadeghi A (2017) Evaluation of aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanzen. 69(3):131–137

    Article  CAS  Google Scholar 

  36. Yaman Ö, Bayoιndιrlι L (2002) Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Sci Technol 35(2):146–150. https://doi.org/10.1006/fstl.2001.0827

    Article  CAS  Google Scholar 

  37. Caner C, Aday MS, Demir M (2008) Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. Eur Food Res Technol 227:1575–1583. https://doi.org/10.1007/s00217-008-0881-3

    Article  CAS  Google Scholar 

  38. Tietel Z, Bar E, Lewinsohn E, Feldmesser E, Fallik E, Porat R (2010) Effects of wax coatings and postharvest storage on sensory quality and aroma volatile composition of ‘Mor’mandarins. J Sci Food Agric 90(6):995–1007. https://doi.org/10.1002/jsfa.3909

    Article  CAS  PubMed  Google Scholar 

  39. Teerachaichayut S, Ho HT (2017) Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging. Postharvest Biol Technol 133:20–25. https://doi.org/10.1016/j.postharvbio.2017.07.005

    Article  CAS  Google Scholar 

  40. Toǧrul H, Arslan N (2004) Carboxymethyl cellulose from sugar beet pulp cellulose as a hydrophilic polymer in coating of mandarin. J Food Eng 62(3):271–279. https://doi.org/10.1016/S0260-8774(03)00240-1

    Article  Google Scholar 

  41. Rapisarda P, Caggia C, Lanza CM, Bellomo SE, Pannuzzo P, Restuccia C (2006) Physicochemical, microbiological, and sensory evaluation of minimally processed tarocco clone oranges packaged with 3 different permeability films. J Food Sci 71(3):S299-306. https://doi.org/10.1111/j.1365-2621.2006.tb15657.x

    Article  CAS  Google Scholar 

  42. Jitareerat P, Paumchai S, Kanlayanarat S, Sangchote S (2007) Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit. N Z J Crop Hortic Sci 35(2):211–218. https://doi.org/10.1080/01140670709510187

    Article  CAS  Google Scholar 

  43. Mditshwa A, Magwaza LS, Tesfay SZ, Opara UL (2017) Postharvest factors affecting vitamin C content of citrus fruits: a review. Sci Hortic 218:95–104. https://doi.org/10.1016/j.scienta.2017.02.024

    Article  CAS  Google Scholar 

  44. Shin Y, Liu RH, Nock JF, Holliday D, Watkins CB (2007) Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol Technol 45(3):349–357. https://doi.org/10.1016/j.postharvbio.2007.03.007

    Article  CAS  Google Scholar 

  45. Burdurlu HS, Koca N, Karadeniz F (2006) Degradation of vitamin C in citrus juice concentrates during storage. J Food Eng 74(2):211–216. https://doi.org/10.1016/j.jfoodeng.2005.03.026

    Article  CAS  Google Scholar 

  46. Chauhan OP, Raju PS, Dasgupta DK, Bawa AS (2006) Instrumental textural changes in banana (var. Pachbale) during ripening under active and passive modified atmosphere. Int J Food Prop 9(2):237–253. https://doi.org/10.1080/10942910600596282

    Article  Google Scholar 

  47. Chen C, Nie Z, Wan C, Gan Z, Chen J (2021) Suppression on postharvest juice sac granulation and cell wall modification by chitosan treatment in harvested pummelo (Citrus grandis L. Osbeck) stored at room temperature. Food Chem 8146:31498–31499. https://doi.org/10.1016/j.foodchem.2020.127636

    Article  CAS  Google Scholar 

  48. Khaliq G, Mohamed MT, Ghazali HM, Ding P, Ali A (2016) Influence of gum Arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol Technol 111:362–369. https://doi.org/10.1016/j.postharvbio.2015.09.029

    Article  CAS  Google Scholar 

  49. Huber DJ (1983) The role of cell wall hydrolases in fruit softening. Hortic Rev 5:169–219. https://doi.org/10.1002/9781118060728

    Article  CAS  Google Scholar 

  50. Vargas M, Albors A, Chiralt A, González-Martínez C (2006) Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biol Technol 41(2):164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016

    Article  CAS  Google Scholar 

  51. Salunkhe DK, Bolin HR, Reddy NR (1991) Storage, processing, and nutritional quality of fruits and vegetables. I—fresh fruits and vegetables, vol 8. CRC Press Inc, Boston, pp 156–161

    Google Scholar 

  52. Porat R, Weiss B, Cohen L, Daus A, Biton A (2005) Effects of polyethylene wax content and composition on taste, quality, and emission of off-flavor volatiles in ‘Mor’mandarins. Postharvest Biol Technol 38(3):262–268. https://doi.org/10.1016/j.postharvbio.2005.07.009

    Article  CAS  Google Scholar 

  53. Ramezanian A, Azadi M, Mostowfizadeh-Ghalamfarsa R, Saharkhiz MJ (2016) Effect of Zataria multiflora Boiss and Thymus vulgaris L. essential oils on black rot of ‘Washington Navel’orange fruit. Postharvest Biol Technol 112:152–158. https://doi.org/10.1016/j.postharvbio.2015.10.011

    Article  CAS  Google Scholar 

  54. Pretel MT, Serrano M, Amorós A, Romojaro F (1999) Ripening and ethylene biosynthesis in controlled atmosphere stored apricots. Eur Food Res Technol 209:130–134. https://doi.org/10.1007/s002170050471

    Article  CAS  Google Scholar 

  55. Shi JX, Goldschmidt EE, Goren R, Porat R (2007) Molecular, biochemical and anatomical factors governing ethanol fermentation metabolism and accumulation of off-flavors in mandarins and grapefruit. Postharvest Biol Technol 46(3):242–251. https://doi.org/10.1016/j.postharvbio.2007.05.009

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ferdowsi University of Mashhad, [Grant number 3/42647].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhri Shahidi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boghori, P., Shahidi, F., Sedaghat, N. et al. Whey Protein Concentrate Coating Incorporated with Modified Atmosphere Packaging for Extending Tangerines Shelf-Life: Physicochemical, Microbiological and Sensory Evaluation Through Refrigerated Storage. J Package Technol Res 8, 51–62 (2024). https://doi.org/10.1007/s41783-023-00159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-023-00159-6

Keywords

Navigation