Skip to main content
Log in

Development and Characterization of Biodegradable Polymers for Fish Packaging Applications

  • Review Paper
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

The most commonly used packaging materials are synthetic plastics. This petroleum-based synthetic plastics generate massive wastes to the environment and treating human life. During incineration, synthetic plastics release harmful gasses into the atmosphere. Research is under way to extract, develop, characterize, and apply biodegradable materials to minimize the impact of synthetic plastic. Biodegradable packaging is the best option to replace petroleum-based synthetic plastics. The objective of this review is to compile extraction, development, characterization and application of biodegradable films as packaging materials for fish products. Peer reviewed articles were downloaded from Springer Link, Science Direct, MDPI, and Taylor and Francis journals. Based on their origin biodegradable are classified into three namely biopolymers extracted from biomass (protein, carbohydrate and lipid), produced by classical chemical synthesis of bio-monomers and produced by microorganisms. Fabrication of biodegradable films involves the use of biopolymers, solvent (water or ethanol) and plasticizer (glycol, glycerin and sorbitol). Solvent or solution casting is the most widely used method to prepare biodegradable films. Instruments used to characterize biodegradable films are Fourier transform infrared spectroscopy, differential scanning calorimeter, X-ray diffraction, UV–Vis Spectrophotometry, Nuclear Magnetic Resonances and Thermal analysis. The advanced technology for fish products packaging are modified atmosphere packaging, active packaging, intelligent packaging and smart packaging. It is concluded that biodegradable film have great potential for fish packaging and do not harm the environment as it breakdown into organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Esterhuizen M, Kim, YJ (2022) Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment. Environ Sci Pollut Res 29(12):17580–17590. https://doi.org/10.1007/s11356-021-17033-0

    Article  Google Scholar 

  2. Acquavia MA, Pascale R, Martelli G, Bondoni M, Bianco G (2021) Natural polymeric materials: a solution to plastic pollution from the agro-food sector. Polymers 13:158. https://doi.org/10.3390/polym13010158

    Article  Google Scholar 

  3. Degan T, Shinde SL (2019) Waste-plastic processing provides global challenges and opportunities. Mater Res Bull 44(6):436–437. https://doi.org/10.1557/mrs.2019.133

    Article  Google Scholar 

  4. Wahyuningtiyas NE, Suryanto H (2017) Analysis of biodegradation of bioplastics made of cassava starch. J Mech Sci Technol 1(1):24–31. https://doi.org/10.17977/um016v1i12017p024

  5. Sid S, Mor RS, Kishore A, Sharanagat VS (2021) Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci Technol 115:87–104. https://doi.org/10.1016/j.tifs.2021.06.026

    Google Scholar 

  6. Asgher M, Qamar SH, Bilal M, Iqbal HMN (2020) Biobased active food packaging: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625. https://doi.org/10.1016/j.foodres.2020.109625

    Article  Google Scholar 

  7. Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R (2022) Advances in the development of biodegradable food packaging material from agricultural and agro-industry waste. J Food Process Eng 45:1–23. https://doi.org/10.1111/jfpe.13930

    Article  Google Scholar 

  8. Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C (2020) Utilization of food waste stream for the production of biopolymers. Heliyon 6(9):1–13. https://doi.org/10.1016/j.heliyon.2020.e04891

    Article  Google Scholar 

  9. Szymanska-Chargot M, Chylinska M, Gdula K, Koziol A, Zdunket A (2017) Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers 9(10):495. https://doi.org/10.3390/polym9100495

    Article  Google Scholar 

  10. Park HJ, Byun YJ, Kim YT, Whiteside WS, Bae HJ (2014) Processes and Applications for Edible Coating and Film Materials from Agropolymers. In: Han JH (ed) Innovations in Food Packaging. Academic press, pp. 257–275. https://doi.org/10.1016/B978-0-12-394601-0.00010-2

  11. Tan SX, Andriyana A, Ong HC, Lim S, Pang YL, Ngoh GC (2022) A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers 14(4):664. https://doi.org/10.3390/polym14040664

    Article  Google Scholar 

  12. Khajavian M, Vatanpour V, Castro-Muñoz R, Boczkaj G (2022) Chitin and derivative chitosan-based structures-Preparation strategies aided by deep eutectic solvents: A review. Carbohydr Polym 275:118702. https://doi.org/10.1016/j.carbpol.2021.118702

    Article  Google Scholar 

  13. Rehman A, Tong Q, Jafari SM, Assadpour E, Aadil SQ, RM, Ashraf W, (2018) Carotenoid-loaded nanocarriers: a comprehensive review. Adv Colloid Interface Sci 275:102048. https://doi.org/10.1016/j.cis.2019.102048

    Article  Google Scholar 

  14. Bharti SK, Pathak V, Alam T, Arya A, Basak G, Awasthi MG (2020) Materiality of Edible Film Packaging in Muscle Foods: A Worthwhile conception. J Package Technol and Res 4(1):117–132. https://doi.org/10.1007/s41783-021-00130-3

    Article  Google Scholar 

  15. Chiozzi V, Eliopoulos C, Markou G, Arapoglou D, Agriopoulou S, Enshasy HAE, Varzakas T (2021) Biotechnological addition of β-glucans from cereals, mushrooms and yeasts in foods and animal feed. Processes 9(11):1889. https://doi.org/10.3390/pr9111889

    Article  Google Scholar 

  16. Sánchez-Gutiérrez M, Espinosa E, Bascón-Villegas I, Pérez-Rodríguez F, Carrasco E, Rodríguez A (2020) Production of cellulose nanofibers from olive tree harvest—a residue with wide applications. Agronomy 10(5):696. https://doi.org/10.3390/agronomy10050696

    Article  Google Scholar 

  17. Majzoobi M, Pesaran Y, Mesbahi G, Golmakani MT Farahnaky A (2015) Physical properties of biodegradable films from heat‐moisture‐treated rice flour and rice starch. Starch‐Stärke 67(11–12):1053–1060. https://doi.org/10.1002/star.201500102

    Google Scholar 

  18. Martins PC, Bagatini DC, Martins VG (2021) Oregano essential oil addition in rice starch films and its effects on the chilled fish storage. J Food Sci Technol 58(4):1562-1573. https://doi.org/10.1007/s13197-020-04668-z

    Article  Google Scholar 

  19. Lopes J, Gonçalves I, Nunes C, Teixeira B, Mendes R, Ferreira P, Coimbra MA (2021) Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packag Shelf Life 28:100644. https://doi.org/10.1016/j.fpsl.2021.100644

    Article  Google Scholar 

  20. Bangar SP, Whiteside WS, Dunno KD, Cavender GA, Dawson P, Love R (2022) Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int J Biol Macromol 203:350–360. https://doi.org/10.1016/j.ijbiomac.2022.01.133

    Article  Google Scholar 

  21. Asrofi M, Abral H, Kasim A, Pratoto A, Mahardika M, Park JW, Kim HJ (2018) Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterization. Fibers and Polym 19(8):1618–1625. https://doi.org/10.1007/s12221-018-7953-1

    Article  Google Scholar 

  22. Fernández-Marín R, Fernandes SC, Sánchez MÁA, Labidi J (2022) Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll 123:107119. https://doi.org/10.1016/j.foodhyd.2021.107119

    Article  Google Scholar 

  23. Priyadarshi R, Rhim JW (2020) Chitosan-based biodegradable functional films for food packaging applications. Innovat Food Sci Emerg Technol 62:102346. https://doi.org/10.1016/j.ifset.2020.102346

    Article  Google Scholar 

  24. Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V (2019) Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess 6(1):1–20. https://doi.org/10.1186/s40643-019-0243-y

    Article  Google Scholar 

  25. Lare T, Srinivasan B, Hirpaye BY (2022) Recovery of Chitin and Chitosan from Nile Tilapia Scale in Lake Chamo. Arba Minch & Their Application in Clarification of Apple Juice Heliyon. https://doi.org/10.2139/ssrn.4024960

    Article  Google Scholar 

  26. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1):26–32. https://doi.org/10.1016/j.jmrt.2014.10.009

    Article  Google Scholar 

  27. Khan M (2019) Optimization of extraction condition and characterization of low methoxy pectin from wild plum. J Package Technol Res 3(3):215–221. https://doi.org/10.1007/s41783-019-00070-z

    Article  Google Scholar 

  28. Romero J, Cruz RM, Díez-Méndez A, Albertos I (2022) Valorization of berries’ agro-industrial waste in the development of biodegradable pectin-based films for fresh salmon (Salmo salar) shelf-life monitoring. Int J Mol Sci 23(16):8970. https://doi.org/10.3390/ijms23168970

  29. Cebrián-Lloret V, Metz M, Martínez-Abad A, Knutsen SH, Ballance S, López-Rubio A, Martínez-Sanz M (2022) Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. Algal Research 61:102576. https://doi.org/10.1016/j.algal.2021.102576

    Article  Google Scholar 

  30. Martiny TR, Pacheco BS, Pereira CM, Mansilla A, Astorga–España MS, Dotto GL, Moraes CC,Rosa GS (2020) A novel biodegradable film based on κ‐carrageenan activated with olive leaves extract. Food Sci Nutr 8(7):3147–3156. https://doi.org/10.1002/fsn3.1554

    Article  Google Scholar 

  31. Avila LB, Barreto ERC, Souza PKD, Silva BDZ, Martiny TR, Moraes CC, Morais MM, Raghavan V, Rosa, GSD (2020) Carrageenan-based films incorporated with jaboticaba peel extract: an innovative material for active food packaging. Molecules 25(23):5563. https://doi.org/10.3390/molecules25235563

    Article  Google Scholar 

  32. Yang W, Huang G (2021) Extraction methods and activities of natural glucans. Trends Food Sci Technol 112:50–57. https://doi.org/10.1016/j.tifs.2021.03.025

    Article  Google Scholar 

  33. Liu H, Li Y, You M, Liu X (2021) Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int J Biol Macromol 182:1192–1199. https://doi.org/10.1016/j.ijbiomac.2021.05.043

    Article  Google Scholar 

  34. Yang H, Wang H, Huang M, Cao G, Tao F, Shen Q, Zhou G, Yang H (2022) Repurposing fish waste into gelatin as a potential alternative for mammalian sources: A review. Compr Rev Food Sci Food Saf 21(2):942–963. https://doi.org/10.1111/1541-4337.12920

  35. Osullivan NB, Shaw NB, Murphy SC, van de Vis JW, van Pelt-Heerschap H, Kerry JP (2006) Extraction of Collagen from Fish skins and its use in the manufacture of Biopolymer films. J Aquat Food Prod Technol 15(3):21–32. https://doi.org/10.1300/J030v15n03_03

    Article  Google Scholar 

  36. Hosseinin SF, Gomez-Guuillen MC (2018) A state of the art review on the elaboration of fish gelatin as bioactive packaging: special emphasis on nanotechnology-based approaches. Trends Food Sci Technol 79:125–135. https://doi.org/10.1016/j.tifs.2018.07.022

    Article  Google Scholar 

  37. Lindstrom T, Osterberg F (2020) Evolution of biobased and nanotechnology packaging- a review. Nordic Pulp Paper Res J 35(4):491–515. https://doi.org/10.1515/npprj-2020-0042

    Article  Google Scholar 

  38. Feng X, Liu T, Ma L, Dai H, Fu Y, Yu Y, Zhu H, Wang H, Tan H, Zhang Y (2022) A green extraction method for gelatin and its molecular mechanism. Food Hydrocoll 124:107344. https://doi.org/10.1016/j.foodhyd.2021.107344

    Article  Google Scholar 

  39. Getachew AT, Ahmad R, Park JS, Chun BS (2021) Fish skin gelatin based packaging films functionalized by subcritical water extract from spent coffee ground. Food Packag Shelf Life 29:100735. https://doi.org/10.1016/j.fpsl.2021.100735

    Article  Google Scholar 

  40. Usman M, Sahar A, Inam-Ur-Raheem M, Rahman UU, Sameen A, Aadil RM (2022) Gelatin extraction from fish waste and potential applications in food sector. Int J Food Sci 57(1):154–163. https://doi.org/10.1111/ijfs.15286

    Article  Google Scholar 

  41. Deschênes Gagnon R, Bazinet L, Mikhaylin S (2022) Functional properties of casein and caseinate produced by electrodialysis with bipolar membrane coupled to an ultrafiltration module. Membranes 12(3):270. https://doi.org/10.3390/membranes12030270

    Article  Google Scholar 

  42. Nicolás P, Ferreira ML, Lassalle V (2019) A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. J Food Eng 246:7–15. https://doi.org/10.1016/j.jfoodeng.2018.10.021

    Article  Google Scholar 

  43. Radosavljević J, Stanić-Vučinić D, Stojadinović M, Radomirović M, Simović A, Radibratović M, Veličković TĆ (2022) Application of ion exchange and adsorption techniques for separation of whey proteins from bovine milk. Curr Analy Chem 18(3):341–359. https://doi.org/10.2174/1573411017666210108092338

    Article  Google Scholar 

  44. Hirsch DB, Álvarez LMM, Urtasun N, Baieli MF, Lázaro-Martínez JM, Glisoni RJ, Miranda MV, Cascone O, Wolman FJ (2020) Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-spheres. Int Dairy J 109:104764. https://doi.org/10.1016/j.idairyj.2020.104764

    Article  Google Scholar 

  45. Ovando E, Rodríguez-Sifuentes L, Martínez LM, Chuck-Hernández C (2022) Optimization of Soybean Protein Extraction Using By-Products from NaCl Electrolysis as an Application of the Industrial Symbiosis Concept. Applied Sciences 12(6):3113. https://doi.org/10.3390/app12063113

    Article  Google Scholar 

  46. Eze OF, Chatzifragkou A, Charalampopoulos D (2022) Properties of protein isolates extracted by ultrasonication from soybean residue (okara). Food Chem 368:130837. https://doi.org/10.1016/j.foodchem.2021.130837

    Article  Google Scholar 

  47. Ali GW, Abd Ellatif MA, Abdel-Fattah WI (2021) Extraction of natural cellulose and zein protein from corn silk: physico-chemical and biological characterization. Biointerface Res Appl Chem 11:10614–10619. https://doi.org/10.33263/BRIAC113.1061410619

  48. Jaski AC, Schmitz F, Horta RP, Cadorin L, da Silva BJG, Andreaus J, Paes MCD, Riegel-Vidotti IC, Zimmermann LM (2022) Zein-a plant-based material of growing importance: New perspectives for innovative uses. Ind Crops Prod 186 (15):115250. https://doi.org/10.1016/j.indcrop.2022.115250

    Google Scholar 

  49. Priyadarshi R, Ezati P, Rhim J (2021) Recent advances in intelligent food packaging application using natural food colorants. ACS Food Science and Technology 1(2):124–138. https://doi.org/10.1021/acsfoodscitech.0c00039

    Article  Google Scholar 

  50. Jafarzadeha S, Jafari SM, Salehabadi A, Nafchi AM, Kumar USU, Abdul Khalil HPS (2020) Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by products. Trends Food Sci Technol 100:262–277. https://doi.org/10.1016/j.tifs.2020.04.017

    Article  Google Scholar 

  51. Suntornnond R, An J, Yeong WY, Chua CK (2015) Biodegradable polymeric films and membranes processing and forming for tissue engineering. Macromol Mater Eng 300(9):858–877. https://doi.org/10.1002/mame.201500028

    Article  Google Scholar 

  52. Abdul Khalil HPS, Banerje A, Saurabh, CK, Tye YY, Suriani AB, Mohamed AA, Karim AA, Rizal S, Paridah MT (2018) Biodegradable films for fruits and vegetables packaging application: Preparation and Properties. Food Eng Rev 10(3):139–153. https://doi.org/10.1007/s12393-018-9180-3

    Article  Google Scholar 

  53. Bastante CC, Silva NH, Cardoso LC, Serrano CM, de la Ossa EJ, Freire CS, Vilela C (2021) Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll 117:106709. https://doi.org/10.1016/j.foodhyd.2021.106709

    Article  Google Scholar 

  54. Shah U, Gani A, Ashwar BA, Shah A, Ahmad M, Gani A, Wani IA, Masoodi FA (2015) A review of the recent advances in starch as active and nanocomposite packaging films. Cogent Food Agric 1(1):1115640. https://doi.org/10.1080/23311932.2015.1115640

    Article  Google Scholar 

  55. Yong H, Liu J (2020) Recent advances in the preparation, physical and functional properties and application of anthocyanins-based active and intelligent packaging films. Food Package Shelf Life 26:100550. https://doi.org/10.1016/j.fpsl.2020.100550

    Article  Google Scholar 

  56. Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Banat F, Sivamani S, Sivakumar N, Hosseini-Bandegharaei A, Show PL (2021) Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J Enviro Chem Eng 9(4):105322. https://doi.org/10.1016/j.jece.2021.105322

    Google Scholar 

  57. Tomoda BT, Yassue-Cordeiro PH, Ernesto JV, Lopes PS, Peres LO, de Silva CF, de Moraes MA (2020) Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier and biological properties. In: de Moraes, MA, de Silva CF, Vieira RS (eds.) Biopolymers membranes and films Health, Food, Environment, and Energy Applications, Elsevier, 67–95. https://doi.org/10.1016/C2018-0-02693-6

  58. Xu Y, Liu X, Jiang Q, Yu D, Xu Y, Wang B, Xia W (2021) Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr polym 260:117778. https://doi.org/10.1016/j.carbpol.2021.117778

    Article  Google Scholar 

  59. Tabari M (2017) Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods 6(6):41. https://doi.org/10.3390/foods6060041

    Article  Google Scholar 

  60. Kanatt SR (2021) Active/smart carboxymethyl cellulose‐polyvinyl alcohol composite films containing rose petal extract for fish packaging. Int J Food Sci 56(11):5753–5761. https://doi.org/10.1111/ijfs.15095

    Article  Google Scholar 

  61. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, Hugar S, Fayaz H (2020) Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-78912-z

    Article  Google Scholar 

  62. Yao X, Qin Y, Zhang M, Zhang J, Qian C, Liu J (2021) Development of active and smart packaging films based on starch, polyvinyl alcohol and betacyanins from different plant sources. Int J Biol Macromol 183:358–368. https://doi.org/10.1016/j.ijbiomac.2021.04.152

    Article  Google Scholar 

  63. Atta OM, Manan S, Ul-Islam M, Ahmed AAQ, Ullah MW, Yang G (2022) Development and characterization of plant oil-incorporated carboxymethyl cellulose/bacterial cellulose/glycerol-based antimicrobial edible films for food packaging applications. Adv Compos Hybrid Mater 5(1):1–18. https://doi.org/10.1007/s42114-021-00408-9

    Article  Google Scholar 

  64. Yusoff NH, Pal K, Narayanan T, de Souza FG (2021) Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J Mol Struct 1232:129954. https://doi.org/10.1016/j.molstruc.2021.129954

  65. Sadeghi A, Razavi SMA, Shahrampour D (2022) Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Int J Biol Macromol 205:341–356. https://doi.org/10.1016/j.ijbiomac.2022.02.070

    Article  Google Scholar 

  66. Azaza YB, Hamdi M, Charmette C, Jridi M, Li S, Nasri M, Nasri R (2022) Development and characterization of active packaging films based on chitosan and sardinella protein isolate: effects on the quality and the shelf life of shrimps. Food Packag Shelf Life 31:100796, . https://doi.org/10.1016/j.fpsl.2021.100796

    Article  Google Scholar 

  67. Souza LO, Santos IA, de Carvalho Tavares IM, Sampaio ICF, Dias MC, Tonoli GHD, de Carvalho EEN, de Barros Vilas Boas EV, Irfan M, Bilal M, de Oliveira JR (2022) Procurement and characterization of biodegradable films made from blends of eucalyptus, pine and cocoa bean shell nanocelluloses. Waste Biomass Valor 1–13. https://doi.org/10.1007/s12649-022-01762-5

  68. Gahruie HH, Mirzapour A, Ghiasi F, Eskandari MH, Moosavi-Nasab M, Hosseini SMH (2022) Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT 153:112422, . https://doi.org/10.1016/j.lwt.2021.112422

    Article  Google Scholar 

  69. Sharmin N, Khan RA, Salmieri S, Dussault D, Lacroix M (2012) Fabrication and characterization of biodegradable composite films made of using poly (caprolactone) reinforced with chitosan. J Polym Environ 20(3):698–705. https://doi.org/10.1007/s10924-012-0431-8

    Article  Google Scholar 

  70. Singha P, Rani R, Badwaik LS (2022) Sweet lime peel-, polyvinyl alcohol-and starch-based biodegradable film: preparation and characterization. Polym Bull 1–17. https://doi.org/10.1007/s00289-021-04040-x

  71. Huang X, Ge X, Zhou L, Wang Y (2022) Eugenol embedded zein and poly (lactic acid) film as active food packaging: Formation, characterization, and antimicrobial effects. Food Chem 384:132482. https://doi.org/10.1016/j.foodchem.2022.132482

    Article  Google Scholar 

  72. Tao R, Sedman J, Ismail A (2022) Characterization and in vitro antimicrobial study of soy protein isolate films incorporating carvacrol. Food Hydrocolloids 122:107091. https://doi.org/10.1016/j.foodhyd.2021.107091

    Article  Google Scholar 

  73. Subbuvel M, Kavan P (2022) Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. Int J Biol Macromol 194:470–483. https://doi.org/10.1016/j.ijbiomac.2021.11.090

    Article  Google Scholar 

  74. Chhatariya HF, Srinivasan S, Choudhary PM, Begum SS (2022) Corn starch biofilm reinforced with orange peel powder: characterization of physicochemical and mechanical properties. Mater Today 59(1):884–892. https://doi.org/10.1016/j.matpr.2022.01.339

    Article  Google Scholar 

  75. Thakur R, Pristijono P, Golding JB, Stathopoulos CE, Scarlett C, Bowyer M, Singh SP, Vuong QV (2018) Effect of starch physiology, gelatinization, and retrogradation on the attributes of rice starch‐ι‐carrageenan film. Starch‐Stärke 70(1–2):1700099. https://doi.org/10.1002/star.201700099

    Article  Google Scholar 

  76. Fernandes G DJC, Campelo PH, de Abreu Figueiredo J, Barbosa de Souza HJ, Peixoto Joele MRS, Yoshida MI, Henriques Lourenço LDF (2022) Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Sci Rep 12(1):1–12. https://doi.org/10.1038/s41598-022-14258-y

    Google Scholar 

  77. Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N (2022) Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids Surf 214:112472. https://doi.org/10.1016/j.colsurfb.2022.112472

    Article  Google Scholar 

  78. Wadaugsorn K, Panrong T, Wongphan P, Harnkarnsujarit N (2022) Plasticized hydroxypropyl cassava starch blended PBAT for improved clarity blown films: Morphology and properties. Ind Crops and Prod 176:114311. https://doi.org/10.1016/j.indcrop.2021.114311

    Article  Google Scholar 

  79. Castro JI, Navia-Porras DP, Arbeláez Cortés JA, Mina Hernández JH, Grande-Tovar CD (2022) Synthesis, characterization, and optimization studies of starch/chicken gelatin composites for food-packaging applications. Molecules 27(7):2264. https://doi.org/10.3390/molecules27072264

  80. Razavi MS, Golmohammadi A, Nematollahzadeh A, Rovera C, Farris S (2022) Cinnamon essential oil encapsulated into a fish gelatin-bacterial cellulose nanocrystals complex and active films thereof. Food Biophys 17(1):38–46. https://doi.org/10.1007/s11483-021-09696-6

    Article  Google Scholar 

  81. Bangar SP, Whiteside WS, Ozogul F, Dunno KD, Cavender GA, Dawson P (2022) Development of starch-based films reinforced with cellulosic nanocrystals and essential oil to extend the shelf life of red grapes. Food Biosci 47:101621. https://doi.org/10.1016/j.fbio.2022.101621

    Article  Google Scholar 

  82. Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT (2021) Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J Bioresour Bioproduct 6(2):168–185. https://doi.org/10.1016/j.jobab.2021.02.009

    Article  Google Scholar 

  83. Soofi M, Alizadeh A, Hamishehkar H, Almasi H, Roufegarinejad L (2021) Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: a new biodegradable active packaging system. Int J Biol Macromol 169:352–361. https://doi.org/10.1016/j.ijbiomac.2020.12.114

    Article  Google Scholar 

  84. Wang W, Chen Q, Chen G, Shi Y, Li X, Xiong J, Li Y (2021) Preparation and characterizations of apple pomace polyphenols modified cellulose/starch edible packaging films. In: Zhao P, Ye Z, Xu M, Yang L, Zhang L, Zhu R (eds) Advances in graphic communication, printing and packaging technology and materials. Springer, Singapore, pp 681–691. https://doi.org/10.1007/978-981-16-0503-1_97

  85. Aadil KR, Prajapati D, Jha H (2016) Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packag Shelf Life 10:25–33. https://doi.org/10.1016/j.fpsl.2016.09.002

    Article  Google Scholar 

  86. Cao, G., Bu, N., Zeng, T., Sun, R., Mu, R., Pang, J., & Wang, L. (2022). Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 219:897–906. https://doi.org/10.1016/j.ijbiomac.2022.08.030

    Article  Google Scholar 

  87. Thuppahige VTW, Karim MA (2022) A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Compr Rev Food Sci Food Saf 21(1):689–718. https://doi.org/10.1111/1541-4337.12873

    Article  Google Scholar 

  88. Jiang G, Hou X, Zeng X, Zhang C, Wu H, Shen G, Li S, Luo Q, Li M, Chen LX, A, (2020) Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 143:359–372. https://doi.org/10.1016/j.ijbiomac.2019.12.024

    Article  Google Scholar 

  89. Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N (2019) Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065. https://doi.org/10.1016/j.foodcont.2019.107065

    Article  Google Scholar 

  90. Alizadeh-Sani M, Tavassoli M, Mohammadian E, Ehsani A, Khaniki GJ, Priyadarshi R, Rhim JW (2020) pH responsive color indicator films based on mehylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol 166:741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

    Article  Google Scholar 

  91. Zhang K, Huang TS, Yan H, Hu X, Ren T (2020) Novel pH- sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int J Biol Macromol 145:768–776. https://doi.org/10.1016/j.ijbiomac.2019.12.159

    Article  Google Scholar 

  92. Ezati P, Tajik H, Moradi M, Molaei R (2020) Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int J Biol Macromol 132:157–165. https://doi.org/10.1016/j.ijbiomac.2019.03.173

    Article  Google Scholar 

  93. Tsironi TN, Taoukis PS (2018) Current practice and Innovations in Fish Packaging. J Aquat Food Prod Technol 27(10):1024–1047. https://doi.org/10.1080/10498850.2018.1532479

    Article  Google Scholar 

  94. Nagarajarao RC (2016) Recent advances in processing and packaging of fishery products. Aquat Procedia 7:201–213. https://doi.org/10.1016/j.aqpro.2016.07.028

    Article  Google Scholar 

  95. Sani MA, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ (2022) Development of green halochromic smart and active packaging materials: TiO2 nanoparticle-and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 124:107324. https://doi.org/10.1016/j.foodhyd.2021.107324

  96. Carina D, Sharm S, Jaiswal AK, Jaiswal S (2021) Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci Technol 110:559–572. https://doi.org/10.1016/j.tifs.2021.02.022

    Article  Google Scholar 

  97. Wu D, Zhang M, Chen H, Bhandari B (2020) Freshness monitoring technology of fish products in intelligent packaging. Crit Rev Food Sci Nutr 61(8):1279–1292. https://doi.org/10.1080/10408398.2020.1757615

    Article  Google Scholar 

  98. Mohammadian E, Alizadeh-Sani M, Jafari SM (2020) Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr Rev Food Sci Food Saf 19(6):2885–2931. https://doi.org/10.1111/1541-4337.12635

    Article  Google Scholar 

  99. Bhargava N, Sharanagat VS, Mor RS, Kumar K (2020) Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci Technol 105:385–401. https://doi.org/10.1016/j.tifs.2020.09.015

    Article  Google Scholar 

  100. Roy S, Rhim J (2020) Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 61:1–29. https://doi.org/10.1080/10408398.2020.1776211

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for continuous encouragement to staff members of Jimma University, College of Agriculture and Veterinary Medicine, Postharvest Management Department.

Funding

No external funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alemu Lema Abelti.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abelti, A.L., Teka, T.A. Development and Characterization of Biodegradable Polymers for Fish Packaging Applications. J Package Technol Res 6, 149–166 (2022). https://doi.org/10.1007/s41783-022-00140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-022-00140-9

Keywords

Navigation