Ahmed S, Halla AM, Ahmed SF (2018) Biodegradation of Different Types of Paper in a Compost Environment. In: Proceedings of the 5th International Conference on Natural Sciences and Technology, March 30–31, Chittagong, Bangladesh
Area MA, Cheradame H (2011) Paper aging and degradation: recent findings and research methods. BioResources 6(4):5307–5337
Google Scholar
BIOIS (BIO Intelligence Service) (2012) Options to improve the biodegradability requirements in the packaging directive, Final report. Prepared for DG Environment-European Commission
Brink M (2008) Bambusa vulgaris Schrad. Ex J.C.Wendl. In: Louppe D, Oteng-Amoako AA, Brink M (Eds) PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands
Chang F, Wang E, Perng Y, Chen C (2013) Effect of bamboo age on the pulping properties of Bambusa Stenostachya Hackel. Cellulose Chem Technol 47(3–4):285–293
Google Scholar
Chen C, Duan C, Li J, Liu Y, Ma X, Zheng L, Stavik J, NI, Y. (2016) Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review. BioResources 11(2):5553–5564
Article
Google Scholar
Chin K, Ibrahim S, Hakeem K, H’Ng P, Lee S, Mohd Lila M (2017) Bioenergy production from bamboo: potential source from Malaysia’s perspective. BioResources 12(3):6844–6867
Article
Google Scholar
EPN (Environmental Paper Network) (2018) The State of the Global Paper Industry, Shifting seas: New Challenges and Opportunities for Forest, People and the Climate
Ezeudu O, Agunwamba J, Ezeasor I, Madu C (2019) Sustainable production and consumption of paper and paper products in Nigeria: a review. Resources 8(1):53
Article
Google Scholar
FAO (Food and Agriculture Organisation of the United Nations) (2018) Forestry Production and Trade
FAO (Food and Agriculture Organisation of the United Nations) (2016) Global Forest Products – Facts and Figures
FAO (Food and Agriculture Organisation of the United Nations), 2019
Gondar M (2012) Determination of moisture content of recovered paper bales. Thesis (MSc.) Tomas Bata University, Zlin
Gülsoy S, Hürfikir Z, Turgut B (2016) Dövülmüş ve dövülmemiş kraft hamurlarının kağıt özellikleri üzerine azalan gramajın etkileri. Turkish Journal of Forestry Türkiye Ormancılık Dergisi 17(1)
Hakeem K, Ibrahim S, Ibrahim F, Tombuloglu H (2015) Bamboo biomass: various studies and potential applications for value-added products. Agricultural Biomass Based Potential Materials, pp. 231–243
Hussain M, Huq M, Rahman S, Ahmed Z (2002) Estimation of lignin in jute by titration method. Pak J Biol Sci 5(5):521–522
Article
Google Scholar
IEA (International Energy Agency) (2001) Technical Report-Characterisation of MSW for Combustion Systems
IEA (2015) ETSAP (Energy Technology Systems Analysis Programme) Pulp and Paper Industry.
Jahan MS (2015) Pulping and Papermaking Potential of Bamboo and Trema Orientalis Chips Mixture. XIV World Forestry Congress, at Durban, South Africa
Jahan MS, Gunter BG, Rahman AFM (2009) Substituting Wood with Non wood Fibers in Papermaking: A Win-Win Solution for Bangladesh, Bangladesh Development Research Working Paper Series
Jeetah P, Golaup N, Buddynauth K (2015) Production of cardboard from waste rice husk. J Environ Chem Eng 3(1):52–59
Article
Google Scholar
Jonsson E (2011) A comparison of absorption methods. Thesis (MSc.), The Swedish School of Textiles. [online] Available from: http://www.diva-portal.org/smash/get/diva2:1309389/FULLTEXT01.pdf [Accessed 28 Dec. 2019]
Kamoga O, Byaruhanga J, Kirabira J (2013) A review on pulp manufacture from non wood plant materials. Int J Chem Eng Applic 4:144–148
Google Scholar
Karlsson H (2010) Strength properties of paper produced from softwood kraft pulp. Thesis, Karlstad University
Khan K (2011) Development and evaluation of a puncture strength test method for sterilization paper. Thesis (MSc.), Karlstads University
Ko Y, Lee J, Kim H, Sung Y (2016) The fundamental absorbency mechanisms of hygiene paper. J Korea Techn Assoc Pulp Paper Industry 48(5):85
Article
Google Scholar
Manimaran DS, Nadaraja KR, Vellu JP, Francisco V, Kanesen K, Zamri Y (2016) Production of biodegradable plastic from banana peel. J Petrochem Eng 1(1):1–7
Google Scholar
Özdil N, Özçelik G, Mengüç, GS (2012) Abrasion Resistance of Materials, Chapter 7: Analysis of Abrasion Characteristics in Textiles
Penttinen P (2012) The reference measurements of the paper laboratory. Thesis, Saimaa University of Applied Sciences, Imatra
Ribeiro L, Aguiar L, Nogueira E, Dias J, Beijo L (2019) Influence of section and moisture content on the tensile strength parallel to fibers of bamboo culms woody material. Pesquisa Agropecuária Tropical. https://doi.org/10.1590/1983-40632019v4953562
Article
Google Scholar
Risdianto H (2017) International Workshop on Non-wood Pulping and Papermaking Technology. Centre for pulp and paper, Indonesia
Segura T, Dos Santos J, Sarto C, Da Silva F (2016) Effect of kappa number variation on modified pulping of eucalyptus. BioResources 11(4):9842–9855
Article
Google Scholar
Smithers (2017) Water Absorbency. [online] Available from: https://www.smithers.com/industries/packaging/manufacturers-and-users/packaging-materials-testing/paper-testing-other-properties/water-absorbency
Sridach W (2010) The environmentally benign pulping process of non-wood fibers. J Sci Technol 17(2):105–123
Google Scholar
STERIS (2019) Rub and Abrasion Testing. [online] Available from: https://www.anecto-testservices.com/rub-abrasion-testing/
Sucipta M, Putra Negara D, Tirta Nindhia T, Surata I (2017) Characteristics of Ampel bamboo as a biomass energy source potential in Bali. IOP Conference Ser Mater Sci Eng 201:012032
Article
Google Scholar
Suraj M, Khan A (2015) Environmental impact of paper industry. Int J Eng Res Technol 3(20):1–3
Google Scholar
TAPPI T205 SP-02 (2006) Forming handsheets for physical tests of pulp.
TAPPI T211 OM-02 (2002) Ash in wood, pulp, paper and paperboard: combustion at 525°C [online] Available from: https://research.cnr.ncsu.edu/wpsanalytical/documents/T211.PDF
TAPPI T220 SP-01 (2001) Physical testing of pulp handsheets. [online] Available from: https://research.cnr.ncsu.edu/wpsanalytical/documents/T220.PDF
TAPPI T403 OM-97 (1997) Bursting strength of paper. [online] Available from: http://grayhall.co.uk/BeloitResearch/tappi/t403.
TAPPI T410 OM-08 (2013) Grammage of paper and paperboard. [online] Available from: https://www.tappi.org/content/tag/sarg/t410.pdf
TAPPI T411 OM-97 (1997) Thickness (caliper) of paper, paperboard, and combined board. [online] Available from: http://grayhall.co.uk/BeloitResearch/tappi/t411.pdf
TAPPI T494 OM-01 (2006) Tensile properties of paper and paperboard (using constant rate of elongation apparatus). [online] Available from: https://www.tappi.org/content/SARG/T494.pdf
TAPPI T511 OM-02 (2006) Folding endurance of paper (MIT tester). [online] Available from: https://www.tappi.org/content/SARG/T511.pdf
TAPPI T550 OM-08 (2013) Determination of equilibrium moisture in pulp, paper and paperboard for chemical analysis. [online] Available from: https://www.tappi.org/content/tag/sarg/t550.pdf
TAPPI T831 OM-93 (1993) Water absorption of corrugating medium: water drop penetration test. [online] Available from: http://www.balibago.org/Files/Tappi/DOCS/T831.PDF
TAPPI T236 OM-99 (1999) Kappa number of pulp. [online] Available from: https://research.cnr.ncsu.edu/wpsanalytical/documents/T236.PDF
TMI (Testing Machine Inc) (2019). Crease & Board Stiffness. [online] Available from: https://www.testingmachines.com/product/79-11-crease-board-stiffness
UNIDO (United Nations Industrial Development Organization) (2009) Bamboo cultivation manual- guidelines for cultivating 82thiopian highland bamboo
van Soest P, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597
Article
Google Scholar
Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19(3):245–254
Article
Google Scholar
Wahab R, Mustafa M, Salam M, Sudin M, Samsi H, Rasat M (2013) Chemical composition of four cultivated Tropical Bamboo in Genus Gigantochloa. J Agricul Sci 5(8):66
Article
Google Scholar
Wakchaure MR, Kute SY (2012) Effect of moisture content on physical and mechanical properties of bamboo. Asian J Civil Eng 13(6):753–763
Google Scholar
Zhang B, Guan Y, Bian J, Peng F, Ren J, Yao C, Sun R (2016) Structure of hemicelluloses upon maturation of bamboo (Neosinocalamus affinis) culms. Cellulose Chem Technol 50(2):189–198
Google Scholar