Skip to main content

Biodegradable Nanocomposite Packaging Films for Meat and Meat Products: A Review

Abstract

The packaging of meat and meat products requires specific materials with a focus on the moisture content of food matrix and color stability. The present usage of petroleum-derived packaging materials are becoming obsolete for their non-biodegradability, non-environmental sustainability, and harmful effect on the life of land and aquatic animals, besides humans. Various research attempts were made successfully to use biopolymers for manufacturing eco-friendly packaging materials. But the mechanical, barrier and thermal properties remain not on a par with the films made from polyolefins. Nanomaterials in the form of reinforcing agents or fillers can improve the structural morphology of the biopolymer films rendering them a high-quality barrier, mechanical, thermal, antimicrobial, and antioxidant properties. On the other hand, proper selection of nanomaterials considering the health and safety in the development of nanocomposites is a prerequisite in the formation of biodegradable films. This article reviews various types of biopolymers, nanofillers, biopolymer nanocomposites, antimicrobial nanocomposites, characterization of nanocomposites, health, and safety issues associated with the usage of nanocomposites. The review would impart comprehensive and advanced knowledge in the realm of biodegradable nanocomposite films with special reference to meat and meat products.

This is a preview of subscription content, access via your institution.

Fig. 1

source of raw materials

Fig. 2

source of raw materials

References

  1. Abbott AP, Abolibda TZ, Qu WW, Wise WR, Wright LA (2017) Thermoplastic starch-polyethylene blends homogenized using deep eutectic solvents. RSC Adv 7:7268–7273

    Article  Google Scholar 

  2. Abreu AS, Oliveira M, de Sa A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch-based films for packaging. Carbohydr Polym 129:127–134

    Article  Google Scholar 

  3. Ali W, Josji M, Rajendran S (2010) Modulation of size, shape, and surface charge of chitosan nanoparticles with reference to antimicrobial activity. Adv Sci Lett 3:452–460. https://doi.org/10.1166/asl.2010.1152

    Article  Google Scholar 

  4. Alizadeh-Sani M, Khezerlou A, Ehsani A (2018) Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Industr Crops Prod 124:300–315. https://doi.org/10.1016/j.indcrop.2018.08.001

    Article  Google Scholar 

  5. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237

    Article  Google Scholar 

  6. Amna T, Yang J, Ryu KS, Hwang IH (2015) Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat products. J Food Sci Technol 52(7):4600–4606. https://doi.org/10.1007/s13197-014-1508-2

    Article  Google Scholar 

  7. Anadão Pa (2012) Polymer/clay nanocomposites: concepts, researches, applications, and trends for the future, nanocomposites-new trends and developments. Ed. Farzad Ebrahimi. IntechOpen. https://doi.org/10.5772/50407

    Article  Google Scholar 

  8. Anon (2004) South East Asia leads global polymer markets. In: South East Asian plastics industry report. Addit Polym 5(12):10–12

    Google Scholar 

  9. Anon (2009) Polymer nanocomposites for packaging application. Available from: http://www.natick.army.milsoldier/media/fact/food/PolyNano.htm. Accessed 6 July 2020

  10. Anon (2015) Economic Times, 2015. https://www.niir.org/entrepreneur/June%202019%20Entrepreneur%20India%20Monthly%20Magazine.pdf. Accessed 6 July 2020

  11. Anon (2015) Global Food Packaging Market 2015–19, Technavio. https://www.technavio.com/report/food-packaging-market-industry-analysis. Accessed 6 July 2020

  12. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  Google Scholar 

  13. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49. https://doi.org/10.1111/j.1750-3841.2009.01456.x

    Article  Google Scholar 

  14. Arrieta MP, Castro-Lopez Mdel M, Rayon E, Barral-Losada LF, Lopez- Vilarino JM, Lopez J, Gonzalez-Rodriguez MV (2014) Plasticized poly (lactic acid)—poly (hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62:10170–10180

    Article  Google Scholar 

  15. Ashori A, Bahrami (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nanographene. Polym-Plast Technol Eng 53(3):312–318

    Article  Google Scholar 

  16. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2008) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  Google Scholar 

  17. Bang G, Kim S (2012) Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Indus Eng Chem 18:1063–1068. https://doi.org/10.1016/j.jiec.2011.12.004

    Article  Google Scholar 

  18. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R (2013) Tough blends of poly(lactide) and amorphous poly([R, S]-3-hydroxy butyrate) morphology and properties. Eur Polym J 49:3630–3641

    Article  Google Scholar 

  19. Bhattacharya D, Kandeepan G (2017) Selection of biopolymers to develop a biodegradable and edible film for packaging of luncheon chicken meat slices. Asian J Dairy Food Res 36(1):67–71

    Article  Google Scholar 

  20. Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jiménez A, Kenny JM (2017) Functional properties of plasticized bio-based poly (lactic acid)—poly(hydroxybutyrate) (PLA-PHB) films for active food packaging. Food Bioprocess Technol 10:770–780

    Article  Google Scholar 

  21. Campos-Requena VH, Rivas BL, Perez MA, Garrido-Miranda KA, Pereira ED (2018) Release of essential oil constituent from thermoplastic starch/layered silicate bionanocomposite film as a potential active packaging material. Eur Polym J 109:64–71

    Article  Google Scholar 

  22. Cao L, Ge T, Meng F, Xu S, Li J, Wang L (2020) An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker. Food Hydrocol 98:105251

    Article  Google Scholar 

  23. Chen XH, Zhou LY, Pan XM, Hu JH, Hu YX, Wei SS (2016) Effect of different compatibilizers on the mechanical and thermal properties of starch/polypropylene blends. J Appl Polym Sci 133:43332

    Google Scholar 

  24. Cooksey K (2001) Antimicrobial food packaging materials. Addit Polym 2001:6–10

    Article  Google Scholar 

  25. Correa JP, Molina V, Sanchez M, Kainz C, Eisenberg P, Massani MB (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Pack Shelf Life 11:31–39

    Article  Google Scholar 

  26. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014) Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agri Food Chem. https://doi.org/10.1021/jf404038y

    Article  Google Scholar 

  27. Daponte T, Janssens M (2005) Masterbatch composition containing nano scalar zinc oxide for the production of transparent polyolefin films with UV-barrier properties. EP1609816A1

  28. de Azeredo HM (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69. https://doi.org/10.1016/j.tifs.2012.11.006

    Article  Google Scholar 

  29. De Silva RT, Mantilaka MMMGPG, Ratnayake SP, Amaratunga GAJ, Nalin de Silva KM (2017) Nano-MgO reinforced chitosan nanocomposites for high-performance packaging applications with improved mechanical, thermal, and barrier properties. Carbohydr Polym 157:739–747

    Article  Google Scholar 

  30. Díez-Pascual AM, Diez-Vicente AL (2014) ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxy valerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6:9822–9834

    Article  Google Scholar 

  31. Downing-Perrault A (2001) Polymer nanocomposites are the future. Available from: http://www.iopp.org/files/nanostructures.pdf?pageid=pageid

  32. Dukalska L, Ungure E, Augšpole I, Muizniece-Brasava S, Levkane V, Tatjana R, Krasnova I (2013) Evaluation of the influence of various biodegradable packaging materials on the quality and shelf life of different food products. Proc Latvia Univ Agric. https://doi.org/10.2478/plua-2013-0011

    Article  Google Scholar 

  33. Echegoyen Y, Nerin C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22. https://doi.org/10.1016/j.fct.2013.08.014 (PMID: 23954768)

    Article  Google Scholar 

  34. EFSA (2011) Scientific opinion on guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain (EFSA scientific committee). EFSA J 9:36

    Google Scholar 

  35. European Bioplastics Association (2021) https://www.european-bioplastics.org/

  36. Fadeyibi A, Osunde Z, Egwim E, Idah P (2017) Performance evaluation of cassava starch-zinc nanocomposite film for tomatoes packaging. J Agri Eng 43:137–146. https://doi.org/10.4081/jae.2017.565

    Article  Google Scholar 

  37. Farah F, Naruhito H, Shinichiro I, Tadahisa I, Akio T (2016) Cellulose nanowhiskers from sugar palm fibers. Emirates J Food Agric 28:1. https://doi.org/10.9755/ejfa.2016-02-188

    Article  Google Scholar 

  38. Farhoodi M (2015) Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng Rev 1:17. https://doi.org/10.1007/s12393-015-9114-2

    Article  Google Scholar 

  39. Fatima M, Silvana A (2020) Nanotechnology-based approaches for food sensing and packaging applications (Review Article). RSC Adv 10:19309–19336. https://doi.org/10.1039/D0RA01084G

    Article  Google Scholar 

  40. Fortunati E, Peltzer M, Armentanoa I, Torrea L, Jiménezc A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956

    Article  Google Scholar 

  41. Garces JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG (2000) Polymeric nanocomposites for automotive applications. Adv Mater 12(23):1835–1839

    Article  Google Scholar 

  42. Garcia C, Shin G, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 82:21–31. https://doi.org/10.1016/j.tifs.2018.09.021

    Article  Google Scholar 

  43. Garrido-Miranda KA, Rivas BL, Pérez-Rivera MA, Sanfuentes EA, Peña-Farfal C (2018) Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly (3-hydroxybutyrate)-thermoplastic starch. LWT 98:260–267

    Article  Google Scholar 

  44. George J (2012) High-performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87(3):2031–2037

    Article  Google Scholar 

  45. German AV, Carla GL, Rodrigo VL, Paulo JAS (2018) Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite. Int J Biol Macromol 107(Part B):1576–1583

    Google Scholar 

  46. Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A (2017) Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol 95:306–313

    Article  Google Scholar 

  47. Green R, Kunneman D (2006) PLA—A Renewable/sustainable packaging option. Retrieved from http://www.tappi.org/content/enewsletters/eplace/2007/06PLA06.pdf. Accessed 6 July 2020

  48. Guaras MP, Alvarez VA, Luduena LN (2015) Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. Polym Res. https://doi.org/10.1007/s10965-015-0817-0

    Article  Google Scholar 

  49. Guaras MP, Alvarez VA, Ludueña LN (2016) Biodegradable nanocomposites based on starch/polycaprolactone/compatibilizer ternary blends reinforced with natural and organo-modified montmorillonite. J Appl Polym Sci 133(44):44163

    Article  Google Scholar 

  50. Gutierrez TJ, Alvarez VA (2017) Properties of native and oxidized corn starch/ polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. React Funct Polym 112:33–44

    Article  Google Scholar 

  51. Hajer A, Khaoula K, Moktar H, Elena F, Jose MK, Iovanna GB, Marino L (2016) Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sust Chem Eng 4(3):794–800. https://doi.org/10.1021/acssuschemeng.5b00806

    Article  Google Scholar 

  52. He L, Wang F, Chen Y, Liu Y (2018) Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO2 nanosheets. Luminescence 33:145–152

    Article  Google Scholar 

  53. Hernandez Munoz P, Catala R, Gavara R (2002) Simple method for the selection of the appropriate food simulant for the evaluation of a specific food/packaging interaction. Food Addit Contam 19(1):192–200. https://doi.org/10.1080/02652030110069726

    Article  Google Scholar 

  54. Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Phys 8(6):2531–2538. https://doi.org/10.19082/2531

    Article  Google Scholar 

  55. Hossain F, Follett P, Vu KD, Harich M, Salmieri S, Lacroix M (2016) Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol 53:24–30. https://doi.org/10.1016/j.fm.2015.08.006

    Article  Google Scholar 

  56. HSE (2013) HSG272: Using nanomaterials at work. Available online at: http://www.hse.gov.uk/pubns/books/hsg272.htm

  57. Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199. https://doi.org/10.1016/j.tifs.2015.07.002

    Article  Google Scholar 

  58. Huang M, Yu J (2006) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99:170–176. https://doi.org/10.1002/app.22046

    Article  Google Scholar 

  59. Iamareerat B, Singh M, Sadiq M, Anal A (2018) Reinforced cassava starch-based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J Food Sci Technol. https://doi.org/10.1007/s13197-018-3100-7

    Article  Google Scholar 

  60. INRS (2012) Nanomatériaux: Prévention des risques dans les laboratoires http://www.inrs.fr/accueil/dms/inrs/CataloguePapier/ED/TI-ED-6115/ed6115.pdf. Accessed 6 July 2020

  61. Jafarzadeh S, Alias A, Ariffin F, Mahmud S, Najafi A, Sheibani S (2017) Characterization of a new biodegradable edible film based on semolina loaded with nano kaolin. Int Food Res J. https://doi.org/10.1515/pjfns20160025

    Article  Google Scholar 

  62. Jayita B, Suprakas SR (2019) Are nanoclay-containing polymer composites safe for food packaging applications?—An overview. J Appl Polym Sci 136(12):47214

    Article  Google Scholar 

  63. Jiazhuo X, Zhang K, Wu J, Ren G, Chen H, Xu J (2016) Bio-nanocomposite films reinforced with organo-modified layered double hydroxides: preparation, morphology and properties. Appl Clay Sci 126:72–80. https://doi.org/10.1016/j.clay.2016.02.025

    Article  Google Scholar 

  64. Jong-Whan R (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86(2):691–699. https://doi.org/10.1016/j.carbpol.2011.05.010

    Article  Google Scholar 

  65. Kazunari M, Kimura Y (2014) Chapter 1: PLA synthesis. From the monomer to the polymer. In: Poly (lactic acid) science and technology: processing, properties, additives and applications. pp 1–36. https://doi.org/10.1039/9781782624806-00001

  66. Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci and Nutr 54(2):163–174. https://doi.org/10.1080/10408398.2011.578765

    Article  Google Scholar 

  67. Khan A, Khan RA, Salmieri S, Tien CL, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan-based nanocomposite films. Carbohydr Polym 90(4):1601–1608

    Article  Google Scholar 

  68. Koenig M, Effern V, Redmann-Schmid S, Lutz W (2008) Food casing based on cellulose hydrate with nanoparticles. US Patent 11.1953:149 (20080145576 A1)

    Google Scholar 

  69. Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Pack Shelf Life 16:178–184. https://doi.org/10.1016/j.fpsl.2018.03.008

    Article  Google Scholar 

  70. Levkane V, Muizniece-Brasava S, Dukalska L (2010) The shelf life of Sous vide packaged ready-to-eat salad with meat in mayonnaise. International Conference on Food Innovation “Food Innova 2010”, 25–29 October 2010. Polytechnical University of Valencia, Valencia, pp 1–4

    Google Scholar 

  71. Li H, Huneault M (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci. https://doi.org/10.1002/app.32956

    Article  Google Scholar 

  72. Li X, Liu A, Ye R, Wang Y, Wang W (2015) Fabrication of gelatin–laponite composite films: effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocol. https://doi.org/10.1016/j.foodhyd.2014.10.014

    Article  Google Scholar 

  73. Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:e265

    Article  Google Scholar 

  74. Lian Z, Zhang Y, Zhao Y (2016) Nano-TiO2 particles and high hydrostatic pressure treatment for improving the functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innovat Food Sci Emerg Technol 33:145–153

    Article  Google Scholar 

  75. Lim SL, Ishak W, Rosli W (2014) Nutritional composition and lipid oxidation stability of beef patties packed with biodegradable and non-biodegradable materials. Sains Malaysiana 43:1197–1203

    Google Scholar 

  76. Lima RA, Oliveira RR, Wataya CH, Moura EAB (2015) Biodegradable starch/copolyesters film reinforced with silica nanoparticles: preparation and characterization. In: Carpenter JS et al (eds) Characterization of minerals, metals, and materials. Springer, Cham

    Google Scholar 

  77. Lischer S, Körner E, Balazs DJ, Shen D, Wick P, Grieder K, Haas D, Heuberger M, Hegemann D (2011) Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J Roy Soc Interface 8(60):1019–1030. https://doi.org/10.1098/rsif.2010.0596

    Article  Google Scholar 

  78. Liu C, Xiong H, Chen X, Lin S, Tu Y (2015) Effects of nano-TiO2 on the performance of high-amylose starch-based antibacterial films. J Appl Polym Sci 132(32):477–486

    Google Scholar 

  79. Luduena L, Alvarez V, Vázquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460:121–129. https://doi.org/10.1016/j.msea.2007.01.104

    Article  Google Scholar 

  80. Ma Y, Li L, Wang Y (2018) Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packag Technol Sci 31:739–746

    Article  Google Scholar 

  81. Ma P, Xu P, Chen M, Dong W, Cai X, Schmit P, Spoelstra AB, Lemstra PJ (2014) Structure-property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydr Polym 108:299–306

    Article  Google Scholar 

  82. Mahmoodi A, Ghodrati S, Khorasani M (2019) High-strength, low-permeable, and light-protective nanocomposite films based on a hybrid nanopigment and biodegradable PLA for food packaging applications. ACS Omega. https://doi.org/10.1021/acsomega.9b01731

    Article  Google Scholar 

  83. Mahmoudi Yayshahri A, Peighambardoust SJ, Shenavar A (2019) Impact, thermal, and biodegradation properties of high impact polystyrene/corn starch blends processed via melt extrusion. Polyolefins J 6:151–158

    Google Scholar 

  84. Marcos B, Sarraga C, Castellari M, Kappen F, Schennink G, Arnau J (2014) Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications. Food Pack Shelf Life 1:140–150. https://doi.org/10.1016/j.fpsl.2014.04.002

    Article  Google Scholar 

  85. Mcglashan S, Halley PJ (2003) Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym Int Malden 52(11):1767–1773. https://doi.org/10.1002/pi.1287

    Article  Google Scholar 

  86. Meira S, Zehetmeyer G, Werner J, Brandelli A (2016) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocol. https://doi.org/10.1016/j.foodhyd.2016.10.013

    Article  Google Scholar 

  87. Meira SMM, Zehetmeyer G, Werner JO, Brandelli A (2017) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocol 63:561–570

    Article  Google Scholar 

  88. Metzger C, Sanahuja S, Behrends L, Sängerlaub S, Lindner M, Briesen H (2018) Efficiently extracted cellulose nanocrystals and starch nanoparticles and techno-functional properties of films made thereof. Coatings 8(4):142. https://doi.org/10.3390/coatings8040142

    Article  Google Scholar 

  89. Meyer AR (2007) Bio-packages to raise organic food’s estimation. PLA bio-plastics trays for high-quality fresh foods and convenient foods under MAP. Fleischwirt Int 5:45–48

    Google Scholar 

  90. Michael G (2006) Increasing the gas transmission rate of a film comprising fullerenes. US20070042089A1

  91. Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79(4):M675–M684. https://doi.org/10.1111/1750-3841.12400

    Article  Google Scholar 

  92. Mousa M, Dong Y, Davies I (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65:225–254. https://doi.org/10.1080/00914037.2015.1103240

    Article  Google Scholar 

  93. Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging ACS Appl. Mater Interfaces 9:20132–20141

    Article  Google Scholar 

  94. Mueller R-J (2006) Biological degradation of synthetic polyesters-Enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128

    Article  Google Scholar 

  95. Muizniece-Brasava S (2006) Dabai draudzīga poli-β-hidroksibutirāta kompozītmateriāli pārtikas produktu iepakojumam. Promocijas darba kopsavilkums inženierzinātņu doktora zinātniskā grāda iegūšanai pārtikas zinātnē. Retrieved from http://llufb.llu.lv/dissertation-summary/food/kopsav-Sandra-Muizniece-Brasava.pdf

  96. Muller K, Bugnicourt E, Latorre M, Jorda BM, Echegoyen Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive, and solar energy fields. Nanomater 7:47. https://doi.org/10.3390/nano7040074

    Article  Google Scholar 

  97. Muller J, González-Martínez C, Chiralt A (2017) Poly (lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression molding. Eur Polym J 95:56–70

    Article  Google Scholar 

  98. Muppalla S, Kanatt S, Chawla S, Sharma A (2014) Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Pack Shelf Life. https://doi.org/10.1016/j.fpsl.2014.07.002

    Article  Google Scholar 

  99. Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96(1):233–239

    Article  Google Scholar 

  100. Nair N, Sekhar VC, Nampoothiri MK, Pandey A (2017) Biodegradation of biopolymers. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 739–755. https://doi.org/10.1016/B978-0-444-63662-1.00032-4

    Chapter  Google Scholar 

  101. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L (2016) Design of biodegradable blends based on PLA and PCL: from morphological, thermal, and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97e108

    Article  Google Scholar 

  102. Nova-Institut GmbH (2015) http://news.bio-based.eu/fast-growth-of-based-polymers-production/

  103. Orsuwan A, Shankar S, Wang L-F, Sothornvit R, Rhim J-W (2016) Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocol 60:476–485. https://doi.org/10.1016/j.foodhyd.2016.04.017

    Article  Google Scholar 

  104. Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydr Polym 127:282–290

    Article  Google Scholar 

  105. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. In: “ST26943”, 2nd International Conference on Agricultural and Food Engineering, CAFEi2014”. Agri Agri Sci Procedia 2:296– 303

  106. Oymaci P, Altinkaya SA (2016) Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocol 54:1–9

    Article  Google Scholar 

  107. Panaitescu DM, Frone AN, Chiulan I, Nicolae CA, Trusca R, Ghiurea M, Gabor AR, Mihailescu M, Casarica A, Lupescu I (2018) Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellul 25:5569–5591

    Article  Google Scholar 

  108. Panaitescu DM, Ionita ER, Nicolae CA, Gabor AR, Ionita MD, Trusca R, Lixandru BE, Codita I, Dinescu G (2018) Poly(3-hydroxybutyrate) modified by nanocellulose and plasma treatment for packaging applications. Polym (Basel) 10(11):1249

    Article  Google Scholar 

  109. Pandey S, Goswami G, Nanda K (2013) Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reaction studies. Sci Rep 3:2082. https://doi.org/10.1038/srep02082

    Article  Google Scholar 

  110. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5(4):497–526

    Article  Google Scholar 

  111. Pavlacky E, Ravindran N, Webster D (2012) Novel in situ synthesis in the preparation of ultraviolet-curable nanocomposite barrier coatings. J Appl Polym Sci. https://doi.org/10.1002/app.36716

    Article  Google Scholar 

  112. Peelman N, Ragaert P, Vandemoortele A, Verguldt E, Meulenaer B, Devlieghere F (2014) Use of biobased materials for modified atmosphere packaging of short and medium shelf-life food products. Innov Food Sci Emerg Technol 26:319–329. https://doi.org/10.1016/j.ifset.2014.06.007

    Article  Google Scholar 

  113. Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    Article  Google Scholar 

  114. PROGRESS (2013) Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work - Guidance for employers and health and safety practitioners. http://ec.europa.eu/progress

  115. Quero F, Cristina P, Vanessa C, Jorge L, Leonardo C, Melo F, Li Q, Eichhorn SJ, Enrione JI (2018) Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.04.059

    Article  Google Scholar 

  116. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  Google Scholar 

  117. Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier, and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617

    Article  Google Scholar 

  118. Rhim J-W, Hong S-I, Park H-M, Ng P (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822. https://doi.org/10.1021/jf060658h

    Article  Google Scholar 

  119. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  Google Scholar 

  120. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897

    Article  Google Scholar 

  121. Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15:212–226

    Article  Google Scholar 

  122. Rouhi J, Mahmud S, Naderi N, Ooi CHR, Mahmood MR (2013) Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res Lett 8:364

    Article  Google Scholar 

  123. Sabetzadeh M, Bagheri R, Masoomi M (2015) Study on ternary low-density polyethylene/linear low-density polyethylene/thermoplastic starch blend films. Carbohydr Polym 119:126–133

    Article  Google Scholar 

  124. Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT Food Sci Technol 76(Part A):33–39. https://doi.org/10.1016/j.lwt.2016.10.028

    Article  Google Scholar 

  125. Sanuja S, Agalya A, Umapathy M (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63(14):733–740

    Article  Google Scholar 

  126. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84

    Article  Google Scholar 

  127. Scaffaro R, Botta L, Maio A, Gallo G (2017) PLA graphene nanoplatelets nanocomposites: physical properties and release kinetics of an antimicrobial agent. Compos B Eng 109:138–146

    Article  Google Scholar 

  128. Shah A, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  Google Scholar 

  129. Shankar S, Rhim J-W (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocol 71:76–84

    Article  Google Scholar 

  130. Solaiman DKY, Ashby RD, Zerkowski JA, Krishnama A, Vasanthan N (2015) Control-release of antimicrobial sophorolipid employing different biopolymer matrices. Biocatal Agric Biotechnol 4:342–348

    Article  Google Scholar 

  131. Soni A, Kandeepan G, Mendiratta SK, Shukla V, Kumar A (2016) Development and characterization of essential oils incorporated carrageenan based edible film for packaging of chicken patties. Nutri Food Sci 46(1):82–95

    Article  Google Scholar 

  132. Sothornvit R, Rhim JW, Hong SI (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng 91(3):468–473

    Article  Google Scholar 

  133. Suin ABS, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439

    Article  Google Scholar 

  134. Svagan A, Runnsjö (Åkesson) A, Cárdenas M, Bulut S, Knudsen J, Risbo J, Plackett D (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromol 13:397–405. https://doi.org/10.1021/bm201438m

    Article  Google Scholar 

  135. Taghizadeh MT, Abbasi Z, Nasrollahzade Z (2012) Study of enzymatic degradation and water absorption of nanocomposites starch/polyvinyl alcohol and sodium montmorillonite clay. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2011.07.006

    Article  Google Scholar 

  136. Tang S, Wang Z, Li W, Li M, Deng Q, Wang Y, Li C, Chu PK (2019) Ecofriendly and biodegradable soybean protein isolate films incorporated with ZNO nanoparticles for food packaging. ACS Appl Bio Mater 2(5):2202–2207

    Article  Google Scholar 

  137. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohyd Polym 72:521–526. https://doi.org/10.1016/j.carbpol.2007.09.019

    Article  Google Scholar 

  138. Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    Article  Google Scholar 

  139. Turalija M, Bischof S, Budimir A, Gaan S (2016) Antimicrobial PLA films from environment-friendly additives. Compos B Eng 102:94–99

    Article  Google Scholar 

  140. Valapa B, Loganathan S, Pugazhenthi G, Thomas S, Varghese T (2017) An overview of polymer/clay nanocomposites. Clay-Polym Nanocomposit. https://doi.org/10.1016/B978-0-323-46153-5.00002-1

    Article  Google Scholar 

  141. Varaprasad K, Pariguana M, Raghavendra GM, Jayaramudu T, Sadiku R (2017) Development of biodegradable metal-oxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid. Mater Sci Eng C 70:85–93. https://doi.org/10.1016/j.msec.2016.08.053

    Article  Google Scholar 

  142. Vejdan A, Ojagh SM, Adeli A, Abdollahi M (2016) Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT-Food Sci Technol. https://doi.org/10.1016/j.lwt.2016.03.011

    Article  Google Scholar 

  143. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75:172–179

    Article  Google Scholar 

  144. Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behavior. Carbohydr Polym 69(1):41–49. https://doi.org/10.1016/j.carbpol.2006.08.025

    Article  Google Scholar 

  145. Wang X, Yang K, Wang Y (2004) Properties of starch blends with biodegradable polymers. J Macromol Sci C Polym Rev 43:385–409

    Article  Google Scholar 

  146. Wang Y, Zhang Q, Zhang C-l, Li P (2012) Characterization and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chem 132(1):419–427. https://doi.org/10.1016/j.foodchem.2011.11.015

    Article  Google Scholar 

  147. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2009) Wet-spun alginate/chitosan whiskers nanocomposite fibers: preparation, characterization, and release characteristic of the whiskers. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2009.09.031

    Article  Google Scholar 

  148. WiseGuyReports (2021) https://www.wiseguyreports.com/

  149. Woraprayote W, Kingcha Y, Amonphanpokin P, Kruenate J, Zendo T, Sonomoto K, Benjakul S, Visessanguan W (2013) Anti-listeria activity of poly (lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int J Food Microbiol 167:229–235. https://doi.org/10.1016/j.ijfoodmicro.2013.09.009

    Article  Google Scholar 

  150. Wu Z, Deng W, Luo J, Deng D (2019) Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles. Carbohydr Polym 205:447–455

    Article  Google Scholar 

  151. Xavier JR, Babusha ST, George J, Ramana KV (2015) Material properties and antimicrobial activity of polyhydroxybutyrate (PHB) film incorporated with vanillin. Appl Biochem Biotechnol 176:1498–1510

    Article  Google Scholar 

  152. Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse G, Zhang K, Li S, Jin P, Jin G (2018) Scale-up fabrication of biodegradable poly(butylene adipate-co-terephthalate)/organophilic–clay nanocomposite films for potential packaging applications. ACS Omega 3:1187–1196. https://doi.org/10.1021/acsomega.7b02062

    Article  Google Scholar 

  153. Xu Y, Rehmani N, Alsubaie L, Kim C, Sismour E, Scales A (2018) Tapioca starch active nanocomposite films and their antimicrobial effectiveness on ready-to-eat chicken meat. Food Pack Shelf Life 16:86–91. https://doi.org/10.1016/j.fpsl.2018.02.006

    Article  Google Scholar 

  154. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Effect of cellulose and lignin on disintegration, antimicrobial, and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368

    Article  Google Scholar 

  155. Yeo JCC, Muiruri JK, Thitsartarn W, Li Z, He C (2018) Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages, and applications. Mater Sci Eng C Mater Biol Appl 92:1092–1116

    Article  Google Scholar 

  156. Yoon SD, Park MH, Byun HS (2012) Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly (methyl methacrylate-co-acrylamide) particles. Carbohydr Polym 87(1):676–686

    Article  Google Scholar 

  157. Youssef A (2013) Polymer nanocomposites as a new trend for packaging applications. Polym-Plastics Technol Eng. https://doi.org/10.1080/03602559.2012.762673

    Article  Google Scholar 

  158. Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly (3-hydroxybutyrate-co-3-hydroxy valerate) nanocomposites. RSC Adv 4(104):59792–59802

    Article  Google Scholar 

  159. Yucel O, Unsal E, Cakmak M (2013) Temporal evolution of optical gradients during drying in cast polymer solutions. Macromol 46(17):7112–7117. https://doi.org/10.1021/ma401208r

    Article  Google Scholar 

  160. Zhang L, Liu A, Wang W, Ye R, Liu Y, Xiao J, Wang K (2017) Characterization of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: meat packaging application. Int J Food Sci Technol 52:1670–1679. https://doi.org/10.1111/ijfs.13441

    Article  Google Scholar 

  161. Zhang M, Rong M (2003) Performance improvement of polymers by the addition of grafted nano-inorganic particles. Chinese J Polym Sci (Eng Ed) 21:587–602

    Google Scholar 

  162. Zhao R, Torley P, Halley P (2008) Emerging biodegradable materials: Starch- and protein-based bio-nano composites. J Mater Sci 43:3058–3071. https://doi.org/10.1007/s10853-007-2434-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurunathan Kandeepan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kandeepan, G. Biodegradable Nanocomposite Packaging Films for Meat and Meat Products: A Review. J Package Technol Res 5, 143–166 (2021). https://doi.org/10.1007/s41783-021-00123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-021-00123-2

Keywords

  • Nanocomposite
  • Biodegradable
  • Biopolymer
  • Nanomaterial
  • Packaging
  • Meat