Skip to main content

Current Detection Techniques for Monitoring the Freshness of Meat-Based Products: A Review

Abstract

The quality and protection of meat is now a critical concern of the food industry worldwide, as it is related to economic development and public health. The high demand for meat processing has led the meat industry to monitor the freshness and quality of the products as expected by the consumers. It is essential to reduce the spoilage of meat products caused by chemical compounds in a manner that is sustainable and healthy. Therefore, the development and implementation of analytical methods for determining the quality and protection of meat have increased over the years. The present review was carried out using inclusion benchmarks to classify the previous articles published between 2010 and 2020, specifically related to the analytical method for detecting freshness in various meat samples. In this study, the research addresses the microbial spoilage of meat products, the chemical compounds that lead to the spoilage of the meat, and the methods used to quantify the meat’s freshness. A large section covers current techniques to detect meat freshness, including electrochemical, electronic nose and gas sensors, as well as optical biosensors. The concluding section outlines the status of current challenges, identifies current issues, and discusses future views.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ajaykumar VJ, Mandal PK (2020) Modern concept and detection of spoilage in meat and meat products. In: Meat quality analysis. Academic Press, pp 335–349. https://doi.org/10.1016/B978-0-12-819233-7.00018-5

  2. Albelda JA, Uzunoglu A, Santos GNC, Stanciu LA (2017) Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron 89(1):518–524. https://doi.org/10.1016/j.bios.2016.03.041

    Article  Google Scholar 

  3. Apetrei IM, Rodriguez-Mendez ML, Apetrei C, de Saja JA (2013) Fish freshness monitoring using an e-tongue based on polypyrrole modified screen-printed electrodes. IEEE Sens J 13(7):2548–2554. https://doi.org/10.1109/JSEN.2013.2253317

    Article  Google Scholar 

  4. Araque PE, de Vargas Sansalvador IMP, Ruiz NL, Erenas MM, Rodríguez MAC, Olmos AM (2018) Non-invasive oxygen determination in intelligent packaging using a smartphone. IEEE Sens J 18(11):4351–4357. https://doi.org/10.1109/JSEN.2018.2824404

    Article  Google Scholar 

  5. Biegańska M (2017) Shelf-life monitoring of food using time-temperature indicators (TTI) for application in intelligent packaging. Towaroznawcze Probl Jakości. https://doi.org/10.19202/j.cs.2017.02.07

    Article  Google Scholar 

  6. Câmara AKFI, de Souza Paglarini C, Vidal VAS, Dos Santos M, Pollonio MAR (2020) Meat products as prebiotic food carrier. In Advances in Food and Nutrition Research. Elsevier, Academic Press. 94:223–265. https://doi.org/10.1016/bs.afnr.2020.06.009

  7. Casaburi A, Piombino P, Nychas GJ, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 45:83–102. https://doi.org/10.1016/j.fm.2014.02.002

    Article  Google Scholar 

  8. Casali E, Berni P, Spisni A, Baricchi R, Pertinhez TA (2016) Hypoxanthine: a new paradigm to interpret the origin of transfusion toxicity. Blood Transfus 14(6):555. https://doi.org/10.2450/2015.0177-15

    Article  Google Scholar 

  9. Cellini A, Blasioli S, Biondi E, Bertaccini A, Braschi I, Spinelli F (2017) Potential applications and limitations of electronic nose devices for plant disease diagnosis. Sensors 17(11):2596. https://doi.org/10.3390/s17112596

    Article  Google Scholar 

  10. Cerveny J, Meyer JD, Hall PA (2009) Microbiological spoilage of meat and poultry products. In: Compendium of the microbiological spoilage of foods and beverages. Springer, New York, NY, pp 69–86, https://doi.org/10.1007/978-1-4419-0826-1_3

  11. Chen HZ, Zhang M, Bhandari B, Yang CH (2020) Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll 100:105438. https://doi.org/10.1016/j.foodhyd.2019.105438

    Article  Google Scholar 

  12. Chen J, Lu Y, Yan F, Wu Y, Huang D, Weng Z (2020) A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem 310:125922. https://doi.org/10.1016/j.foodchem.2019.125922

    Article  Google Scholar 

  13. Chen Q, Hui Z, Zhao J, Ouyang Q (2014) Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost–OLDA classification algorithm. LWT-Food Sci Technol 57(2):502–507. https://doi.org/10.1016/j.lwt.2014.02.031

    Article  Google Scholar 

  14. Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK (2020) Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2020.112788

    Article  Google Scholar 

  15. Cheng JH, Sun DW, Qu JH, Pu HB, Zhang XC, Song Z, Cheng X, Zhang H (2016) Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J Food Eng 182:9–17. https://doi.org/10.1016/j.jfoodeng.2016.02.004

    Article  Google Scholar 

  16. Choi CH, Lee DH, Kim YJ, Kim BS, Kim JH (2017) Prediction of beef freshness attributes using reflectance spectroscopy. Eng Agric Environ Food 10(4):243–248. https://doi.org/10.1016/j.eaef.2017.09.001

    Article  Google Scholar 

  17. Choi I, Lee JY, Lacroix M, Han J (2017) Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem 218:122–128. https://doi.org/10.1016/j.foodchem.2016.09.050

    Article  Google Scholar 

  18. Comi G (2017) Spoilage of meat and fish. In: The microbiological quality of food. Woodhead Publishing, pp 179–210. https://doi.org/10.1016/B978-0-08-100502-6.00011-X

  19. de Vargas-Sansalvador IMP, Erenas MM, Martínez-Olmos A, Mirza-Montoro F, Diamond D, Capitan-Vallvey LF (2020) Smartphone based meat freshness detection. Talanta 216:120985. https://doi.org/10.1016/j.talanta.2020.120985

    Article  Google Scholar 

  20. Dervisevic M, Custiuc E, Çevik E, Şenel M (2015) Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem 181:277–283. https://doi.org/10.1016/j.foodchem.2015.02.104

    Article  Google Scholar 

  21. Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F (2019) Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31(30):1806739. https://doi.org/10.1002/adma.201806739

    Article  Google Scholar 

  22. Dolmacı N, Çete S, Arslan F, Yaşar A (2012) An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artif Cells Blood Subst Biotechnol 40(4):275–279. https://doi.org/10.3109/10731199.2011.646410

    Article  Google Scholar 

  23. Dominguez-Aragon A, Olmedo-Martinez JA, Zaragoza-Contreras EA (2018) Colorimetric sensor based on a poly (ortho-phenylenediamine-co-aniline) copolymer for the monitoring of tilapia (Orechromis niloticus) freshness. Sens Actuators B Chem 259:170–176. https://doi.org/10.1016/j.snb.2017.12.020

    Article  Google Scholar 

  24. Dudnyk I, Janeček ER, Vaucher-Joset J, Stellacci F (2018) Edible sensors for meat and seafood freshness. Sens Actuators B Chem 259:1108–1112. https://doi.org/10.1016/j.snb.2017.12.057

    Article  Google Scholar 

  25. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  Google Scholar 

  26. ElMasry G, Nagai H, Moria K, Nakazawa N, Tsuta M, Sugiyama J, Okazaki E, Nakauchi S (2015) Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation–emission matrix. Talanta 143:145–156. https://doi.org/10.1016/j.talanta.2015.05.031

    Article  Google Scholar 

  27. ElMasry G, Nakazawa N, Okazaki E, Nakauchi S (2016) Non-invasive sensing of freshness indices of frozen fish and fillets using pretreated excitation–emission matrices. Sens Actuators B Chem 228:237–250. https://doi.org/10.1016/j.snb.2016.01.032

    Article  Google Scholar 

  28. Eom KH, Hyun KH, Lin S, Kim JW (2014) The meat freshness monitoring system using the smart RFID tag. Int J Distrib Sens Netw 10(7):591812. https://doi.org/10.1155/2014/591812

    Article  Google Scholar 

  29. Erkmen O, Bozoglu TF (2016) Food microbiology, 2 volume set: into practice. Wiley

    Book  Google Scholar 

  30. Ezati P, Tajik H, Moradi M (2019) Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sens Actuators B Chem 285:519–528. https://doi.org/10.1016/j.snb.2019.01.089

    Article  Google Scholar 

  31. Franco MR, da Cunha LR, Bianchi RF (2021) Janus principle applied to food safety: an active two-faced indicator label for tracking meat freshness. Sens Actuators B Chem 333:129466. https://doi.org/10.1016/j.snb.2021.129466

    Article  Google Scholar 

  32. Fu L, Wang A, Zhang H, Zhou Q, Chen F, Su W, Yu A, Liu JZ, Q, (2019) Analysis of chicken breast meat freshness with an electrochemical approach. J Electroanal Chem 855:113622. https://doi.org/10.1016/j.jelechem.2019.113622

    Article  Google Scholar 

  33. Fu Y, Wu S, Zhou H, Zhao S, Lan M, Huang J, Song X (2020) Carbon dots and CdTe QDs hybrid-based fluorometric probe for spermine detection. Ind Eng Chem Res 59(4):1723–1729. https://doi.org/10.1021/acs.iecr.9b06289

    Article  Google Scholar 

  34. Galgano F, Favati F, Bonadio M, Lorusso V, Romano P (2009) Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials. Food Res Int 42(8):1147–1152. https://doi.org/10.1016/j.foodres.2009.05.012

    Article  Google Scholar 

  35. Galstyan V, Ponzoni A, Kholmanov I, Natile MM, Comini E, Sberveglieri G (2020) Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sens Actuators B Chem 303:127217. https://doi.org/10.1016/j.snb.2019.127217

    Article  Google Scholar 

  36. Ge Y, Li Y, Bai Y, Yuan C, Wu C, Hu Y (2020) Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. Int J Biol Macromol 155:1296–1306. https://doi.org/10.1016/j.ijbiomac.2019.11.101

    Article  Google Scholar 

  37. Gil L, Barat JM, Baigts D, Martínez-Máñez R, Soto J, Garcia-Breijo E, Aristoy MC, Toldrá F, Llobet E (2011) Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chem 126(3):1261–1268. https://doi.org/10.1016/j.foodchem.2010.11.054

    Article  Google Scholar 

  38. Gil L, Barat JM, Baigts D, Martínez-Máñez R, Soto J, Garcia-Breijo E, Llobe E (2010) A potentiometric electronic tongue to monitor meat freshness. In: 2010 IEEE International Symposium on industrial electronics. IEEE, pp 390–395. https://doi.org/10.1109/ISIE.2010.5637687

  39. Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf 17(4):860–877. https://doi.org/10.1111/1541-4337.12343

    Article  Google Scholar 

  40. Hasan N, Ejaz N, Ejaz W, Kim H (2012) Meat and fish freshness inspection system based on odor sensing. Sensors 12(11):15542–15557. https://doi.org/10.3390/s121115542

    Article  Google Scholar 

  41. Hassoun A, Karoui R (2015) Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control 54:240–249. https://doi.org/10.1016/j.foodcont.2015.01.042

    Article  Google Scholar 

  42. Heetun I, Goburdhun D, Neetoo H (2015) Comparative microbiological evaluation of raw chicken from markets and chilled outlets of Mauritius. J Worlds Poul Res 5(1):10–18

    Google Scholar 

  43. Hernández DB, Marty JL, Guerrero RM (2017) Smartphone as a portable detector, analytical device, or instrument interface. In: Smartphones from an applied research perspective. IntechOpen, p 73. https://doi.org/10.5772/intechopen.69678

  44. Hong X, Wang J, Hai Z (2012) Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sens Actuators B Chem 161(1):381–389. https://doi.org/10.1016/j.snb.2011.10.048

    Article  Google Scholar 

  45. Huang Q, Chen Q, Li H, Huang G, Ouyang Q, Zhao J (2015) Non-destructively sensing pork’s freshness indicator using near infrared multispectral imaging technique. J Food Eng 154:69–75. https://doi.org/10.1016/j.jfoodeng.2015.01.006

    Article  Google Scholar 

  46. Huang X, Xu D, Chen J, Liu J, Li Y, Song J, Ma X, Guo J (2018) Smartphone-based analytical biosensors. Analyst 143(22):5339–5351. https://doi.org/10.1039/C8AN01269E

    Article  Google Scholar 

  47. Jeyosanta I, Hermina GK, Jamila P (2018) Quality Indicator Hypoxanthine compared with other volatile Amine indicators of sea foods stored in refrigerator. Asian J Anim Vet Adv 13(2):144–154. https://doi.org/10.3923/ajava.2018.144.154

    Article  Google Scholar 

  48. Itoh D, Sassa F, Nishi T, Kani Y, Murata M, Suzuki H (2012) Droplet-based microfluidic sensing system for rapid fish freshness determination. Sens Actuators B Chem 171–172:619–626. https://doi.org/10.1016/j.snb.2012.05.043

    Article  Google Scholar 

  49. Jairath G, Singh PK, Dabur RS, Rani M, Chaudhari M (2015) Biogenic amines in meat and meat products and its public health significance: a review. J Food Sci Technol 52(11):6835–6846. https://doi.org/10.1007/s13197-015-1860-x

    Article  Google Scholar 

  50. Jiang G, Hou X, Zeng X, Zhang C, Wu H, Shen G, Li S, Luo Q, Li M, Liu X, Chen A (2020) Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 143:359–372. https://doi.org/10.1016/j.ijbiomac.2019.12.024

    Article  Google Scholar 

  51. Johnson J, Atkin D, Lee K, Sell M, Chandra S (2019) Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Sci 150:40–46. https://doi.org/10.1016/j.meatsci.2018.12.002

    Article  Google Scholar 

  52. Joo ST, Kim GD, Hwang YH, Ryu YC (2013) Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci 95(4):828–836. https://doi.org/10.1016/j.meatsci.2013.04.044

    Article  Google Scholar 

  53. Kanchi S, Sabel MI, Mdluli PS (2018) Inamuddin and K. Bisetty. Biosens Bioelectron 102:136–149. https://doi.org/10.1016/j.bios.2017.11.021

    Article  Google Scholar 

  54. Kaneki N, Miura T, Shimada K, Tanaka H, Ito S, Hotori K, Akasaka C, Ohkubo S, Asano Y (2004) Measurement of pork freshness using potentiometric sensor. Talanta 62(1):215–219. https://doi.org/10.1016/j.talanta.2003.07.002

    Article  Google Scholar 

  55. Karakaya D, Ulucan O, Turkan M (2020) Electronic nose and its applications: a survey. Int J Autom Comput. https://doi.org/10.1007/s11633-019-1212-9

    Article  Google Scholar 

  56. Kerry JP, O’gradyHogan MNSA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74(1):113–130. https://doi.org/10.1016/j.meatsci.2006.04.024

    Article  Google Scholar 

  57. Kim YA, Jung SW, Park HR, Chung KY, Lee SJ (2012) Application of a prototype of microbial time temperature indicator (TTI) to the prediction of ground beef qualities during storage. Food Sci Anim Resour 32(4):448–457. https://doi.org/10.5851/kosfa.2012.32.4.448

    Article  Google Scholar 

  58. Kimiya T, Sivertsen AH, Heia K (2013) VIS/NIR spectroscopy for non-destructive freshness assessment of Atlantic salmon (Salmo salar L.) fillets. J Food Eng 116(3):758–764. https://doi.org/10.1016/j.jfoodeng.2013.01.008

    Article  Google Scholar 

  59. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707. https://doi.org/10.1021/ac202878q

    Article  Google Scholar 

  60. Kou L, Luo Y, Park E, Turner ER, Barczak A, Jurick WM II (2014) Temperature abuse timing affects the rate of quality deterioration of commercially packaged ready-to-eat baby spinach. Part I: Sensory analysis and selected quality attributes. Postharvest Biol Technol 91:96–103. https://doi.org/10.1016/j.postharvbio.2013.12.025

    Article  Google Scholar 

  61. Kuswandi B, Nurfawaidi A (2017) On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 82:91–100. https://doi.org/10.1016/j.foodcont.2017.06.028

    Article  Google Scholar 

  62. Kuswandi B, Restyana A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1):184–189. https://doi.org/10.1016/j.foodcont.2011.10.008

    Article  Google Scholar 

  63. Lawal AT, Adeloju SB (2012) Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 100:217–228. https://doi.org/10.1016/j.talanta.2012.07.085

    Article  Google Scholar 

  64. Lee EJ, Shin HS (2019) Development of a freshness indicator for monitoring the quality of beef during storage. Food Sci Biotechnol 28(6):1899–1906. https://doi.org/10.1007/s10068-019-00633-5

    Article  Google Scholar 

  65. Lee H, Kim MS, Lee WH, Cho BK (2018) Determination of the total volatile basic nitrogen (TVB-N) content in pork meat using hyperspectral fluorescence imaging. Sens Actuators B Chem 259:532–539. https://doi.org/10.1016/j.snb.2017.12.102

    Article  Google Scholar 

  66. Lee K, Baek S, Kim D, Seo J (2019) A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis. Food Packag Shelf Life 19:40–46. https://doi.org/10.1016/j.fpsl.2018.11.016

    Article  Google Scholar 

  67. Lee SA, Yang C (2014) A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14(16):3056–3063. https://doi.org/10.1039/C4LC00523F

    Article  Google Scholar 

  68. Li H, Sun X, Pan W, Kutsanedzie F, Zhao J, Chen Q (2016) Feasibility study on nondestructively sensing meat’s freshness using light scattering imaging technique. Meat Sci 119:102–109. https://doi.org/10.1016/j.meatsci.2016.04.031

    Article  Google Scholar 

  69. Li Y, Tang X, Shen Z, Dong J (2019) Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chem 287:126–132. https://doi.org/10.1016/j.foodchem.2019.01.213

    Article  Google Scholar 

  70. Liang Z, Tian F, Yang S, Zhang C, Sun H, Liu T (2018) Study on interference suppression algorithms for electronic noses: a review. Sensors 18(4):1179. https://doi.org/10.3390/s18041179

    Article  Google Scholar 

  71. Lisak G, Cui J, Bobacka J (2015) based microfluidic sampling for potentiometric determination of ions. Sens Actuators B Chem 207:933–939. https://doi.org/10.1016/j.snb.2014.07.044

    Article  Google Scholar 

  72. Liu B, Xu H, Zhao H, Liu W, Zhao L, Li Y (2017) Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohyd Polym 157:842–849. https://doi.org/10.1016/j.carbpol.2016.10.067

    Article  Google Scholar 

  73. Liu R, Warner RD, Zhou G, Zhang W (2018) Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality. Meat Sci 144:135–148. https://doi.org/10.1016/j.meatsci.2018.04.027

    Article  Google Scholar 

  74. Liu T, Wang W, Jian D, Li J, Ding H, Yi D, Liu F, Wang S (2019) Quantitative remote and on-site Hg2+ detection using the handheld smartphone based optical fiber fluorescence sensor (SOFFS). Sens Actuators B Chem 301:127168. https://doi.org/10.1016/j.snb.2019.127168

    Article  Google Scholar 

  75. Lv R, Huang X, Aheto JH, Mu L, Tian X (2018) Analysis of fish spoilage by gas chromatography–mass spectrometry and electronic olfaction bionic system. J Food Saf 38(6):12557. https://doi.org/10.1111/jfs.12557

    Article  Google Scholar 

  76. Mah JH, Park YK, Jin YH, Lee JH, Hwang HJ (2019) Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 8(2):85. https://doi.org/10.3390/foods8020085

    Article  Google Scholar 

  77. Martinez W, Phillips ST, Carrilho E (2008) SWT III, H. Sindi and GM Whitesides. Anal Chem 80:3699–3707

    Article  Google Scholar 

  78. Mataragas M, Bikouli VC, Korre M, Sterioti A, Skandamis PN (2019) Development of a microbial Time Temperature Indicator for monitoring the shelf life of meat. Innov Food Sci Emerg Technol 52:89–99. https://doi.org/10.1016/j.ifset.2018.11.003

    Article  Google Scholar 

  79. Matindoust S, Farzi A, Nejad MB, Abadi MHS, Zou Z, Zheng LR (2017) Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. J Mater Sci: Mater Electron 28(11):7760–7768. https://doi.org/10.1007/s10854-017-6471-z

    Article  Google Scholar 

  80. Mohareb F, Papadopoulou O, Panagou E, Nychas GJ, Bessant C (2016) Ensemble-based support vector machine classifiers as an efficient tool for quality assessment of beef fillets from electronic nose data. Anal Methods 8(18):3711–3721. https://doi.org/10.1039/C6AY00147E

    Article  Google Scholar 

  81. Moradi M, Tajik H, Almasi H, Forough M, Ezati P (2019) A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohyd Polym 222:115030. https://doi.org/10.1016/j.carbpol.2019.115030

    Article  Google Scholar 

  82. Musatov VY, Sysoev VV, Sommer M, Kiselev I (2010) Assessment of meat freshness with metal oxide sensor microarray electronic nose: a practical approach. Sens Actuators B Chem 144(1):99–103. https://doi.org/10.1016/j.snb.2009.10.040

    Article  Google Scholar 

  83. Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food—existing and emerging approaches. J Food Sci 75(7):139–150. https://doi.org/10.1111/j.1750-3841.2010.01774.x

    Article  Google Scholar 

  84. Nuin M, Alfaro B, Cruz Z, Argarate N, George S, Le Marc Y, Olley J, Pin C (2008) Modelling spoilage of fresh turbot and evaluation of a time–temperature integrator (TTI) label under fluctuating temperature. Int J Food Microbiol 127(3):193–199. https://doi.org/10.1016/j.ijfoodmicro.2008.04.010

    Article  Google Scholar 

  85. Nychas GJE, Skandamis PN, Tassou CC, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78(1–2):77–89. https://doi.org/10.1016/j.meatsci.2007.06.020

    Article  Google Scholar 

  86. Önal A (2007) A review: CURRENT analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486. https://doi.org/10.1016/j.foodchem.2006.08.028

    Article  Google Scholar 

  87. Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J (2018) Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal Chem 98:128–142. https://doi.org/10.1016/j.trac.2017.11.001

    Article  Google Scholar 

  88. Parkash D, Kundu T, Kaur P (2012) The RFID technology and its applications: a review. Int J Electronics 2:109–120

    Google Scholar 

  89. Patel HK (2014) The electronic nose: artificial olfaction technology. Springer India, New Delhi

    Book  Google Scholar 

  90. Pearce JM (2013) Open-source lab: how to build your own hardware and reduce research costs. Newnes

    Google Scholar 

  91. Pothakos V, Devlieghere F, Villani F, Björkroth J, Ercolini D (2015) Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci 109:66–74. https://doi.org/10.1016/j.meatsci.2015.04.014

    Article  Google Scholar 

  92. Qiu X, Itoh D, Satake T, Suzuki H (2016) Microdevice with integrated multi-enzyme sensors for the measurement of pork freshness. Sens Actuators B Chem 235:535–540. https://doi.org/10.1016/j.snb.2016.05.074

    Article  Google Scholar 

  93. Remenant B, Jaffres E, Dousset X, Pilet MF, Zagorec M (2015) Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiol 45:45–53. https://doi.org/10.1016/j.fm.2014.03.009

    Article  Google Scholar 

  94. Rezazadeh M, Seidi S, Lid M, Pedersen-Bjergaard S, Yamini Y (2019) The modern role of smartphones in analytical chemistry. TrAC, Trends Anal Chem 118:548–555. https://doi.org/10.1016/j.trac.2019.06.019

    Article  Google Scholar 

  95. Ruiz-Capillas C, Herrero AM (2019) Impact of biogenic amines on food quality and safety. Foods 8(2):62. https://doi.org/10.3390/foods8020062

    Article  Google Scholar 

  96. Sadeghi S, Fooladi E, Malekaneh M (2014) A nanocomposite/crude extract enzyme-based xanthine biosensor. Anal Biochem 464:51–59. https://doi.org/10.1016/j.ab.2014.07.013

    Article  Google Scholar 

  97. Salinas Y, Ros-Lis JV, Vivancos JL, Martínez-Máñez R, Aucejo S, Herranz N, Lorente I, Garcia E (2014) A chromogenic sensor array for boiled marinated turkey freshness monitoring. Sens Actuators B Chem 190:326–333. https://doi.org/10.1016/j.snb.2013.08.075

    Article  Google Scholar 

  98. Sans P, Combris P (2015) World meat consumption patterns: an overview of the last fifty years (1961–2011). Meat Sci 109:106–111. https://doi.org/10.1016/j.meatsci.2015.05.012

    Article  Google Scholar 

  99. Seddaoui N, Amine A (2021) Smartphone-based competitive immunoassay for quantitative on-site detection of meat adulteration. Talanta 230:122346. https://doi.org/10.1016/j.talanta.2021.122346

    Article  Google Scholar 

  100. Semeano AT, Maffei DF, Palma S, Li RW, Franco BD, Roque AC, Gruber J (2018) Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control 89:72–76. https://doi.org/10.1016/j.foodcont.2018.01.025

    Article  Google Scholar 

  101. Shi Y, Li Z, Shi J, Zhang F, Zhou X, Li Y, Holmes M, Zhang W, Zou X (2018) Titanium dioxide-polyaniline/silk fibroin microfiber sensor for pork freshness evaluation. Sens Actuators B Chem 260:465–474. https://doi.org/10.1016/j.snb.2018.01.078

    Article  Google Scholar 

  102. Simonin H, Duranton F, De Lamballerie M (2012) New insights into the high-pressure processing of meat and meat products. Compr Rev Food Sci Food Saf 11(3):285–306. https://doi.org/10.1111/j.1541-4337.2012.00184.x

    Article  Google Scholar 

  103. Singh BP, Shukla V, Lalawmpuii H, Kumar S (2018) Indicator sensors for monitoring meat quality: A. J Pharmacogn Phytochem 7(4):809–812

    Google Scholar 

  104. Smolander M (2003) The use of freshness indicators in packaging. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing, pp 127–143

    Chapter  Google Scholar 

  105. Smolander M (2008) Freshness indicators for food packaging. Smart packaging technologies for fast moving consumer goods. Wiley Publisher, pp 111–127

    Chapter  Google Scholar 

  106. Song BY, Zhang M, Teng Y, Zhang XF, Deng ZP, Huo LH, Gao S (2020) Highly selective ppb-level H2S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: mesoporous SnO2 hierarchical architectures derived from waste scallion root. Sens Actuators B Chem 307:127662. https://doi.org/10.1016/j.snb.2020.127662

    Article  Google Scholar 

  107. Stradiotto NR, Yamanaka H, Zanoni MVB (2003) Electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc 14(2):159–173. https://doi.org/10.1590/S0103-50532003000200003

    Article  Google Scholar 

  108. Sultangazin A, Kusmangaliyev J, Aitkulov A, Akilbekova D, Olivero M, Tosi D (2017) Design of a smartphone plastic optical fiber chemical sensor for hydrogen sulfide detection. IEEE Sens J 17(21):6935–6940. https://doi.org/10.1109/JSEN.2017.2752717

    Article  Google Scholar 

  109. Taheri-Garavand A, Fatahi S, Omid M, Makino Y (2019) Meat quality evaluation based on computer vision technique: a review. Meat Sci 156:183–195. https://doi.org/10.1016/j.meatsci.2019.06.002

    Article  Google Scholar 

  110. Tang X, Yu Z (2020) Rapid evaluation of chicken meat freshness using gas sensor array and signal analysis considering total volatile basic nitrogen. Int J Food Prop 23(1):297–305. https://doi.org/10.1080/10942912.2020.1716797

    Article  Google Scholar 

  111. Telsnig D, Kalcher K, Leitner A, Ortner A (2013) Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes. Electroanalysis 25(1):47–50. https://doi.org/10.1002/elan.201200378

    Article  Google Scholar 

  112. Teng Y, Chen C, Zhou C, Zhao H, Lan M (2010) Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci China Chem 53(12):2581–2586. https://doi.org/10.1007/s11426-010-4038-4

    Article  Google Scholar 

  113. Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM (2013) Development of electrochemical biosensor with nano-interface for xanthine sensing—a novel approach for fish freshness estimation. Food Chem 139(1–4):963–969. https://doi.org/10.1016/j.foodchem.2013.02.008

    Article  Google Scholar 

  114. Timsorn K, Thoopboochagorn T, Lertwattanasakul N, Wongchoosuk C (2016) Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosyst Eng 151:116–125. https://doi.org/10.1016/j.biosystemseng.2016.09.005

    Article  Google Scholar 

  115. Torres AC, Ghica ME, Brett CM (2013) Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes. Anal Bioanal Chem 405(11):3813–3822. https://doi.org/10.1007/s00216-012-6631-1

    Article  Google Scholar 

  116. Umuhumuza LC, Sun X (2011) Rapid detection of pork meat freshness by using L-cysteine-modified gold electrode. Eur Food Res Technol 232(3):425–431. https://doi.org/10.1007/s00217-010-1405-5

    Article  Google Scholar 

  117. Vanegas DC, Gomes C, McLamore ES (2014) Xanthine oxidase biosensor for monitoring meat spoilage. In: Smart biomedical and physiological sensor technology XI. International Society for Optics and Photonics 9107: 91070. https://doi.org/10.1117/12.2050489

  118. Verma P, Yadava RDS (2015) Polymer selection for SAW sensor array based electronic noses by fuzzy c-means clustering of partition coefficients: Model studies on detection of freshness and spoilage of milk and fish. Sens Actuators B Chem 209:751–769. https://doi.org/10.1016/j.snb.2014.11.149

    Article  Google Scholar 

  119. Wang X, Zhao M, Ju R, Song Q, Hua D, Wang C, Chen T (2013) Visualizing quantitatively the freshness of intact fresh pork using acousto-optical tunable filter-based visible/near-infrared spectral imagery. Comput Electron Agric 99:41–53. https://doi.org/10.1016/j.compag.2013.08.025

    Article  Google Scholar 

  120. Wang Y, Deng M, Deng B, Ye L, Fei X, Huang Z (2019) Study on the diagnosis of gout with xanthine and hypoxanthine. J Clin Lab Anal 33(5):22868. https://doi.org/10.1002/jcla.22868

    Article  Google Scholar 

  121. Wasilewski T, Migoń D, Gębicki J, Kamysz W (2010) Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Anal Chim Acta 1077:14–29. https://doi.org/10.1016/j.aca.2019.05.024

    Article  Google Scholar 

  122. Weng X, Luan X, Kong C, Chang Z, Li Y, Zhang S, Al-Majeed S, Xiao Y (2020) A comprehensive method for assessing meat freshness using fusing electronic nose, computer vision, and artificial tactile technologies. J Sens 2020:1–14. https://doi.org/10.1155/2020/8838535

    Article  Google Scholar 

  123. Wijaya DR, Sarno R, Zulaika E, Sabila SI (2017) Development of mobile electronic nose for beef quality monitoring. Proc Comput Sci 124:728–735. https://doi.org/10.1016/j.procs.2017.12.211

    Article  Google Scholar 

  124. Wu L, Pu H, Sun DW (2019) Novel techniques for evaluating freshness quality attributes of fish: a review of recent developments. Trends Food Sci Technol 83:259–273. https://doi.org/10.1016/j.tifs.2018.12.002

    Article  Google Scholar 

  125. Wu X, Hou L, Lin X, Xie Z (2019) Application of novel nanomaterials for chemo-and biosensing of algal toxins in shellfish and water. In: Novel nanomaterials for biomedical, environmental and energy applications. Elsevier, pp 353–414. https://doi.org/10.1016/B978-0-12-814497-8.00012-6

  126. Xu G, Cheng C, Yuan W, Liu Z, Zhu L, Li X, Lu Y, Chen Z, Liu J, Cui Z, Liu J (2019) Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens Actuators B Chem 297:126743. https://doi.org/10.1016/j.snb.2019.126743

    Article  Google Scholar 

  127. Yazdanparast S, Benvidi A, Abbasi S, Rezaeinasab M (2019) Enzyme-based ultrasensitive electrochemical biosensor using poly (l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchem J 149:104000. https://doi.org/10.1016/j.microc.2019.104000

    Article  Google Scholar 

  128. Ye X, Iino K, Zhang S, Oshita S (2015) Nondestructive monitoring of chicken meat freshness using hyperspectral imaging technology. In: IEEE Xplore Digital Library: In 2015 7th Workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), pp 1–4, https://doi.org/10.1109/WHISPERS.2015.8075445

  129. Yoshida CM, Maciel VBV, Mendonça MED, Franco TT (2014) Chitosan biobased and intelligent films: Monitoring pH variations. LWT-Food Sci Technol 55(1):83–89. https://doi.org/10.1016/j.lwt.2013.09.015

    Article  Google Scholar 

  130. Yu Z, Jia H, Liu W, Li N, Wang J, Song Y (2019) Design of fluorescent probes, Tb3+-dtpa-2A, Tb3+-dtpa-2C and Tb3+-dtpa-AC, based on DNA single strand base sorting principle for xanthine detection. J Photochem Photobiol, A 383:111970. https://doi.org/10.1016/j.jphotochem.2019.111970

    Article  Google Scholar 

  131. Zagorec M, Champomier-Vergès MC (2017) Meat microbiology and spoilage. In: Lawrie’s Meat Science. Woodhead Publishing, pp 187–203. https://doi.org/10.1016/B978-0-08-100694-8.00006-6

  132. Zeng P, Chen X, Qin YR, Zhang YH, Wang XP, Wang JY, Ning ZX, Ruan QJ, Zhang YS (2019) Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Res Int 126:108604. https://doi.org/10.1016/j.foodres.2019.108604

    Article  Google Scholar 

  133. Zhai X, Shi J, Zou X, Wang S, Jiang C, Zhang J, Huang X, Zhang W, Holmes M (2017) Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll 69:308–317. https://doi.org/10.1016/j.foodhyd.2017.02.014

    Article  Google Scholar 

  134. Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M (2019) Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 272:306–312. https://doi.org/10.1016/j.foodchem.2018.08.041

    Article  Google Scholar 

  135. Zhang P, Baranyi J, Tamplin M (2015) Interstrain interactions between bacteria isolated from vacuum-packaged refrigerated beef. Appl Environ Microbiol 81(8):2753–2761. https://doi.org/10.1128/AEM.03933-14

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the researchers involved in this project. The work was supported by a grant from Universiti Malaysia Sabah, UMSGreat scheme (Grant No: GUG0434-1/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobun Rovina.

Ethics declarations

Conflict of Interest

The contributors do not have a conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erna, K.H., Rovina, K. & Mantihal, S. Current Detection Techniques for Monitoring the Freshness of Meat-Based Products: A Review. J Package Technol Res 5, 127–141 (2021). https://doi.org/10.1007/s41783-021-00120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-021-00120-5

Keywords

  • Freshness
  • Meat
  • Quality control
  • Analytical method
  • Nanomaterials