Skip to main content
Log in

Thalamic Grey Matter Volume Changes After Sleep Deprivation in Rats

  • Original Article
  • Published:
Sleep and Vigilance Aims and scope Submit manuscript

Abstract

The modern life style demands a prolonged wakefulness despite the mounting evidences that deficit in adequate amount and quality of sleep impairs the wellbeing including attention, executive functions, working memory and other general functioning of the body. The thalamus plays a key role in mediating sleep–wakefulness through its intrinsic as well as extrinsic network connection with brainstem and cortex through ascending reticular activating system. In the present study, we examined the effects of 24, 48 and 72 h sleep deprivation in three separate groups of male Wistar rats on the thalamic grey matter volume. The three groups of rats (n = 18(6 × 3)) were sleep-deprived for three different durations, i.e. 24, 48 and 72 h using modified multiple platform method. Brain imaging was done using 7 T small animal MR scanner before and after sleep deprivation. From the acquired images, the total volume of the thalamus was calculated. The volume of the hippocampus was taken as reference. The grey matter volume of the thalamus showed a decreasing trend after sleep deprivation in all three groups of rats. Though the decrease in the thalamic volume was not statistically significant, the present study is the first animal MRI experiment to report the decrease in the thalamic grey matter volume after sleep deprivation which supports the similar findings in humans. The synaptic homeostatic hypothesis that cortical excitatory synapses should increase in size after wake and decrease after sleep is not evident in thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

The datasets generated during analysis used in the current study are available from the corresponding author on reasonable request.

References

  1. Elliott AS, Huber JD, O’Callaghan JP, Rosen CL, Miller DB. A review of sleep deprivation studies evaluating the brain transcriptome. Springerplus. 2014;3:728. https://doi.org/10.1186/2193-1801-3-728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cirelli C. Cellular consequences of sleep deprivation in the brain. Sleep Med Rev. 2006;10(5):307–21. https://doi.org/10.1016/j.smrv.2006.04.001.

    Article  PubMed  Google Scholar 

  3. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, Walker MP. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404–18. https://doi.org/10.1038/nrn.2017.55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience. 2015;309:173–90. https://doi.org/10.1016/j.neuroscience.2015.04.053.

    Article  PubMed  CAS  Google Scholar 

  5. Smith ME, McEvoy LK, Gevins A. The impact of moderate sleep loss on neurophysiologic signals during working-memory task performance. Sleep. 2002;25(7):784–94.

    Article  Google Scholar 

  6. Nilsson JP, Söderström M, Karlsson AU, Lekander M, Akerstedt T, Lindroth NE, Axelsson J. Less effective executive functioning after one night’s sleep deprivation. J Sleep Res. 2005;14(1):1–6. https://doi.org/10.1111/j.1365-2869.2005.00442.x.

    Article  PubMed  Google Scholar 

  7. Basner M, Rao H, Goel N, Dinges DF. Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol. 2013;23(5):854–63. https://doi.org/10.1016/j.conb.2013.02.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kumar R, Farahvar S, Ogren JA, Macey PM, Thompson PM, Woo MA, Harper RM, et al. Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea. NeuroImage Clin. 2014;4:383–91. https://doi.org/10.1016/j.nicl.2014.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Branger P, Arenaza-Urquijo EM, Tomadesso C, Mézenge F, André C, de Flores R, Mutlu J, de La Sayette V, Eustache F, Chételat G, Rauchs G. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol Aging. 2016;41:107–14. https://doi.org/10.1016/j.neurobiolaging.2016.02.009.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar R, Birrer BVX, Macey PM, Woo MA, Gupta RK, Yan-Go FL, Harper RM. Reduced mammillary body volume in patients with obstructive sleep apnea. Neurosci Lett. 2008;438(3):330–4. https://doi.org/10.1016/j.neulet.2008.04.071.

    Article  PubMed  CAS  Google Scholar 

  11. Noh HJ, Joo EY, Kim ST, Yoon SM, Koo DL, Kim D, Hong SB, et al. The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. J Clin Neurol (Seoul, Korea). 2012;8(2):130–8. https://doi.org/10.3988/jcn.2012.8.2.130.

    Article  Google Scholar 

  12. Riemann D, Voderholzer U, Spiegelhalder K, Hornyak M, Buysse DJ, Nissen C, Hennig J, Perlis ML, van Elst LT, Feige B. Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep. 2007;30(8):955–8. https://doi.org/10.1093/sleep/30.8.955.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu C, Kong X-Z, Liu X, Zhou R, Wu B. Long-term total sleep deprivation reduces thalamic gray matter volume in healthy men. NeuroReport. 2014;25(5):320–3. https://doi.org/10.1097/WNR.0000000000000091.

    Article  PubMed  Google Scholar 

  14. Shao Y, Wang L, Ye E, Jin X, Ni W, Yang Y, Yang Z, et al. Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI. PLoS ONE. 2013;8(10):e78830. https://doi.org/10.1371/journal.pone.0078830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse. 2015;69(1):15–25.

    Article  CAS  Google Scholar 

  16. Guzmán-Marín R, Suntsova N, Stewart DR, Gong H, Szymusiak R, McGinty D. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol. 2003;549(2):563–71. https://doi.org/10.1113/jphysiol.2003.041665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dempsey EW, Morison RS. The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. Am J Physiol Legacy Content. 1941;135(2):293–300. https://doi.org/10.1152/ajplegacy.1941.135.2.293.

    Article  Google Scholar 

  18. Contreras D, Steriade M. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol. 1996;490:159–79. https://doi.org/10.1113/jphysiol.1996.sp021133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57(1):260–73. https://doi.org/10.1152/jn.1987.57.1.260.

    Article  PubMed  CAS  Google Scholar 

  20. De Andrés I, Garzón M, Reinoso-Suárez F. Functional anatomy of non-REM sleep. Front Neurol. 2011;2:70. https://doi.org/10.3389/fneur.2011.00070.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Sci (N Y). 1993;262(5134):679–85. https://doi.org/10.1126/science.8235588.

    Article  CAS  Google Scholar 

  22. Ren S, Wang Y, Yue F, Cheng X, Dang R, Hu ZQ. The paraventricular thalamus is a critical thalamic area for wakefulness. Sci (N Y). 2018;362(6413):429–34. https://doi.org/10.1126/science.aat2512.

    Article  CAS  Google Scholar 

  23. Sriji SN, Akhtar N, Mallick HN. Mediodorsal thalamus lesion increases paradoxical sleep in rats. Sleep Sci. 2021;14(1):33–8. https://doi.org/10.5935/1984-0063.20190155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Percheron G. The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Zeitschr Fur Neurol. 1973;205(1):1–13. https://doi.org/10.1007/BF00315956.

    Article  CAS  Google Scholar 

  25. Schmahmann JD. Vascular syndromes of the thalamus. Stroke. 2003;34(9):2264–78.

    Article  Google Scholar 

  26. Hermann DM, Siccoli M, Brugger P, Wachter K, Mathis J, Achermann P, Bassetti CL. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke. 2008;39(1):62–8. https://doi.org/10.1161/STROKEAHA.107.494955.

    Article  PubMed  Google Scholar 

  27. Honig A, Eliahou R, Eichel R, et al. Acute bithalamic infarct manifesting as sleep-like coma: a diagnostic challenge. J Clin Neurosci. 2016;34:81–5.

    Article  Google Scholar 

  28. Machado RB, Hipólide DC, Benedito-Silva AA, Tufik S. Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res. 2004;1004(1–2):45–51. https://doi.org/10.1016/j.brainres.2004.01.019.

    Article  PubMed  CAS  Google Scholar 

  29. Valdés-Hernández PA, Sumiyoshi A, Nonaka H, Haga R, Aubert-Vásquez E, Ogawa T, Kawashima R, et al. An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front Neuroinform. 2011. https://doi.org/10.3389/fninf.2011.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sumiyoshi A, Taki Y, Nonaka H, Takeuchi H, Kawashima R. Regional gray matter volume increases following 7 days of voluntary wheel running exercise: a longitudinal VBM study in rats. Neuroimage. 2014;98:82–90. https://doi.org/10.1016/j.neuroimage.2014.04.075.

    Article  PubMed  Google Scholar 

  31. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–51. https://doi.org/10.1016/j.neuroimage.2005.02.018.

    Article  PubMed  Google Scholar 

  32. Anderson RJ, Cook JJ, Delpratt N, Nouls JC, Gu B, McNamara JO, Avants BB, Johnson GA, Badea A. Small Animal multivariate brain analysis (SAMBA)—a high throughput pipeline with a validation framework. Neuroinformatics. 2019;17(3):451–72. https://doi.org/10.1007/s12021-018-9410-0.

    Article  PubMed  Google Scholar 

  33. Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. Waxholm space atlas of the sprague Dawley rat brain. Neuroimage. 2014;97:374–86. https://doi.org/10.1016/j.neuroimage.2014.04.001.

    Article  PubMed  Google Scholar 

  34. Grahnstedt S, Ursin R. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep. Behav Brain Res. 1985;18(3):233–9. https://doi.org/10.1016/0166-4328(85)90031-2.

    Article  PubMed  CAS  Google Scholar 

  35. Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519–28.

    Article  Google Scholar 

  36. Johnson LC, Chernik DA. Sedative-hypnotics and human performance. Psychopharmacology. 1982;76(2):101–13. https://doi.org/10.1007/bf00435262.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Redmond D, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–52. https://doi.org/10.1046/j.1365-2869.2000.00225.x.

    Article  PubMed  CAS  Google Scholar 

  38. Guzman-Marin R, Bashir T, Suntsova N, Szymusiak R, McGinty D. Adult hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat. Neuroscience. 2007;148(1):325–33. https://doi.org/10.1016/j.neuroscience.2007.05.030.

    Article  PubMed  CAS  Google Scholar 

  39. Neylan TC, Mueller SG, Wang Z, Metzler TJ, Lenoci M, Truran D, Schuff N, et al. Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biol Psychiat. 2010;68(5):494–6. https://doi.org/10.1016/j.biopsych.2010.04.035.

    Article  PubMed  Google Scholar 

  40. Kamali A-M, Noorafshan A, Karimi F, Karbalay-Doust S, Nami M. The impact of chronic sleep restriction on neuronal number and volumetric correlates of the dorsal respiratory nuclei in a rat model. Sleep. 2017;40:ZSX072. https://doi.org/10.1093/sleep/zsx072.

    Article  Google Scholar 

  41. Morrell MJ, McRobbie DW, Quest RA, Cummin ARC, Ghiassi R, Corfield DR. Changes in brain morphology associated with obstructive sleep apnea. Sleep Med. 2003;4(5):451–4.

    Article  Google Scholar 

  42. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10(1):49–62. https://doi.org/10.1016/j.smrv.2005.05.002.

    Article  PubMed  Google Scholar 

  43. Tononi G, Cirelli C. Sleep and synaptic down-selection. Eur J Neurosci. 2020;51(1):413–21. https://doi.org/10.1111/ejn.14335.

    Article  PubMed  Google Scholar 

  44. Yoshii T, Oishi N, Ikoma K, Nishimura I, Sakai Y, Matsuda K, Fukui K, et al. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model. Sci Rep. 2017;7(1):12731. https://doi.org/10.1038/s41598-017-12917-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, Taylor WD. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2017;47(1):171–81. https://doi.org/10.1017/S0033291716002403.

    Article  PubMed  CAS  Google Scholar 

  46. May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci. 2011;15(10):475–82. https://doi.org/10.1016/j.tics.2011.08.002.

    Article  PubMed  Google Scholar 

  47. Bunzeck N, Thiel C. Neurochemical modulation of repetition suppression and novelty signals in the human brain. Cortex. 2016;80:161–73. https://doi.org/10.1016/j.cortex.2015.10.013.

    Article  PubMed  Google Scholar 

  48. Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, Russo MB, Balkin TJ. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res. 2003;12(1):1–12. https://doi.org/10.1046/j.1365-2869.2003.00337.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by All India Institute of Medical Sciences and Indian Council of Medical research, New Delhi, India.

Funding

The study was supported by All India Institute of Medical Sciences and Indian Council of Medical research, New Delhi, India (Grant no. 45/1/2018-PHY/BMS).

Author information

Authors and Affiliations

Authors

Contributions

HNM and SSN contributed to design, conceptual framework, experimental work, acquisition of the data and drafting the article of the study. SK contributed to the data acquisition. BS contributed to experimental work. AS contributed to the data analysis.

Corresponding author

Correspondence to Hruda Nanda Mallick.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics Approval

The study was approved by the Institutional Animal Ethics Committee of All India Institute of Medical Sciences, New Delhi, India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somanath, S., Sumiyoshi, A., Kumaran, S.S. et al. Thalamic Grey Matter Volume Changes After Sleep Deprivation in Rats. Sleep Vigilance 5, 227–234 (2021). https://doi.org/10.1007/s41782-021-00148-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41782-021-00148-2

Keywords

Navigation