Skip to main content
Log in

Microstructure, mechanical and neutron shielding properties of aluminum borate ceramics obtained from alumina and boric acid

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, a series of aluminum borate ceramics (ABCs) with needle-like whiskers were obtained using a low-cost, solid-state, pressureless sintering ceramic route, without any additives during the preparation process. The effects of different alumina/boric acid molar ratios and sintering temperatures on the phase composition, microstructure, mechanical properties, specific surface area, pore size distribution, and sub-cadmium neutron shielding properties of ABCs were studied using orthogonal experiments. It was observed that pure phase aluminum borate (Al18B4O33) ceramics could be obtained at 1100 ℃, forming a mass of needle-like whiskers. The whiskers’ aspect ratio, fracture work, specific surface area, and pore size distribution of ABCs are maximized when ABCs are sintered at 1100 ℃ with 9:6 alumina/boric acid molar ratio. In this condition, ABCs (0.5 cm) can shield 70% of sub-cadmium neutrons (E<0.4 eV). These findings demonstrate the great potential of aluminum borate ceramics for neutron shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as these data also form part of an ongoing study. The data are available from the corresponding author on reasonable request.

References

  1. Canel, A., Korkut, H., Korkut, T.: Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiat. Phys. Chem. 158, 13–16 (2019). https://doi.org/10.1016/j.radphyschem.2019.01.005

    Article  CAS  Google Scholar 

  2. Li, T., Diao, S., Liu, P., Zhang, Y., Zhan, Q.: A multi-component nanocrystalline FeCrV alloy with improved mechanical properties and excellent irradiation resistance. Prog Nat. Sci- Mater. 32, 433–442 (2022). https://doi.org/10.1016/j.pnsc.2022.06.005

    Article  CAS  Google Scholar 

  3. Abd Elwahab, N.R., Helal, N., Mohamed, T., Shahin, F., Ali, F.M.: New shielding composite paste for mixed fields of fast neutrons and gamma rays. Mater. Chem. Phys. 233, 249–253 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.059

    Article  CAS  Google Scholar 

  4. DiJulio, D.D., Cooper-Jensen, C.P., Perrey, H., Fissum, K., Rofors, E., Scherzinger, J.: A polyethylene-B4C based concrete for enhanced neutron shielding at neutron research facilities. Nucl. Instrum. Meth A. 859, 41–46 (2017). https://doi.org/10.1016/j.nima.2017.03.064

    Article  CAS  Google Scholar 

  5. Li, X., Wu, J., Tang, C., He, Z., Yuan, P., Sun, Y.: High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos. Part. B-Eng. 159, 355–361 (2019). https://doi.org/10.1016/j.compositesb.2018.10.003

    Article  CAS  Google Scholar 

  6. Aygun, B., Korkut, T., Karabulut, A., Gencel, O., Karabulut, A.: Production and neutron irradiation tests on a new epoxy/molybdenum composite. Int. J. Polym. Anal. Ch. 20(4), 323–329 (2015). https://doi.org/10.1080/1023666X.2015.1017790

    Article  CAS  Google Scholar 

  7. Qiu, J., Zhang, Y., Fu, C., Yang, Y., Ye, Y., Wang, R., Tang, B.: Study on photofluorescent uranium ore sorting based on deep learning. Min. Eng. 206, 108523 (2024). https://doi.org/10.1016/j.mineng.2023.108523

    Article  CAS  Google Scholar 

  8. Ozdemir, T., Akbay, I.K., Uzun, H., Reyhancan, I.A.: Neutron shielding of EPDM rubber with boric acid: Mechanical, thermal properties and neutron absorption tests. Prog Nucl. Energy. 89, 102–109 (2016). https://doi.org/10.1016/j.pnucene.2016.02.007

    Article  CAS  Google Scholar 

  9. Zhang, H., Zhang, Y., Hu, W., Qu, J., Liu, S., Wang, R.: Simulation study of uranium content in uranium yellow cake using the active multiplicity method. Nucl. Tec. 47(2), 49–57 (2024). https://doi.org/10.11889/j.0253-3219.2024.hjs.47.020202

    Article  Google Scholar 

  10. Sikora, P., El-Khayatt, A.M., Saudi, H.A., Chung, S., Stephan, D., Abd Elrahman, M.: Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes. Constr. Build. Mater. 284, 122758 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122758

    Article  CAS  Google Scholar 

  11. Demir, I., Gumuş, M., Gokçe, H.S.: Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures. Constr. Build. Mater. 257, 119596 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119596

    Article  CAS  Google Scholar 

  12. Falahatkar Gashti, M., Hosein Ghasemzadeh Mousavinejad, S., Jalal Khaleghi, S.: Evaluation of gamma and neutron radiation shielding properties of the GGBFS based Geopolymer concrete. Constr. Build. Mater. 367, 130308 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130308

    Article  CAS  Google Scholar 

  13. Uddin, Z., Yasin, T., Shafiq, M., Raza, A., Zahur, A.: On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites. Radiat. Phys. Chem. 166, 108450 (2020). https://doi.org/10.1016/j.radphyschem.2019.108450

    Article  CAS  Google Scholar 

  14. Zhang, X., Yang, M., Zhang, X., Wu, H., Guo, S., Wang, Y.: Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Compos. Sci. Technol. 150, 16–23 (2017). https://doi.org/10.1016/j.compscitech.2017.06.007

    Article  CAS  Google Scholar 

  15. El-Khatib, A.M., Hamada, M.S., Alabsy, M.T., Youssef, Y.M., Elzaher, M.A., Badawi, M.S.: Fast and thermal neutrons attenuation through micro-sized and nano-sized CdO reinforced HDPE composites. Radiat. Phys. Chem. 180, 109245 (2021). https://doi.org/10.1016/j.radphyschem.2020.109245

    Article  CAS  Google Scholar 

  16. Ozdemir, T., Yılmaz, S.N.: Hexagonal boron nitride and polydimethylsiloxane: A ceramic rubber composite material for neutron shielding. Radiat. Phys. Chem. 152, 93–99 (2018). https://doi.org/10.1016/j.radphyschem.2018.08.008

    Article  CAS  Google Scholar 

  17. Thompson, L., Nikzad, M., Sbarski, I., Yu, A.: Esterified cellulose nanocrystals for reinforced epoxy nanocomposites. Prog Nat. Sci- Mater. 32, 328–333 (2022). https://doi.org/10.1016/j.pnsc.2022.05.001

    Article  CAS  Google Scholar 

  18. Adeli, R., Shirmardi, S.P., Ahmadi, S.J.: Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiat. Phys. Chem. 127, 140–146 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.026

    Article  CAS  Google Scholar 

  19. Kiani, M.A., Ahmadi, S.J., Outokesh, M., Adeli, R., Mohammadi, A.: Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application. Radiat. Phys. Chem. 141, 223–228 (2017). https://doi.org/10.1016/j.radphyschem.2017.07.013

    Article  CAS  Google Scholar 

  20. Hei, D.Q., Chen, R.Y., Liu, F.: A novel design of neutron shielding composite materials with three- dimensionally interwoven structure and excellent properties. J. Alloys Compd. 845, 156328 (2020). https://doi.org/10.1016/j.jallcom.2020.156328

    Article  CAS  Google Scholar 

  21. Xu, Z.G., Jiang, L.T., Zhang, Q., Qiao, J., Gong, D., Wu, G.H.: The design of a novel neutron shielding B4C/Al composite containing Gd. Mater. Des. 111, 375–381 (2016). https://doi.org/10.1016/j.matdes.2016.07.140

    Article  CAS  Google Scholar 

  22. Kasana, S.S., Pandey, O.P.: Effect of heat treatment on microstructure and mechanical properties of boron containing Ti-Stabilized AISI-321 steel for nuclear power plant application. Mater. Today Commun. 26, 101959 (2021). https://doi.org/10.1016/j.mtcomm.2020.101959

    Article  CAS  Google Scholar 

  23. Kipcak, A.S., Gurses, P., Derun, E.M., Tugrul, N., Piskin, S.: Characterization of boron carbide particles and its shielding behavior against neutron radiation. Energy Conv Manag. 72, 39–44 (2013). https://doi.org/10.1016/j.enconman.2012.08.026

    Article  CAS  Google Scholar 

  24. Dong, C., Li, Y., Li, S., Jia, W., Chen, R., Lao, D.: Thermally insulating GdBO3 ceramics with neutron shielding performance. Int. J. Appl. Ceram. Technol. 19(3), 1428–1438 (2022). https://doi.org/10.1111/ijac.13984

    Article  CAS  Google Scholar 

  25. Piotrowski, T.: Neutron shielding evaluation of concretes and mortars: A review. Constr. Build. Mater. 277, 122238 (2021). https://doi.org/10.1016/j.conbuildmat.2020.122238

    Article  CAS  Google Scholar 

  26. More, C.V., Alsayed, Z., Badawi, M.S., Thabet, A.A., Pawar, P.P.: Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 19(3), 2057–2090 (2021). https://doi.org/10.1007/s10311-021-01189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gudipudi, S., Nagamuthu, S., Subbian, K.S.: Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting. Eng. Sci. Technol. 23, 1233–1243 (2020). https://doi.org/10.1016/j.jestch.2020.01.010

    Article  Google Scholar 

  28. Ge, R., Zhang, Y., Liu, Y., Fang, J., Luan, W., Wu, G.: Effect of Gd2O3 addition on mechanical, thermal and shielding properties of Al2O3 ceramics. J. Mater. Sci-Mater El. 28(8), 5898–5905 (2017). https://doi.org/10.1007/s10854-016-6263-x

    Article  CAS  Google Scholar 

  29. Oto, B., Kavaz, E., Durak, H., Aras, A., Madak, Z.: Effect of addition of molybdenum on photon and fast neutron radiation. Ceram. Int. 45, 23681–23689 (2019). https://doi.org/10.1016/j.ceramint.2019.08.082

    Article  CAS  Google Scholar 

  30. Hernandez, M.F., Suarez, G., Cipollone, M., Conconi, M.S., Aglietti, E.F., Rendtorff, N.M.: Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceram. Int. 43, 2188–2195 (2017). https://doi.org/10.1016/j.ceramint.2016.11.002

    Article  CAS  Google Scholar 

  31. Gupta, R.K., Al-Ghamdi, A.A., Al-Hartomy, A., Al-Hazmi, F., El-Tantawy, F., Yakuphanoglu, F.: Synthesis and characterization of nanostructured aluminum borate by sol–gel method. J. Sol-Gel Sci. Technol. 64, 100–103 (2012). https://doi.org/10.1007/s10971-012-2833-4

    Article  CAS  Google Scholar 

  32. Su, P., Huang, J.W., Wu, W.W., Wu, X.H.: Preparation of aluminum borate whiskers by the molten salt synthesis method. Ceram. Int. 39, 7263–7267 (2013). https://doi.org/10.1016/j.ceramint.2013.02.007

    Article  CAS  Google Scholar 

  33. Elssfah, E.M., Song, H.S., Tang, C.C., Zhang, J., Ding, X.X., Qi, S.R.: Synthesis of aluminum borate nanowires via a novel flux method. Mater. Chem. Phys. 101, 499–504 (2007). https://doi.org/10.1016/j.matchemphys.2006.09.001

    Article  CAS  Google Scholar 

  34. Hernandez, M.F., Suarez, G., Cipollone, M., Aglietti, E.F., Rendtorff, N.M.: Mechanical behavior and microstructure of porous needle: Aluminum borate (Al18B4O33) and Al2O3-Al18B4O33 composites. Ceram. Int. 43, 11759–11765 (2017). https://doi.org/10.1016/j.ceramint.2017.06.011

    Article  CAS  Google Scholar 

  35. Luo, H., Li, Y.B., Xiang, R.F., Li, S.J., Xu, N.N., Chen, R.Y., Jia, W.B.: Microstructural evolution and kinetics analysis of aluminum borate ceramics via solid-state reaction synthesis. Int. J. Appl. Ceram. Technol. 16, 2457–2466 (2019). https://doi.org/10.1111/ijac.13308

    Article  CAS  Google Scholar 

  36. Mei, H., Tan, Y., Huang, W., Chang, P., Fan, Y., Cheng, L.: Structure design influencing the mechanical performance of 3D printing porous ceramics. Ceram. Int. 47(6), 8389–8397 (2021). https://doi.org/10.1016/j.ceramint.2020.11.203

    Article  CAS  Google Scholar 

  37. Lao, D., Liu, F., Zhou, D.S., Zhan, J., Su, X.D., Li, M.H., Chen, R.Y., Li, S.S., Jia, W.B.: Reinforcement of neutron shielding composites with three-dimensionally interwoven structures via reticulated porous ceramic skeletons. Prog Nucl. Energy. 156, 104536 (2023). https://doi.org/10.1016/j.pnucene.2022.104536

    Article  CAS  Google Scholar 

  38. Zhao, D., Jia, W.B., Hei, D.Q.: Design of a neutron shielding performance test system base on Am-Be neutron source. Radiat. Phys. Chem. 193, 109954 (2022). https://doi.org/10.1016/j.radphyschem.2021.109954

    Article  CAS  Google Scholar 

  39. Li, Y.L., Wang, W.X., Zhou, J., Chen, H.S., Zhang, P.: 10B areal density: A novel approach for design and fabrication of B4C/6061Al neutron absorbing materials. J. Nucl. Mater. 487, 238–246 (2017). https://doi.org/10.1016/j.jnucmat.2017.02.020

    Article  CAS  Google Scholar 

  40. Pu, Z., Huang, J., Li, J., Feng, H., Wang, X., Yin, X.: Effect of F content on the structure, viscosity and dielectric properties of SiO2-Al2O3-B2O3-RO-TiO2 glasses. J. Non-Cryst Solids. 563, 120817 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120817

    Article  CAS  Google Scholar 

  41. Luo, H., Li, Y., Xiang, R., Li, S., Li, X., Zhou, Z.: Novel method of fabricating ultra-light aluminum borate foams with hierarchical pore structure. Mater. Lett. 243, 92–95 (2019). https://doi.org/10.1016/j.matlet.2019.02.032

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base (Lab) Open Fund [NO. KFJJ20190602], the Funding for Engineering Research Center of Nuclear Technology Application East China University of Technology) [NO. HJSJYB2021-7], the Basic Research Expenses [NO. 1006-ILB23003], the Defense Industrial Technology Development Program [NO. JCKY2021605B031], National Natural Science Foundation of China [NO.42374226], Jiangxi Provincial Natural Science Foundation [NO.20232BAB201043 and 20232BCJ23006].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhang or Wenbao Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, D., Zhang, Y., Huang, L. et al. Microstructure, mechanical and neutron shielding properties of aluminum borate ceramics obtained from alumina and boric acid. J Aust Ceram Soc (2024). https://doi.org/10.1007/s41779-024-01031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-024-01031-9

Keywords

Navigation