Skip to main content
Log in

Development and characterization of screen-printed Prosopis Africana Char thick film for electronic applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The need for biomass materials that are both cost-effective and highly effective has increased rapidly in a number of areas, including flexible electronics. The aim of this research is to investigate the properties of a screen-printed thick film of Prosopis Africana charcoal (PAC) on an alumina substrate. The biochar was obtained from the Prosopis Africana strain by subjecting it to controlled pyrolysis at 500 °C for 3 h. The rheological properties of the PAC pastes were formulated at a powder-to-organic binder ratio of 40:60 wt%. An average 11.8-µm-thick layer was produced using the screen-printing process. X-ray diffraction analysis showed the presence of characteristic peaks at approximately 25.0° and 44.7°. These peaks correspond to the (002) and (004) reflections of the graphite structure. Thermogravimetric analysis revealed that the PAC film exhibited thermal stability in an airflow environment up to 650 °C. The surface morphology of the PAC thick film exhibits a reticulated appearance with patchy features, while elemental composition analysis (EDX) confirmed the high carbon content of the PAC thick film. The real and imaginary dielectric constants of the PAC thick film at 10 GHz were found to be 9.8 and 1.8, respectively. It can be concluded that the PAC biochar has promising electronic properties, making it a suitable candidate as an environmentally friendly material for a range of electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Alshahrani, H., Arun Prakash, V.R.: Development of highly flexible electromagnetic interference shielding composites for electronic applications using cobalt/ Hevea brasiliensis seed husk carbon dots/bamboo microfibre-polyvinyl alcohol. Ind. Crops Prod. 191(PA), 115967 (2023)

    Article  CAS  Google Scholar 

  2. Dhineshbabu, N.R., Mahadevi, N., Assein, D.: Electronic applications of multi-walled carbon nanotubes in polymers: a short review. Mater. Today Proc. 33, 382–386 (2020)

    Article  CAS  Google Scholar 

  3. Monne, M.A., Jewel, M.U., Wang, Z., Chen, MY.: Graphene based 3D printed single patch antenna. In Low-dimensional materials and devices. SPIE. 10725, 21–26 (2018)

  4. Jayan, J.S., Jayan, S.S.: Biomass-derived laser-induced graphene and its advances in the electronic applications. Adv. Eng. Mater. 25(16), 2300248 (2023)

    Article  CAS  Google Scholar 

  5. Min, J., Jung, Y., Ahn, J., Lee, J.G., Lee, J., Ko, S.H.: Recent advances in biodegradable green electronic materials and sensor applications. Adv. Mater. 19, 2211273 (2023)

    Article  Google Scholar 

  6. He, H., et al.: Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. 10(16), 2205557 (2023)

    Article  CAS  Google Scholar 

  7. Kirtania, S.G., Elger, A.W., Hasan, M.R., Wisniewska, A., Sekhar, K., Karacolak, T., Sekhar, P.K.: Flexible antennas: A review. Micromachines 11(9), 847 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. P. N. Blessy Rebecca, D. Durgalakshmi, S. Balakumar, and R. A. Rakkesh, “Biomass-derived graphene-based nanocomposites: a futuristic material for biomedical applications,” ChemistrySelect, vol. 7, no. 5, p. e202104013, 2022.

  9. Agboola, D.A.: Prosopis Africana (Mimosaceae): stem, roots, and seeds in the economy of the savanna areas of Nigeria. Econ. Bot. 58(1), S34–42 (2004)

    Article  Google Scholar 

  10. B. Bishop, F. B. P. Abang, and S. Attah, “Effect of fermentation with rumen content on the feeding value of boiled iron tree (Prosopis Africana) seedcoat on haematology and serum biochemistry of broiler chickens,” Annu. Res. Rev. Biol., vol. 36, no. November 2016, pp. 70–77, 2021.

  11. Yusuf, N.D., Ogah, D.M., Hassan, D.I., Musa, M.M., Doma, U.D.: Effect of decorticated fermented prosopis seed meal (Prosopis Africana) on growth performance of broiler chicken. Int. J. Poult. Sci. 7(11), 1054–1057 (2008)

    Article  CAS  Google Scholar 

  12. Kiflie, Z., Solomon, M., Kassahun, S.K.: Statistically optimized charcoal production from Prosopis juliflora for use as alternative fuel in cement factories. Biomass Convers. Biorefinery 13(3), 1539–1552 (2023)

    Article  CAS  Google Scholar 

  13. T. R. Rao and A. Sharma, “Pyrolysis rates of biomass materials,” vol. 23, no. 11, pp. 973–978, 1998.

  14. Yan, B., Zheng, J., Feng, L., Du, C., Jian, S., Yang, W., Wu, Y.A., Jiang, S., He, S., Chen, W.: Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar. 4(1), 50 (2022)

    Article  CAS  Google Scholar 

  15. Thines, K.R., Abdullah, E.C., Ruthiraan, M., Mubarak, N.M., Tripathi, M.: A new route of magnetic biochar based polyaniline composites for supercapacitor electrode materials. J. Anal. Appl. Pyrolysis 121, 240–257 (2016)

    Article  CAS  Google Scholar 

  16. Husain, Z., et al.: Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor. Mater. Sci. Energy Technol. 5, 99–109 (2022)

    CAS  Google Scholar 

  17. Leng, L., et al.: An overview on engineering the surface area and porosity of biochar. Sci. Total. Environ. 763, 144204 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. Rizwan, M., Khan, M.W., Sydänheimo, L., Virkki, J., Ukkonen, L.: Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate. IEEE Antennas and Wireless Propagation Letters 16(16), 3108–12 (2017)

    Article  Google Scholar 

  19. Gupta, R., et al.: Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 24(3), 852–876 (2022)

    Article  CAS  Google Scholar 

  20. Tovar-Lopez, F.J.: Recent progress in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges. Sensors 23(12), 5406 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rizwan, M., Khan, M.W., Sydänheimo, L., Virkki, J., Ukkonen, L.: Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate. IEEE Antennas and Wireless Propagation Letters 16, 3108–12 (2017)

    Article  Google Scholar 

  22. Tan, H.W., Choong, Y.Y.C., Kuo, C.N., Low, H.Y., Chua, C.K.: 3D printed electronics: processes, materials and future trends. Prog. Mater. Sci. 127(June), 2022 (2020)

    Google Scholar 

  23. Rao, C.H., Avinash, K., Varaprasad, B.K.S.V.L., Goel, S.: A review on printed electronics with digital 3D printing: fabrication techniques, materials, challenges and future opportunities. J. Electron. Mater. 51(6), 2747–2765 (2022)

    Article  CAS  Google Scholar 

  24. Balliu, E., Andersson, H., Engholm, M., Öhlund, T., Nilsson, H.-E., Olin, H.: Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci. Rep. 8(1), 10408 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Su, Z., et al.: Designed biomass materials for ‘green’ electronics: a review of materials, fabrications, devices, and perspectives. Prog. Mater. Sci. 125(August 2020), 100917 (2022)

    Article  CAS  Google Scholar 

  26. Shafiee, F.N., et al.: Effect of nanometric and micronic particles size on physical and electrical properties of graphite thick film. Int. J. Nanotechnol. 17(11–12), 825–839 (2020)

    Article  CAS  Google Scholar 

  27. Phadtare, V.D., Parale, V.G., Kulkarni, G.K., Velhal, N.B., Park, H.H., Puri, V.R.: Screen printed carbon nanotube thick film on alumina substrate. Ceram. Int. 43(5), 4612–4617 (2017)

    Article  CAS  Google Scholar 

  28. Hasan, I.H., et al.: YIG thick film as substrate overlay for bandwidth enhancement of microstrip patch antenna. IEEE Access 6, 32601–32611 (2018)

    Article  Google Scholar 

  29. Garba, Z.N., Rahim, A.A.: Journal of Analytical and Applied Pyrolysis Process optimization of K 2 C 2 O 4 -activated carbon from Prosopis Africana seed hulls using response surface methodology. J. Anal. Appl. Pyrolysis 107, 306–312 (2014)

    Article  CAS  Google Scholar 

  30. Babani, S., Hamidon, M.N., Jaafar, H., Ismail, A., Hasan, I.H., Yunusa, Z., Musa, U., Ali, A.S., Bakar, A.A., Shafiee, F.N., Lamido J.: Rheological properties of Prosopis Africana char paste thick film for antenna applications. In: 2023 IEEE International Conference on Sensors and Nanotechnology (SENNANO), pp. 37–40. IEEE (2023)

  31. Sumaila, J.L., Shu’Aibu, D.S., Hamidon, M.N., Yunusa, Z., Magaji, N., Abubakar, A., Shafiee, F.N., Babani, S.: Morphology and electrical properties of pristine and composite rice husk ash nano/micro particles thick films for gas sensing applications. In: 2023 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), pp. 90–93. IEEE (2023)

    Chapter  Google Scholar 

  32. Hasan, I.H., Ismail, I., Hamidon, M.N., Azhari, S., Ismail, A., Osman, R.: Ferrites Based Thick Film for Enhanced Microstrip Patch Antenna. ISASE2018. 2018 Dec 15:276.

  33. Sandhu, R.K., Siddique, R.: Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Constr. Build. Mater. 30(153), 751–64 (2017)

    Article  Google Scholar 

  34. Chen, J., Li, J., Xiong, D., He, Y., Ji, Y., Qin, Y.: Preparation and tribological behavior of Ni-graphene composite coating under room temperature. Appl. Surf. Sci. 361, 49–56 (2016)

    Article  CAS  Google Scholar 

  35. Mahajan, A., Kingon, A., Kukovecz, Á., Konya, Z., Vilarinho, P.M.: Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater. Lett. 90, 165–168 (2013)

    Article  CAS  Google Scholar 

  36. Lisunova, M., et al.: Field emission properties of screen-printed activated carbons. Carbon N. Y. 47(4), 1119–1125 (2009)

    Article  CAS  Google Scholar 

  37. Hassan, I.H.: Preparation and characterization of nanosized graphite based thick film for flexible electronics Intan. Solid State Sci. Technol. 26(2), 50–56 (2018)

    Google Scholar 

  38. I. H. Hasan, M. N. Hamidon, I. Ismail, R. Osman, and S. Azhari, “Printability and structural analysis of yttrium iron garnet thick film with low firing temperature,” pp. 3–6, 2015.

  39. Kennedy, L.J., Vijaya, J.J., Sekaran, G.: Electrical conductivity study of porous carbon composite derived from rice husk. Mater. Chem. Phys. 91(2), 471–476 (2005)

    Article  CAS  Google Scholar 

  40. Ibrahim, I.R., et al.: A study on microwave absorption properties of carbon black and Ni0.6Zn0.4Fe2O4 nanocomposites by tuning the matching-absorbing layer structures. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  41. Liang, X., Wang, G., Gu, W., Ji, G.: Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon N. Y. 177, 97–106 (2021)

    Article  CAS  Google Scholar 

  42. Xu, L., Lin, Z., Chen, Y., Fan, Z., Pei, X., Yang, S., Kou, X., Wang, Y., Zou, Z., Xi, D., Yin, P.: Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects. Carbon. 5(201), 1090–114 (2023)

    Article  Google Scholar 

  43. Kumar, R., et al.: Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon N. Y. 177, 304–331 (2021)

    Article  CAS  Google Scholar 

  44. Ruiz-Perez, F., López-Estrada, S.M., Tolentino-Hernández, R.V., Caballero-Briones, F.: Carbon-based radar absorbing materials: a critical review. J. Sci. Adv. Mater. Devices 7(3), 100454 (2022)

    Article  CAS  Google Scholar 

  45. Hasan, I.H., Hamidon, M.N., Ismail, I., Ismail, A., Kusaimi, M.A., Azhari, S.: Nickel zinc ferrite thick film for optimized performance of flexible patch Antenna. In: 2019 International Symposium on Electronics and Smart Devices (ISESD), pp. 1–4. IEEE (2019)

Download references

Acknowledgements

This work was supported by the Petroleum Technology Development Fund (PTDF), Nigeria, and the Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia (UPM), Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Suleiman Babani led the project and conducted experiments, while Mohd Nizar Hamidon provided guidance. Other authors contributed to various aspects of the project, including experimental design, data analysis, manuscript preparation, and review. The research findings and manuscript were collectively reviewed and approved by all authors.

Corresponding authors

Correspondence to Suleiman Babani or Mohd Nizar Hamidon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babani, S., Hamidon, M.N., Ismail, A. et al. Development and characterization of screen-printed Prosopis Africana Char thick film for electronic applications. J Aust Ceram Soc 60, 643–652 (2024). https://doi.org/10.1007/s41779-024-00999-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-024-00999-8

Keywords

Navigation