Skip to main content

Advertisement

Log in

Mechanical and in vitro bioactivity study of bamboo leaf-derived glass-ionomer cement doped with Mg2+, Zn2+ and Ba2+

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Mechanical properties and bioactivity are two important characteristics of glass-ionomer cements (GICs) for application as dental restorative materials. The current study prepared GIC economically by using bamboo leaf as a silica source instead of expensive analytical grade silica precursors. Dopant ions consisting of Mg2+, Zn2+ and Ba2+ were added to study their influence on mechanical properties and bioactivity. The undoped GIC exhibited compressive strength, flexural strength and microhardness of 110.31 (± 2.42) MPa, 25.53 (± 3.11) MPa and 66.48 (± 4.22) KHN, respectively, while those for the doped GIC were 122.85 (± 6.37) MPa, 29.17 (± 5.62) MPa and 72.39 (± 6.04) KHN, respectively. The obtained GICs, when immersed in simulated body fluid (SBF) for 21 days, showed a good degree of stability and capacity to induce the nucleation of hydroxyapatite (HA) on their surface but the doped sample exhibited a superior outcome. Trimetallic doping with Mg2+, Zn2+ and Ba2+ may be a crucial strategy for improving the mechanical and bioactive properties of GIC designed for application in restorative dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alhabdan, Y.A., Albeshr, A.G., Yenugadhati, N., Jradi, H.: Prevalence of dental caries and associated factors among primary school children: a population-based cross-sectional study in Riyadh, Saudi Arabia. Environ. Health Prev. Med. 23, 60 (2018)

    Google Scholar 

  2. Almost 100% of adults and 60–90% of schoolchildren worldwide suffer from dental caries. https://www.oralhealthgroup.com/oral-health/almost-100-of-adults-and-60-90-of-schoolchildren-worldwide-suffer-from-dental-caries-1002972038/. Accessed 27 November 2021

  3. Boushell, L.W., Wilder, A.D., Ahmed, S.N.: 10 Clinical technique for amalgam restorations. In: Ritter, A.V., Boushell, L.W., Walter, R. (eds.) Sturdevant’s art and science of operative dentistry, pp. 306–414. Elsevier, Missouri (2019)

    Google Scholar 

  4. Al-Saleh, I., Al-Sedairi, A.: Mercury (Hg) burden in children: the impact of dental amalgam. Sci. Total Environ. 409, 3003–3015 (2011)

    CAS  Google Scholar 

  5. Roulet, J.F.: Benefits and disadvantages of tooth-coloured alternatives to amalgam. J. Dent. 25, 459–473 (1997)

    CAS  Google Scholar 

  6. Manhart, J., Kunzelmann, K.H., Chen, H.Y., Hickel, R.: Mechanical properties of new composite restorative materials. J. Biomed. Mater. Res. 53, 353–361 (2000)

    CAS  Google Scholar 

  7. Van Meerbeek, B., De Munck, J., Yoshida, Y., Inoue, S., Vargas, M., Vijay, P., Van Landuyt, K., Lambrechts, P., Vanherle, G.: Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper. Dent. 28, 215–235 (2003)

    Google Scholar 

  8. Nicholson, J.W.: Maturation processes in glass-ionomer dental cements. Acta Biomater. Odontol. Scand. 4, 63–71 (2018)

    CAS  Google Scholar 

  9. Anusavice, K.: Challenges to the development of esthetic alternatives to dental amalgam in an dental research center. Trans. Acad. Dent. Mater. 9, 25–50 (1996)

    Google Scholar 

  10. Yip, H.K., Tay, F.R., Ngo, H., Smales, R.J., Pashley, D.H.: Bonding of contemporary glass ionomer cements to dentin. Dent. Mater. 17, 456–470 (2001)

    CAS  Google Scholar 

  11. Sreenivasan, H., Kinnunen, P., Adesanya, E., Patanen, M., Kantola, A.M., Telkki, V.-V., Huttula, M., Cao, W., Provis, J.L., Illikainen, M.: Field strength of network-modifying cation dictates the structure of (Na-Mg) aluminosilicate glasses. Front. Mater. 7, 267 (2020)

    Google Scholar 

  12. Edén, M.J.: The split network analysis for exploring composition–structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. Non-Cryst. Solids 357, 1595–1602 (2011)

    Google Scholar 

  13. Lohbauer, U.: Dental glass ionomer cements as permanent filling materials? — Properties, limitations and future trends. Materials 3, 76–96 (2010)

    CAS  Google Scholar 

  14. Boyd, D., Towler, M.R., Watts, S., Hill, R.G., Wren, A.W., Clarkin, O.M.: The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. J. Mater. Sci: Mater. M. 19, 953–957 (2008)

    CAS  Google Scholar 

  15. Curzon, M.E., Spector, P.C., Iker, H.P.: An association between strontium in drinking water supplies and low caries prevalence in man. Arch. Oral Biol. 23, 317–321 (1978)

    CAS  Google Scholar 

  16. Thuy, T.T., Nakagaki, H., Kato, K., Hung, P.A., Inukai, J., Tsuboi, S., Nakagaki, H., Hirose, M.N., Igarashi, S., Robinson, C.: Effect of strontium in combination with fluoride on enamel remineralisation in vitro. Arch. Oral Biol. 53, 1017–1022 (2008)

    CAS  Google Scholar 

  17. Guida, A., Towler, M.R., Wall, J.G., Hill, R.G., Eramo, S.: Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J. Mater. Sci. Lett. 22, 1401–1403 (2003)

    CAS  Google Scholar 

  18. Underwood, E.J.: Trace elements in human and animal nutrition. Academic Press, New York (1971)

    Google Scholar 

  19. Hsieh, H.S., Navia, J.M.: Zinc-deficiency and bone-formation in guinea-pig alveolar implants. J. Nutr. 110, 1581–1588 (1980)

    CAS  Google Scholar 

  20. Oner, G., Bhaumick, B., Bala, R.M.: Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology 114, 1860–1863 (1984)

    CAS  Google Scholar 

  21. Lansdown, A.B.G., Mirastschijski, U., Stubbs, N., Scanlon, E., Agren, M.S.: Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 15, 2–16 (2007)

    Google Scholar 

  22. Prasad, A.S.: Clinical manifestations of zinc-deficiency. Annu. Rev. Nutr. 5, 341–365 (1985)

    CAS  Google Scholar 

  23. Yamaguchi, M., Oishi, H., Suketa, Y.: Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 36, 4007–4012 (1987)

    CAS  Google Scholar 

  24. Yamaguchi, M., Yamaguchi, R.: Action of zinc on bone metabolism in rats - increases in alkaline phosphatase activity and DNA content. Biochem. Pharmacol. 35, 773–777 (1986)

    CAS  Google Scholar 

  25. Holloway, W.R., Collier, F.M., Herbst, R.E., Hodge, J.M., Nicholson, G.C.: Osteoblast-mediated effects of zinc on isolated rat osteoclasts: inhibition of bone resorption and enhancement of osteoclast number. Bone 19, 137–142 (1996)

    CAS  Google Scholar 

  26. Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam (1994)

    Google Scholar 

  27. Aaseth, J., Boivin, G., Andersen, O.: Osteoporosis and trace elements – an overview. J. Trace Elem. Med. Bio. 26, 149–152 (2012)

    CAS  Google Scholar 

  28. Fawcett, W.J., Haxby, E.J., Male, D.A.: Magnesium: physiology and pharmacology. Brit. J. Anaesth. 83, 302–320 (1999)

    CAS  Google Scholar 

  29. Nonomura, Y.: Powders and inorganic materials. Theoretical principles and applications.: Int. J. Cosmet. Sci. 7, 223–229 (2017)

    Google Scholar 

  30. Leon, H., Prentice Martin, J., Tyas, M.F.B.: The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent. Mater. J. 22, 746–751 (2006)

    Google Scholar 

  31. Musso, C.G.: Magnesium metabolism in health and disease. Int. Urol. Nephrol. 41, 357–362 (2009)

    CAS  Google Scholar 

  32. Su, J.-F., Le, D.-P., Liu, C.-H., Lin, J.-D., Xiao, X.-J.: Critical care management of patients with barium poisoning: a case series. Chin. Med. J. 133, 724–725 (2020)

    Google Scholar 

  33. Agnew, U.M., Slesinger, T.L.: Zinc toxicity. In: StatPearls. StatPearls Publishing, Treasure Island, Florida (2023). Available from: https://www.ncbi.nlm.nih.gov/books/NBK554548/

  34. Kow, K.W., Yusoff, R., Abdul Aziz, A.R., Abdullah, E.C.: From bamboo leaf to aerogel: preparation of water glass as a precursor. J. Non-Cryst. Solids 386, 76–84 (2014)

    CAS  Google Scholar 

  35. Makanjuola, O.J., Essien, E.R., Bolasodun, O.B., Umesi, C.D., Oderinu, H.O., Adams, L.A., Adeyemo, L.W.: A New hydrolytic route to an experimental glass for use in bioactive glass-ionomer cement. J. Mater. Res. Technol. 18, 2013–2024 (2022)

    CAS  Google Scholar 

  36. Essien, E.R., Olaniyi, O.A., Adams, L.A., Shaibu, R.O.: Sol-gel-derived porous silica: economic synthesis and characterization. J. Miner. Mater. Charact. Eng. 11, 976–981 (2012)

    Google Scholar 

  37. Öksüz, K.E., Sen, S., Sen, U.: Influence of ZrO2 addition on the structure and dielectric properties of BaTiO3 ceramics. Acta Phys. Pol. A 131, 197–199 (2017)

    Google Scholar 

  38. International Organization of Standardization. ISO 9917–1:2007 - dental-water-based cements. In: Part 1: Powder/liquid acid-based cements. ISO, Geneva (2016)

  39. ANSI/ADA specification no. 66 for dental glass ionomer cements. Council on Dental Materials, Instruments, and Equipment. J. Am. Dent. Assoc. 119, 205 (1989)

  40. Faridi, M.A., Khabeer, A., Haroon, S.: Flexural strength of glass carbomer cement and conventional glass ionomer cement stored in different storage media over time. Med. Princ. Pract. 27, 372–377 (2018)

    Google Scholar 

  41. Adams, L.A., Essien, E.R., Kaufmann, E.E.: A new route to sol-gel crystalline wollastonite bioceramic. J. Asian Ceram. Soc. 6, 132–138 (2018)

    Google Scholar 

  42. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    CAS  Google Scholar 

  43. Simsir, M., Akkan, H., Öksüz, K.: Processing and characterization of porous SiC/NiTi alloys for biomedical applications. Kovove Mater. 57, 363–369 (2019)

    CAS  Google Scholar 

  44. Karan, R., Pal, P., Maiti, P.K., Das, K.: Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system based glass-ceramics after partial replacement of Na2O by Li2O. J. Non-Cryst. Solids 556, 120554 (2021)

    CAS  Google Scholar 

  45. Karan, R., Manna, P., Maiti, P.K., Das, K.: Influence of selenium dioxide (SeO2) on properties of bioglass in SiO2-Na2O-CaO-P2O5 system. J. Aust. Ceram. Soc. 56, 1135–1145 (2020)

    Google Scholar 

  46. Mardani-Aghabaglou, A., Tuyan, M., Çakır Ö.A., Ramyar, K.: Effect of recycled aggregates on strength and alkali silica reaction (ASR) potential of mortar mixtures. In: 10th International Congress on Advances in Civil Engineering, pp. 1–7. Middle East Technical University, Ankara (2012)

  47. Subaer, S., Ekaputri, J.J., Fansuri, H., Abdullah, M.A.B.: The relationship between Vickers microhardness and compressive strength of functional surface geopolymers. AIP Conf. Proc. 1885, 020170 (2017)

    Google Scholar 

  48. Fleet, M.E., Pan, Y.: Site preference of rare earth elements in fluorapatite: binary (LREE+HREE)-substituted crystals. Am. Mineral. 82, 870–877 (1997)

    CAS  Google Scholar 

  49. Hassan, I., Antao, S.M., Parise, J.B.: Sodalite: high-temperature structures obtained from synchrotron radiation and Rietveld refinements. Am. Mineral. 89, 359–364 (2004)

    CAS  Google Scholar 

  50. Lebedeva, Y.S., Pushcharovsky, D.Y., Pasero, M., Merlino, S., Kashaev, A.A., Taroev, V.K., Goettlicher, J., Kroll, H., Pentinghaus, H., Suvorova, L.F., Wulf-Bernodat, H., Lashkevich, V.V.: Synthesis and crystal structure of low ferrialuminosilicate sanidine. Crystallogr. Rep. 48, 919–924 (2003)

    CAS  Google Scholar 

  51. Fleet, M.E., Liu, X., King, P.L.: Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am. Mineral. 89, 1422–1432 (2004)

    CAS  Google Scholar 

  52. Lasisi, F., Ogunjide, A.M.: Effect of grain size on the strength characteristics of cement-stabilized lateritic soils. Build. Environ. 19, 49–54 (1984)

    Google Scholar 

  53. Safatle, F.A., de Oliveira, K.D., de Neto, C.N.Á.: Potassium recovery from Brazilian glauconitic siltstone by hydrothermal treatments. Int. Eng. J. 73, 213–224 (2020)

    Google Scholar 

  54. Young, A.M.: FTIR investigation of polymerisation and polyacid neutralisation kinetics in resin-modified glass-ionomer dental cements. Biomaterials 23, 3289–3295 (2002)

    CAS  Google Scholar 

  55. Zhang, Y., Gao, P., Zhao, L., Chen, Y.: Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front. Chem. Sci. Eng. 10, 147–161 (2016)

    CAS  Google Scholar 

  56. Álvarez, L., de Gascue, B.R., Tremont, R.J., Márquez, E., Velazco, E.J.: Synthesis and characterization of a new aluminum-doped bismuth subcarbonate. Crystals 9, 466 (2019)

    Google Scholar 

  57. Eisa, Q.M.Y., Al Dabbas, M., Abdulla, F.H.: Quantitative identification of phosphate using X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. Int. J. Curr. Microbiol. App. Sci. 4, 270–283 (2015)

    Google Scholar 

  58. Essien, E.R.: Modified drug release from SiO2/polyhydroxybutyrate composite prepared using bamboo leaf-derived silica. FABAD J. Pharm. Sci. 47(1), 23–34 (2022)

    Google Scholar 

  59. Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006)

    CAS  Google Scholar 

  60. Ilie, N., Hickel, R.: Mechanical behaviour of glass ionomer cements as a function of loading and mixing procedures. Dent. Mater. J. 26, 526–533 (2007)

    Google Scholar 

  61. Busanello, L., Telles, M., Miranda, Junior W.G.., Imparato, J.C., Jacques, L.B., Mallman, A.: Compressive strength of glass-ionomer cements used for atraumatic restorative treatment. Rev. Odont. Cienc. 24, 295–298 (2009)

    Google Scholar 

  62. Yli-Urpo, H., Lassila, L.V., Närhi, T., Vallittu, P.K.: Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent. Mater. 21, 201–209 (2005)

    CAS  Google Scholar 

  63. Oliveira, G.L., Carvalho, C.N., Carvalho, E.M., Bauer, J., Leal, A.M.: The influence of mixing methods on the compressive strength and fluoride release of conventional and resin-modified glass ionomer cements. Int. J. Dent. 2019, 6834931 (2019)

    Google Scholar 

  64. Al-Taee, L., Deb, S., Banerjee, A.: An in vitro assessment of the physical properties of manually-mixed and encapsulated glass-ionomer cements. Br. Dent. J. open 6, 1–7 (2020)

    Google Scholar 

  65. de Lima, N.M.F., Pascotto, R.C., Borges, A.F., Soares, C.J., Raggio, D.P., Rios, D., Bresciani, E., Molina, G.F., Ngo, H.C., Miletić, I., Frencken, J.: Consensus on glass-ionomer cement thresholds for restorative indications. J. Dent. 107, 103609 (2021)

    Google Scholar 

  66. Essien, E.R., Adams, L.A.: Preparation of Mg–Zn bimetallic doped Na-Containing bioceramic from sodium Metasilicate. J. Porous Mater. 3, 885–895 (2016)

    Google Scholar 

  67. Azillah, M.A., Anstice, H.M., Pearson, G.J.: Longterm flexural strength of three direct aesthetic restorative materials. J. Dent. 26, 177–182 (1998)

    CAS  Google Scholar 

  68. O’Brien, T., Shoja-Assadi, F., Lea, S.C., Burke, F.J.T., Palin, W.M.: Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. J. Dent. 8, 490–495 (2010)

    Google Scholar 

  69. Oliveira, J.M., Correia, R.N., Fernandes, M.H.: Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials 23, 371–379 (2002)

    CAS  Google Scholar 

  70. Sharafeddin, F., Feizi, N.: Evaluation of the effect of adding micro-hydroxyapatite and nano-hydroxyapatite on the microleakage of conventional and resin-modified glass-ionomer Cl V restorations. J. Clin. Exp. Dent. 9, e242–e248 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Chemical and Sciences and the Central Teaching and Research Laboratory of Bells University of Technology, Ota, for supporting this research work with their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enobong Reginald Essien.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essien, E.R., Atasie, V.N., Okeafor, A.O. et al. Mechanical and in vitro bioactivity study of bamboo leaf-derived glass-ionomer cement doped with Mg2+, Zn2+ and Ba2+. J Aust Ceram Soc 59, 1399–1410 (2023). https://doi.org/10.1007/s41779-023-00922-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00922-7

Keywords

Navigation